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ABSTRACT 
This paper presents a multi-actors distributed control 
systems in an unknown environment. These actors are 
reactive entities able to react to the stimuli coming from 
the environment and to choose between several actions. 
In order to improve their behaviour (i.e. in order to 
choose the good action) in the course of time, the multi-
actors system must be able to use reinforcement 
learning. This signal of reinforcement is, until now, a 
signal whose values are previously defined. We propose 
to raise this technique by using the Shannon’s entropy 
to measure the coherence of the action choice using the 
transformation of the reinforcement signal table. This 
stage, of local training will allow the improvement of 
the control of the global system and coordination 
between the various actors. The results of the simulation 
show that the actor can learn to control its trajectory 
efficiently. 
 
KeyWords: Reinforcement learning, distributed control, 
Q-learning, multi-actors systems. 
 
1. INTRODUCTION 
The multi-actors systems in which actors must learn 
together how to achieve a common task, this constitutes 
a very active field of research (Claus 1998), (Littman 
2001), (Hu 1998). A difficulty in such systems is of 
knowing how to coordinate the actors effectively so that 
they gain ones from the others without harming any of 
them. The reactive actors considered in this article react 
to receive stimuli of the environment.  
 

These actors can be observed but, contrary to the 
cognitive actors, they cannot communicate. As an 
example of a distributed control system we consider a 
robot model with several sensors (actors) moving in an 
unknown environment. The planning of coordination 
and communication between the actors is not effective. 
It is then interesting to resort to training, such as the 
reinforcement learning which is based on a process 
test/error to acquire the desired behaviour. The object of 
this work is to study and develop a method of learning 
for multi-actors systems with the use of the theories of 
data fusion (Shannon’s entropy) to measure the 

coherence of the choice of the action by the 
transformation of the reinforcement signal table. 
   
2. REINFORCEMENT LERANING 
Reinforcement learning, is one of the most active 
research areas in artificial intelligence, it is a 
computational approach for learning whereby an agent 
tries to maximize the total amount of reward it does 
receive when interacting with a complex, and uncertain 
environment.  

 
In the standard reinforcement learning model an 

agent interacts with its environment (Sutton 1998). This 
interaction takes the form of the agent sensing the 
environment based on this sensory input, this enable 
choosing an action to perform in the environment. The 
action changes the environment in some manner and 
this change is communicated to the agent through a 
scalar reinforcement signal.  

 
There are three fundamental parts of a 

reinforcement learning problem: the environment, the 
reinforcement function, and the value function. 
 
 
 
 
 
 
 
      
     
 
 

Figure 1: The actor-environment interaction in 
reinforcement learning. 

Q-learning (Zennir 2004) is a recent form of 
Reinforcement Learning algorithm that does not need a 
model of its environment and can be used online. 
Therefore, it is very suited for repeated games against 
an unknown opponent. Q-learning algorithms works by 
estimating the values of state-action pairs Q(s,a).  
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The value Q(s,a) is defined to be the expected 
discounted sum of the future payoffs obtained by taking 
action “a” from state “s” and following an optimal 
policy thereafter. Once these values have been learned, 
the optimal action from any state is the one with the 
highest Q-value. Its simplest form, 1-step Q-learning is 
defined by  

[ ]),()','(max..),(),( ' asQasQrasQasQ a −++← γα           (1) 

• α :  learning rate,  γ: discount factor.  

In this case, the learned action-value function, Q, 
directly approximates Q*, the optimal action-value 
function, is independent of the policy being followed. 
This dramatically simplifies the analysis of the 
algorithm and enabled early convergence proofs. The 
policy still has an effect in that it determines which 
state-action pairs are visited and updated. However, all 
what is required to correct the convergence is that all 
pairs continue to be updated.  

As we have discussed before, this is a minimum 
requirement in the sense that any guaranteed method 
must fulfil this requirement to find optimal behaviour in 
the general case. Under this assumption and based on 
the usual stochastic approximation conditions on the 
step-size sequence, Q has been shown to converge with 
probability one to Q.  

The Q-learning algorithm is shown in procedural 
form in Figure 2. 

 

 

 

 

 

 

 
 
 
 
 

Figure 2: Q-learning algorithm. 

 

Shortly, we have:  

• ε: Probability to use a random action instead of 
the optimal policy.  

It was proven, for example in (Jaakkola 1994), that if 
spaces of states and actions S and A are finished, if αt is 
such as: 
 
 
 

 
and                 (2) 

 
 

This algorithm is for one actor, but where more 
than one actor work in the same space we have other 
algorithms adapted for this new context.  

 
3. REINFORCEMENT LEARNING IN A 

MULTI-ACTORS CONTEXT 
Let us consider a system made up of N actors Ai (i=1... 
N) whose interaction with the environment is defined 
by: 
- A space actions αi={ai1... ,aij... ,aiNi} for each actor Ai 
(i=1... N), with Ni=card(ai);  
- A space states S={s1,... ,si... ,sM};  
 

At the times "t", each actor carries out an action 
which is clean on the basis of state preceding "st" of the 
environment. These joint actions (a1... ai... ,aN) (with 
ai∈αi) cause a transition towards the state "s’" (the 
apostrophe meaning the moment "t+1"). According to 
architecture used, one critic’s function allows to reward 
the actors. Among architectures of training by 
reinforcement the most used, we distinguish centralized, 
distributed and multi-actors architecture. 

 
With a centralized approach of the reinforcement 

learning, state information are collected only in one 
decision centres, which updates the utility values and 
decides actions for each actor. By indicating |A| the 
number of achievable actions by each actor (the number 
is identical for all the actors without loss of 
generalization), and |S| the number of states attainable 
by the system, the table of Q(s, a) in memory is of size 
|S|*|A|N.  

 
A same reinforcement signal is allotted to all the 

actors whatever the contribution of each one of those to 
the success or the failure of the common task. The 
expected advantages of this centralized approach are: 

 
• A global vision of the system, allowing 

examining the all situations accessible by the 
actions from the actors. 

• The possible problems of coordination between 
actors are solved on a single level of decision. 

 
This approach presents the following inconvenient: 
 

• The total system is sensitive to the failure of 
the single decision centres. 

• The number of pair state/action (s, a) grows 
exponentially with the number of actors. 

• Beneficial actions on the global system can be 
penalizing for an actor, because it is not held 
account of the local constraints. 

 
 
 

∞=∑
t

tα ∑ ∞≤
t

t
2α

Initialize Q(s,a) arbitrarily 
Repeat (for each episode): 

Initialize s 
 

Repeat (for each step of episode): 
 

Choose “a” from “s” using policy derived from Q 
(e.g., ε-greedy) 

 
Take action “a”, observe “r”, s’ 

[ ]),()','(max..),(),( ' asQasQrasQasQ a −++← γα  
s←s’;   

 
Until “s” is terminal 
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3.1. Distributed architecture  
With a distributed architecture (Zennir 2003) the actors 
do not receive necessarily the same information of state 
or the same signal reinforcement, and perform their own 
training. By supposing that N actors share the same 
information of state, the number of Q(s, a) to update is 
N*|S|*|A|. The expected advantages of this distributed 
approach are:  
 

• A greater flexibility (facilitated adaptation to 
the unforeseen modifications of the 
environment). 

• A greater reliability (the individual error is 
tolerated). 

• A greater robustness (the capacity of resolution 
results from the collective and not from an 
individual). 

• Each actor can take into account local 
constraints. 

• The number of pair state/action (s, a) grows 
proportionally with the number of actors. 

 
In the distributed reinforcement learning approach, 

the strategies which can follow the actors implied in the 
same task can be individual or collective. According to 
an individual strategy each actor carries out his learning 
by ignoring the other actors. That amounts of learning 
by applying the algorithms acts as if each actor were 
alone.  

 
The environment of the actor is then non stationary 

bus during the learning, a "a" share carried out since the 
same state "s" always does not lead to the same state "s" 
because the state reached depends on the actions of the 
other actors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Distributed approach of reinforcement 
learning: one reinforcement signal « ri » for each actor. 

 
But this architecture presents the following 

difficulties: Within the context of a collective task the 
consequences of the action of an actor depend on the 
actions of the other actors. 

 
• When they are defined, the local goals pursued 

by each actor must be compatible with the 
global objective. 

• Mechanisms of co-operation among which, 
synchronization, collaboration, coordination 
can be necessary. 

 
3.2. Multi-Actors architecture 
Learning behaviours in a multiagent environment is 
crucial for developing and adapting multiactor systems. 
Reinforcement learning techniques have addressed this 
problem for a single actor acting in a stationary 
environment, which is modelled as a Markov decision 
process. But, multi-actors environments are inherently 
non-stationary since the other actors are free to change 
their behaviour as they also learn and adapt. Hu (Hu 
1998), (Zennir 2004) extended the Q-multi-actor 
algorithm to general-sum games.  
 

The extension requires that each agent maintain 
values for all the other actors. Also, the linear 
programming solution used to find the equilibrium of 
zero-sum games is replaced with the quadratic 
programming solution for finding an equilibrium in 
general-sum games.  

 
The game must have a unique equilibrium, which is 

not always true of general-sum stochastic games. This is 
necessary since the algorithm strives for the opponent-
independence property of Q-multi-actors, which allows 
the algorithm to converge almost regardless of the other 
agent’s actions. With multiple equilibrium it is 
important for all the actors to play the same equilibrium 
in order to have its reinforcing properties. So, learning 
independently is not possible. It is supposed that at the 
time to act some actors do not know a priori the actions 
which are selected by the other actors but within the 
same given group, each one of them knows a posterior 
executed action by the other members of the group.  
 

Within the context of a collective vision, we 
consider an algorithm in with which it is possible to the 
actors of a group to hold account of the actions selected 
by the other members. The principle is described in the 
following example: considering three actors ‘i’, ‘j’, ‘k’ 
laying out each one of two possible actions noted 0 and 
1. For each state s, the actors maintain four Q-value 
tables corresponding to the four possibilities of action 
of the two other actors (Figure 5).  

 
Each actor chooses the action leading to a hope of 

maximum gain i.e. that which, for a given state “s”, 
corresponds to the line comprising the largest value of 
gains (gain 7 in Figure 5), even if the other actors 
choose or not the actions corresponding to the column 
comprising this value. However, at the reception of the 
reinforcement signal, the actor updates the value also 
corresponding to the choice of action of the other 
actors.  
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C. F 
« N » 

AN 
 

Ai 
 

A1 
 

Environment 

Critic 
Function 

« i »  

ri 

C. F 
« 1 » 
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rN 
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(a1,…,ai,…,aN) 
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Thus in the example of Figure 3, if the actor ‘j’ 
executes action 0 and the actor ‘k’ action 1, it is the Q = 
- 4 value intersection between the line ai = 1 and the 
column aj = 0, ak = 1 which is modified. 

 
       
 
 
 
 

 
Figure 4: Q-Value for actor ’i’ in state ‘s’, with 3 actors 

‘i’ ,’j’, ‘k’ and 2 actions.  
 
The value of Q, which is updated at each iteration, 

is that which corresponds to the actions really executed. 
According to this approach, for each member ‘i’ of a 
given group of K actors, the Q-learning algorithm 
becomes: 

 
      
      
 
 
 
 
 
 
 
 

 

 

 
 
 

Figure 5: Q-multi-actors Algorithm’s. 
 
4. REINFORCEMENT’S SIGNAL USED IN 

LITERATURE 
The signal of reinforcement is determined by the critical 
function, based on rules. The choice of the rules of 
delivery of this signal largely conditions the success of 
the learning and the final behaviour of the actor (Touze 
1993). To be convinced some, let us evoke some 
examples:  
 

• To make move a robot towards a goal, one can 
at every moment give a reward which is 
inversely proportional to his distance with the 
goal or which is a function of the final result.  

• To build an actor which the goal is to leave a 
labyrinth, one can give a null reward most of 
the time, and "+1" as soon as the actor reaches 
the exit (Kaelbling  1996).  

 
To prevent such an actor does not knock himself 

against the walls; one can sanction it each time that it 

touches a wall by allotting to him a penalty (Buffet 
2003). In general the choice of these rules is based on 
the intuition. The signal of reinforcement is a discrete 
signal, limited, composed of two or three values to the 
maximum. 
 
5. VALIDATION OF ACTOR CHOICES  
Knowing the state "s" in which the environment is, the 
actor must make a decision as for the action which it 
must take. With an aim of identifying this action, and 
especially of knowing if it is single or not, we can use 
the resulting tools from the information’s theory. The 
variable which one seeks to explain is thus the action 
"ai", knowing the state "s". Thus, knowing that the 
environment is in the state " si", several cases of figures 
can occur: 
 

• The actor Ai will be able to make a decision 
have single if there is only one signal of 
positive reinforcement for S=si.  

• In the contrary case, the signal of 
reinforcement will not make it possible to the 
actor to make a no ambiguous decision. 

 
We can thus propose to use the reinforcement 

transformation table in the following way 

∑
=

>
= Ni

j
kjkj

kj

rrsign

r

1

j/k

0 avec )(
p if  Pkj >0  (3)                             

pj/k = 0   else 
 
We can thus draw up the following table: 
      

 ai       

S  α1 α2 .. αj …
…

αNi 

s1     .   

s2     .   

…     .   

sk  ….. … .. Pj/k … …. 

….        

sm        

Figure 6: Coherence table [P
J/K

] 
 
where : PJ/K:={pj/k; k∈K, j∈J},  

K={1,2,...,m} ;  
               m = card S ;  
               J={1,2,...,Ni} ;   
               Ni = card ai  

Pj/k can be seen as a measurement of choice 
coherence’s of the action J knowing that the 
environment is in the state sk. 

For each i in a group 
Initialise Qi(s, a1,..,ai-1, ai, ai+1, ... aK) to 0i 

For each episode 
For any stage of the episode 

For each actor i 
Choose action “ai” from “s” using policy Qi  
(eg ε-greedy) whatever the actions chosen by 

other actors, 
Observe s’, r, ak for all k !=i 

Actualise Qi 
Qi(s, a1,..,ai-1, ai, ai+1, ... aK) ← Qi(s, a1,..,ai-1, ai, 

ai+1, ... aK) 
+ αi.[ri+γi.maxai’Qi(s’,_, ai’, _) - Qi(s, a1,..,ai-1, ai, 

ai+1, ... aK)] 
 

s← s’ 

For each state « s » 

ai =1 

ai =0 

aj = 1 aj = 0    aj =0 ak =0 ak =0 aj =1   ak =1 ak =1

2 3 

1 - 5 1

7 

- 1

-4 
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The coherence of the decision-makings of the actor 

“ai“ is thus maximum if there is only one "1" per line of 
the preceding table. In the opposite case, the data are 
incoherent. We can quantify this inconsistency by used 
concepts resulting from the information’s theory: 
indeed, the intensity of connection between two 
variables “S” and “ai“ can be moderate by means of the 
conditional entropy (Pomorski 1991): 
    

∑
jk,

j/kkj

ii

.logpp- =
H(S) - )aH(S, = /S)H(a

with  ∑
k

j/kkj p =p         (4)                                         

Based on H(Y/X) and H(Y/S), two indices of 
"modelisability" are used:    
   

. 
)H(a

/S)H(a
 - 1 = /S)m(a

i

i
i                   (5) 

Moderate of ai par S. It is a measure of the 
inconsistency of the action’s sensors Ai. 
   

. q(Y / S) =  H(Y) -  H(Y / S)
H(Y) -  H(Y / X)

                 (6) 

 
Moderate the quality of the model, more easy Y= ~f (S) 
compared to the quality of the Y=f(X) model.  
    
6. SIMULATION 
We considered two actors removing themes selves in an 
unknown environment and obstacles are placed in 
different positions. The objective of each actor is to find 
as quickly as possible the goal supposed to be in a fixed 
position. The research of the goal is based on a 
reinforcement learning process of the Q-learning type. 
In this application, we study the application of the two 
approach of reinforcement learning (distributed and 
multi-actors architecture) with the use of the Shannon’s 
entropy for measurement of reinforcement signal and to 
study the choice of the actions and coordination 
between the actors.  
 

Simulation with distributed architecture, each actor 
has a process of training based on Q-learning.  
 

Each actor has a function Q-value (s, a) represented 
by a table of dimension 400 lines (a number of the 
states) and 4 columns (a number of possible actions for 
each actor).  

We applied ε-greedy strategy for the exploration of 
the actions. Figure 7 represents the training of the actor 
"i" with a distributed architecture. 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 7: Trajectory of the actor « i ». Certitude « i »= 
0.1094, γ =0.9, α=0.1, ε=0..1. 

 
In figure.6, we noticed that more than 1000 

iterations, the actor "i" arrives to find the goal more 
than 960 times in the phase of training and 1000 times 
in the test. We noticed that the time of training (the 
iteration count to find the goal) is smaller when “ε“ is 
closer to 1.  

 
For the simulation with multi-actors architecture, 

each actor has a process of training based on Q-
learning. The choice of the action for an actor 
independent of the action is chosen by the other actor, 
but the update function Q(s, aj) of an actor to take into 
accounts the action chosen by the other actor.  

 
Each actor (i and j) has a critical function. We 

applied ε-greedy strategy for the exploration of the 
actions. We have test with two actors. The following 
figures show the results obtained. 

 

 
Figure 8: Trajectory of the actor « j ». Certitude « j »= 

0.2004, γ =0.5, α=0.1, ε=0.5.  
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Figure 9: Trajectory of the actor « i ». Certitude = 
0.1565, γ =0.9, α=0.1, ε=0.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Trajectory of the actor « j ». Certitude « j »= 
0.1402, γ =0.9, α=0.1, ε=0.1. 

 
We have noticed that with the Q-multi-actors 

approach, the number of times that the actors "i" and "j" 
have to find the goal is larger than in the distributed 
architecture. We also noticed that the certainty for the 
actor "I" or "J" are larger compared to the two 
preceding architecture. The multi-actors approach with 
a strategy of communities gives the best results. 
 
7. CONCLUSION 
We have presented in this paper some problems of 
distributed control system in a multi-actors system. 
Then we gave a short definition of the reinforcement 
learning with its principle and various architectures for 
the improvement of actors’ behaviours. In the third part 
we have been dealing with Shannon’s entropy which we 
have used to treat the coordination and the training of 
the actors and the measurement of the coherence 
choices of the action for the transformation of the 
reinforcement signal table.   
 

The results show that the main advantage of 
distributed is the reduction in communication costs. The 
Q-learning distributed and Q-multi-actors algorithms 
which we have presented in this paper with Shannon’s 
entropy technique for reinforcement signal calculated 

show that with a given actor, the training is faster and 
that the Shannon’s entropy shows well that the actor did 
not manage to learn and to coordinate with the other 
actors and it shows that there is coherence in the choice 
of the actions.  
 

Finally, generally the number of equation to solve 
simultaneously increases very quickly with the number 
of actors. Our future work is as follows: 
 

We study the application of these learning’s 
architecture on a great number of actors to treat the 
complexity of coordination and to deal with the 
problems of training time. We will study too with multi-
actors architecture the problems of interaction, 
communication and the co-operation between the 
various actors. 
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