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ABSTRACT 

The asymptotic stability of the convex linear 

combination of fractional positive discrete-time linear 

systems is addressed. Necessary and sufficient 

conditions for the asymptotic stability of the convex 

linear combination are established. The notion of 

diagonal dominant matrices for nonnegative real 

matrices is introduced. It is shown that the convex linear 

combination is asymptotically stable if its matrices are 

diagonal dominant. 
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1. INTRODUCTION 

A dynamical system is called positive if its trajectory 

starting from any nonnegative initial state remains 

forever in the positive orthant for all nonnegative 

inputs. An overview of state of the art in positive theory 

is given in the monographs (Farina and Rinaldi 2000, 

Kaczorek 2002). Variety of models having positive 

behavior can be found in engineering, economics, social 

sciences, biology and medicine, etc..  

 New stability conditions for positive discrete-time 

linear systems have been proposed by Buslowicz 

(2008a)  and next have been extended to robust stability 

of fractional discrete-time linear systems in (Buslowicz 

2010). The practical stability of positive fractional 

discrete-time linear systems has been investigated in 

(Buslowicz and Kaczorek 2009). The stability of 

positive continuous-time linear systems with delays of 

the retarded type has been addressed in (Buslowicz 

2008b). The independence of the asymptotic stability of 

positive 2D linear systems with delays of the number 

and values of the delays has been shown in (Kaczorek 

2009b). The asymptotic stability of positive 2D linear 

systems without and with delays has been considered in 

(Kaczorek 2009a, 2010a). The stability and stabilization 

of positive fractional linear systems by state-feedbacks 

have been analyzed in (Kaczorek 2010b, 2011d). The 

Hurwitz stability of Metzler matrices has been 

investigated in (Narendra and Shorten 2010) and some 

new tests for checking the asymptotic stability of 

positive 1D and 2D linear systems have been proposed 

in (Kaczorek 2011b, 201bc). The asymptotic stability of 

the convex linear combination of positive linear systems 

has been addressed in (Kaczorek 2012). 

 In this paper the asymptotic stability of the convex 

linear combination of fractional positive discrete-time 

linear systems will be addressed. It will be shown that 

the convex linear combination is asymptotically stable 

if its matrices are diagonal dominant. 

The paper is organized as follows. In section 2 the basic 

definition and theorems concerning fractional positive 

discrete-time linear systems are recalled. The problem is 

formulated for this class of fractional positive systems 

in section 3. The problem solution is presented in 

section 4. Concluding remarks are given in section 5. 

The following notation will be used: ℜ  - the set of real 

numbers, mn×
ℜ  - the set of mn ×  real matrices, 

mn×

+
ℜ  - 

the set of mn ×  matrices with nonnegative entries and 
1×

++
ℜ=ℜ

nn
, nM - the set of nn ×  Metzler matrices (real 

matrices with nonnegative off-diagonal entries), nI - the 

nn ×  identity matrix. 

 

2. PRELIMINARIES 

Consider the fractional discrete-time linear system 
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where ℜ∈α  is the order, n
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and nnA ×
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into (2.1), we obtain 
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Theorem 2.1. (Kaczorek 2011d) The solution of 

equation has the form 
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Definition 2.1. The system (2.1) is called (internally) 

positive fractional system if n

ix
+

ℜ∈ , 
+

∈ Zi for every 

initial condition nx
+

ℜ∈0 . 

Theorem 2.2. (Kaczorek 2011d) The fractional system 

(2.1) is positive if and only if nnA ×

+
ℜ∈

α
. 

Definition 2.2. The fractional positive system (2.1) is 

called asymptotically stable if 

 

0lim =
∞→

i
i

x  for all nx
+

ℜ∈0                                         (2.6) 

 

From (2.4) and (2.6) it follows that the positive 

fractional system (2.1) is asymptotically stable if and 

only if  
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i
i

                                                                (2.7) 

 

Using (2.5) and (2.7) it is easy to show the following 

theorem (Kaczorek 2011d). 

Theorem 2.3. The fractional positive system (2.1) is 

asymptotically stable if and only if : 

1. The matrix nn

nIA ×

+
ℜ∈+  is asymptotically stable 

(Schur matrix), 

2. The matrix nMA ∈
α

 is asymptotically stable 

(Hurwitz Metzler matrix). 

Let nn

ijaA ×
ℜ∈= ][  be a Metzler matrix with negative 

diagonal entries ( niaii ,...,1,0 =< ) and define 
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and 
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for k = 1,…,n – 1. 

It is well-known (Kaczorek 2011c, 2011d) that using 

the elementary operations we may reduce the matrix 
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to the lower triangular form 
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To check the asymptotic stability of the matrix 

nIAA −=
α

 the following theorem is recommended 

(Kaczorek 2011c, 2011d). 

Theorem 2.4. The fractional positive linear system (2.1) 

for 10 << α  is asymptotically stable if and only if one 

of the equivalent conditions is satisfied: 

1. All coefficients of the characteristic polynomial 

 

01

1

1 ...]det[ aaaAI n

n

n

n ++++=−
−

−
λλλλ      (2.11) 

 

 are positive, i.e. 0>ia  for i = 1,…,n – 1,                                          

2. All principal minors nii ,...,1, =∆  of the matrix 

][ ijaA −=−  are positive, i.e. 

 

0]det[

,...,0,0
2221

1211

2111

>−=∆

>
−−

−−
=∆>−=∆

A

aa

aa
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n

   (2.12) 

 

3. The diagonal entries of the matrices (2.8) 

 
)(k

knA
−

 for k = 1,…,n – 1                                    (2.13) 

 

 are negative, 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 2



4. The diagonal entries of the lower triangular matrix 

(2.10) are negative, i.e. 

 

0~
<kka  for k = 1,…,n                                     (2.14) 

 

Proof is given in (Kaczorek 2011c, 2011d). 

 

3. PROBLEM FORMULATION  

Consider q positive discrete-time linear systems (2.1) 

with the matrices 
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Definition 3.1. The matrix (3.1) is called diagonal 

dominant if 
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for k, j = 1,…,n; i = 1,…,q                                        (3.2) 

 

From Definition 3.1 it follows the following lemma. 

Lemma 3.1. If the matrices (3.1) are diagonal dominant 

for i = 1,…,q then the matrix 

 

∑
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q

i
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                                                                 (3.3) 

 

is also diagonal dominant. 

Definition 3.2. The matrix  

 

∑
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q

i

ii AcA
1

ˆ  for 1
1
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=

q

i

ic , 0≥ic , i = 1,…,q           (3.4) 

 

is called the convex linear combination of the matrices 

(3.1). 

The following question arises: Under which conditions 

the convex linear combination (3.4) is asymptotically 

stable nonnegative matrix if the matrices (3.1) are 

asymptotically stable? 

Remark 3.1. The convex linear combination (3.4) of 

asymptotically stable matrices qiAi ,...,1, =  may be 

unstable. 

For example the convex linear combination 
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of two asymptotically stable matrices 1A  and 2A  is 

unstable for 21 ccc ≤≤  since for these values of c the 

characteristic polynomial 
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has one nonpositive coefficient. Note that  

 

8924.0,1342.0 21 == cc                                         (3.7) 

 

are the zeros of the polynomial 72.017.601.6 2
+− cc . 

 

4. PROBLEM SOLUTION  

Theorem 4.1. The convex linear combination (3.4) is 

asymptotically stable if and only if one of the conditions 

of Theorem 2.4 is satisfied. 

Proof. It is well-known (Kaczorek 2011d, 2012) that the 

matrix A of positive discrete-time linear systems has 

eigenvalues in the unit circle if and only if the matrix 

nIA −  has eigenvalues in the open half of the complex 

plane. By Theorem 2.4 the convex linear combination 

(3.4) is asymptotically stable if and only if one of its 

conditions is satisfied. □ 

Checking the conditions of Theorem 2.4 for all 0≥ic  

and 1
1

=∑
=

q

i

ic  is numerically complicated. 

Theorem 4.2. The convex linear combination (3.4) is 

asymptotically stable only if all matrices nn

iA ×

+
ℜ∈    

i = 1,…,q of (3.4) are asymptotically stable. 

Proof. The asymptotic stability of convex linear 

combination (3.4) for 1=ic  and 

0...... 111 ======
+− qii cccc  implies the asymptotic 

stability of the matrix qiAi ,...,1, = . □ 

Lemma 4.1. Every diagonal dominant nonnegative 

matrix is asymptotically stable. 

Proof. This follows immediately from Gershgorin’s 

theorem since if the condition (3.2) is met for nIA −ˆ  

then all Gershgorin’s circles are located in the left half 

of complex plane. □ 

Lemma 4.2. If a nonnegative matrix A is asymptotically 

stable then the matrix cA is also asymptotically stable 

for 10 << c . 

Proof. Let λ be an eigenvalue of the matrix A and z be 

an eigenvalue of the matrix cA. Then from the equality 
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−=− A
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z
IcA

c

z
IccAzI n

n

nn detdet]det[ (4.1) 

 

we have λcz =  and 1<z  if and only if 1<λ  and 

10 << c . Therefore, the matrix cA is asymptotically 

stable if and only if the matrix A is asymptotically 

stable. □ 

Theorem 4.3. The convex linear combination (3.4) of 

the upper (or lower) triangular matrices 
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is asymptotically stable if and only if the diagonal 

entries of (4.2) satisfies the condition  

 

1, <jja  for j = 1,…,n.                                               (4.3) 

 

Proof. The matrices (4.2) and ii Ac  for 10 << ic ,  

i = 1,…,q are asymptotically stable if and only if (4.3) 

holds. Therefore, the convex linear combination (3.4) of 

upper (lower) triangular matrices (4.2) is asymptotically 

stable if and only if (4.3) holds. □ 

From Theorem 4.3 we have the following remark. 

Remark 4.2. The convex linear combination (3.4) of the 

upper (lower) triangular matrices (4.2) is asymptotically 

stable if and only if the matrices (4.2) are 

asymptotically stable. 

Theorem 4.4. The convex linear combination (3.4) is 

asymptotically stable if the matrices qiAi ,...,1, =  are 

diagonal dominant. 

Proof. Note that if the nonnegative matrix 

qiAi ,...,1, =  is diagonal dominant then the matrix 

qicAc iii ,...,1,0, =>  is also diagonal dominant for 

10 << ic ; qi ,...,1= . By Lemma 4.1, and 4.2 the 

convex linear combination (3.4) is asymptotically stable 

if the matrices qiAi ,...,1, =  are diagonal dominant. □ 

Example 4.1. Consider the convex linear combination 

(3.4) for q = 2 and the matrices 
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,
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5.02.0
21 AA .                          (4.4) 

 

The matrices (4.4) are diagonal dominant. The convex 

linear combination (3.4) of (4.4) has the form 
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and its characteristic polynomial 
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has positive coefficients for 10 << c . 

Therefore, by Theorem 2.4 the convex linear 

combination (4.5) is asymptotically stable.  

Remark 4.3. Note that the convex linear combination 

(3.4) of the asymptotically stable matrices 
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,

3.00
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is unstable for 21 ccc ≤≤  ( 21,cc  are given by (3.7)) 

since the matrices are not diagonal dominant. 

 

5. CONCLUDING REMARKS 

The asymptotic stability of the convex linear 

combination of asymptotically stable matrices for 

fractional positive discrete-time linear systems has been 

addressed. The notion of diagonal dominant matrices 

for nonegative matrices has been introduced. Necessary 

and sufficient conditions for the asymptotic stability of 

the convex linear combinations for fractional positive 

discrete-time linear systems have been established 

(Theorem 4.2). Checking the conditions is numerically 

complicated. It has been shown that the convex linear 

combinations are asymptotically stable if its matrices 

are diagonal dominant. The considerations has been 

illustrated by numerical examples. These considerations 

can be extended to positive and fractional 2D linear 

systems. 
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