
MODEL SYNTHESIS USING A MULTI-AGENT LEARNING STRATEGY

Sebastian Bohlmann
(a)

, Arne Klauke
(b)

, Volkhard Klinger
(c)

, Helena Szczerbicka
(d)

(a)(d)

Department of Simulation and Modeling, Leibniz University Hannover, 30167 Hannover, Germany
(b)(c)

Department of Embedded Systems, FHDW Hannover, 30173 Hannover, Germany

(a)

bohlmann@sim.uni-hannover.de,
(b)

arne.klauke@fhdw.de,
(c)

volkhard.klinger@fhdw.de,
(d)

hsz@sim.uni-hannover.de

ABSTRACT

In this paper we give an overview of our multi-agent

based model identification framework. We are

identifying functional relationships in process data. We

do this by using multi-agent based heuristic algorithms.

Moreover we give a proof of concept concerning the

abilities and performance of our system.

Keywords: model synthesis, agent-based evolutionary

computation

1. INTRODUCTION

Manufacturing systems are one of the largest

application areas for modelling and simulation. In

particular the pulp and paper industry is one instance of

a large-scale production processes (Bohlmann and

Klinger, 2007). We have brought up a framework for

modelling and simulation of those process environments

in (Bohlmann, Klinger and Szczerbicka, 2009),

(Bohlmann, Klinger and Szczerbicka, 2010b) and

(Bohlmann, Klinger and Szczerbicka, 2010c).

 This paper focuses on the identification procedure.

We consider time series extracted from process data.

These time series are subdivided in input and output

series. The problem treated here, is to find a functional

relationship between the input and output series. At the

beginning it is unknown which of the input series are

actually used in that relationship. Our approach to solve

this problem is a multi-agent based learning strategy

(Bohlmann, Klinger and Szczerbicka, 2010b).

 In figure 1 the system identification overview is

shown. It consists of two basic steps, the preprocessing

and the multi-agent based optimization. The process

data input (PData) is used to generate an appropriate

process model (Law and Kelton, 2000).

 To verify this identification procedure we have to

evaluate the different steps very carefully not only to its

technically correct function but on its performance

behaviour.

𝑓1 𝑥1 𝑡 , … , 𝑥𝑚 𝑡 = 𝑦1 𝑡 , 𝑡 ∈ ℕ

⋮
𝑓𝑗 𝑥1 𝑡 , … , 𝑥𝑚 𝑡 = 𝑦𝑗 𝑡 , 𝑡 ∈ ℕ

 (0)

The verification strategy is based on a set of data

sequences x1 t , … , xm t , t ∈ ℕ, called Input

Sequences and Output Sequences y1 t , … , yj t
, t ∈ ℕ,

which are related to the Input Sequences by a functional

relationship f: ℝm ⟶ ℝj (formula 0), illustrated in

figure 2.

Figure 1: Function block view

Figure 2: Input/ Output sequence

In figure 3 an example for m=10 and j=1 is shown. The

problem we are solving is to identify this function f,

only knowing values of x1 t , … , xm t (thin lines) and

 y t (thick line) for a limited set T ⊂ ℕ of time indices,

which may differ for each sequence. In this paper we

are treating only problems with j=1.

 Our approach for this challenge is formed by the

identification framework used for process model

identification and it uses the data management

framework presented in (Bohlmann, Klinger and

Szczerbicka, 2010c).

747

Figure 3: Input and output data series

The pre-processing is followed by a Multi-Agent-based

Learning Strategy (section 3.1.2) using memetic

evolutionary algorithm.

 In the next sections the identification framework is

explained in detail. It consists essentially of two parts

(see Figure 1): A data pre-processing unit and our

evolutionary algorithm. Finally some examples, proving

the functioning of the framework, are discussed.

2. DATA PREPROCESSING

In this section the preprocessing of the raw data is

explained in detail. figure 4 presents the basic function

blocks.

Figure 4: Data Proprocessing

2.1 Data Factory

The data used for the identification process is either

extracted from various sensors in a real system or they

may be synthetic. In the first case the data is usually

collected over a long time period and saved in a data

archive. This raw data then runs through different

preprocessor units, explained below, to build usable

data series for the identification framework. In the

second case the raw data is produced synthetic using

random data streams and is then passed to the

preprocessing units.

2.2 Resampling the Data

In this initial unit the weaknesses of the data-recording

by the sensors are remedied. The sensors distributed

over the system are usually not working periodic or

even synchronously. Moreover they might sometimes

measure values, which are obvious wrong. These error

values are simply removed from the data set. The actual

task in this module is to produce a time series of

equidistant data samples, each of which describes the

state of the whole system at a moment.

 To achieve this, at first the data from each sensor is

linearly interpolated and then smoothed by a

convolution. After that the new data sequences are

equalized with the original values from the sensors.

Finally equidistant values from each sensor are picked

and combined to data samples, which describe the

whole system, as desired.

2.3 Prefiltering the Data

The environment built for the evolutionary algorithm,

explained in the next section, needs a predetermined

number of data samples. In general the number of data

samples delivered by the resampling unit is too large.

Moreover it may contain redundant data samples,

containing no information. This may happen if the state

of the real system does not change for a time period. In

this unit the samples, which contain the most

information, i.e. these with the highest entropy, are

chosen. This is implemented in different prefilter

modules.

1. No Prefilter: The simplest way is to choose

just the last 729 samples.

2. Random Prefilter: The samples to be passed

onto the planets are chosen randomly.

3. Weighted Random Prefilter: The samples to

pass on are chosen randomly, but with

different probabilities. This probability

corresponds to the angle between the input

values of the current sample and its

predecessor and successor.

4. k-means Prefilter: In this method we are using

a cluster algorithm to choose the samples to be

passed on (Kanungo, Mount, Netanyahu,

Piatko, Silverman and Wu, 2002). The data set

delivered by the resampling unit is subdivided

in blocks of a fixed size. In each of these

blocks we build a fixed number of clusters and

only the centres of these clusters are passed to

the planets. We have decided to use k-means

clustering because one can choose the number

of centres from start. Furthermore the clusters

generated by this algorithm are formed

spherical, what seems to be the most suitable

form for our purpose.

2.4 Presorting the Data

After the samples are selected they need to be arranged

on the planets in a useful way. The simplest method is

to keep them in their current order. But there are

concepts, which can improve the system behaviour.

 One approach to order the samples in a more useful

way is the so called TSP Filling (Travelling Salesman

Problem). The samples are arranged in a way that

approximately minimizes the sum of the distances of

neighbouring samples, with respect to a chosen metric.

This concept can be generalized by not just taking the

direct neighbours into account, but the next n

neighbours in both directions for each sample.

748

3. MULTI-AGENT-BASED OPTIMIZATION

The algorithm uses an evolutionary approach to find the

functional relationship in the process data. We have

created an environment which offers aliments to the

creatures living in it. These creatures own a genotype,

which they are trying to adapt to their location in the

environment by building children with a changed

genotype. A creature which is well fitted to its location

has a better ability to absorb aliments from it. Aliments

are used to perform various evolutionary operations to

build a child. The genotype passed to the child can be

mutated, crossed with the genotype of another creature,

and enhanced in several ways. The creatures can move

within their environment and interact with other

creatures.

 The environment is representing the data set, the

local view is just a subset of it. The creatures are

software agents and their genotype is a model function,

approximating the functional relationship. We can rate

how well an agent is fitted to its location by calculating

the error of his model function using the local data and

a search metric.

In the following section we will give an overview

of the system architecture, depicted in figure 5.

3.1 System architecture overview

The architecture is organized in four stages, the data

processing and local and global agent environment.

Each is arranged in functional levels, for data

management, agent behaviour control, supervision,

execution and synchronization, regarding the overall

management. The basic level is called MPU (Multi

Processor Unit) and represents the system thread

representation.

 The optimization starts with the initialization of the

preprocessed data, managed in the data processing

stage. The splitter in the supervision level supplies the

evaluation units in the other stages with data samples.

 To illustrate the agent based algorithm, we give a

detailed description of the environment, the individuals

live in, of the individuals themselves and of their

behaviour.

Figure 5: Planet Surface

3.1.1 Agent Environment

The environment of the agents consists of areas. Each

area contains one data sample and can hold one agent.

Moreover areas can be linked to other areas, called

neighbours. These neighbours serve for two purposes.

At first the agent held by one area can be moved onto

one of the areas neighbouring areas. Secondly the links

between the areas are used to build the set of data

samples for the local learning.

 The areas are aggregated in planets. The surface of

a planet is a torus, represented by a quadratic field of

areas.

This surface is build in a recursive pattern of squares

containing nine elements, filled meander like. This

method leads to the planet size 93 = 729 and is

illustrated in figure 6. Each area on a planet is linked to

its four neighbours to the left, right, top and bottom.

 Finally the planets build the universe, which is

controlled by the universe supervisor. All planets are

controlled by so called planet supervisors. Some of the

areas on each planet are marked as beam areas. When a

certain number of iterations have passed, the planet

supervisor sends copies of all agents, which are placed

on a beam area to a randomly chosen area on a

randomly chosen planet.

749

Figure 6: System Architecture

750

3.1.2 Software Agents

The software agents are operating in the environment

described before. Each agent owns a model function

and is placed onto an area. The model function is stored

in a tree representation and is build using elementary

operations like sin, +, *, / the variables x1,..,xm and a set

of parameters (Schmidt and Lipson, 2007). This concept

is shown in figure 7. Moreover agents may build a

child, to pass on their information. We have

implemented in the following evolutionary operations:

Replication: The individual produces a copy of

himself. This is the most expensive operation.

Cross: Two individuals interchange randomly

chosen parts of their model functions.

Mutate: A part of the model function is replaced by

a randomly build function.

Enhance: The structure of the model function is

simplified, if possible.

Short Learn: The parameters of the model function

are fitted to the local learn data using a simple,

but fast algorithm.

Learn: A more sophisticated algorithm is used to

calibrate the parameters of the model function.

This operation is implemented in a memetic

coprocessor.

All of these operations have an energy effort, which is

subtracted from the agents energy, if the operation is

performed. Furthermore the agents can measure the

error of their model function using different kind of

search metrics.

Figure 7: The tree representation of the model function

3.1.3 Agent Behaviour

Each iteration starts with an update of the agents

properties. The age of the individual is increased. After

that the energy level is recalculated. This happens as

follows: The individual calculates the error of its model

function using one of the search metrics described in

section 3.4. If this error is too big the energy level is not

increased. Else, the individual is allowed to absorb the

energy offered by the area it is placed on and a value

depending on the complexity of its model function is

subtracted from its energy level. When these operations

are done we decide whether the agent may live for one

more iteration or not.

 If the energy level is not positive the agent is

removed. If the agent had a child, it is placed onto the

area.

 If the energy level is positive the agent tries to

move to a randomly chosen neighbouring area. When

the chosen area is empty, the agent just moves. If the

area is already occupied by another agent, the procedure

depends on the agent’s energy level. If it is not high

enough to perform a cross operation, the agent does not

move. Else a cross operation is performed. If the cross

operation yields a new agent it is saved as the child of

the original agent and the agents do not move. After the

move operation, the individual tries to build a child, if

none is present. Depending on the agent’s energy level,

the agent performs a Replication, Mutate or Enhance

operation to build his child.

 In the next step the agent may perform a Learn

operation, if he is not adult (without loss of energy), or

if his energy is high enough it is decided randomly if

the agent is allowed to learn or not.

 Now the individual performs a short learn

operation, if its age is appropriate.

Finally, if the agent has moved in this iteration and

owns a child, he tries to place it on his last area.

3.2 Optimization stages

In the last section the agents have been introduced. Here

we map this agent based algorithm on the system

architecture. According to the planet setup, there is the

global stage (universe) and the local stage (one planet).

The fourth stage is formed by memetic coprocessors,

assigned to the planets. These stages form separate

execution loops, which run in parallel. The listing below

gives an overview of these three loops.

1. Global Stage: This loop is used to manage the

elite population. Agents nominated in the local

loop are passed via the MPI (Message Passing

Interface, synchronization level) to the EVA

Executor (execution level) and then to the

Judge (supervision level), which decides, if the

agent is added to the elite population (agent

level). The agents in the elite population are

evaluated on the full data set (data level). If

one of them fulfils the termination criterion the

algorithm stops. The universe processor (MPU

level) returns the ranking of the best

individuals if the algorithm terminates.

2. Local Stage: In this stage the agents are

generated and put onto the planets. Once they

are placed on an area, the agents start their life

cycle, described in subsection 3.1.3. In the data

level the agents evaluate their model function,

using a search metric and a subset of the

challenge data set, called local learn data. In

the MPI (synchronization level) agents are

exchanged between the planets.

751

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1

10

100

1000

iteration ordered by detection time

de
te

ct
io

n
tim

e
in

 s

f
8

f
7

f
6

f
5

f
4

f
3

f
2

f
1

3. Memetic Stage: In this loop agents, which were

passed from the Operators (agent level, local

stage) to the memetic unit (execution level),

are optimized by more expensive algorithms,

like downhill simplex (DHS) (Nelder and

Mead, 1965). To evaluate the error of the

model function, a small test data set is used.

The agents are then passed back to the EVA

Executor in the execution level of the local

loop.

3.3 The Elite Population

There are two opportunities for an individual to get

nominated for the elite population. The first is when an

individual is removed from the planet and has lived for

at least 200 iterations. Furthermore an individual is

nominated for the elite population after every 250

iterations. The universe supervisor chooses the best 25

individuals from all nominated agents.

 The elite population is used to check the

termination criterion: The model functions in the elite

population are evaluated not just using the local

learning set, but the data from the whole universe. If

one of them has an error under a predefined border the

algorithm terminates and returns this model function.

3.4 Search Metrics

The agents are able to use different search metrics to

estimate the error of their model functions. For each

data sample in the local learn set, which is build using

the neighbouring areas, the agent calculates the

difference between the original output and the output

calculated by the model function. For this step the agent

can use the euclidean or the absolute distance. In the

next step these values are aggregated by building the

mean value or the maximum over all samples. They

might perform these steps using not all, but a randomly

chosen subset of their local learn data, in these cases the

metric is called partial.

4. PROOF OF CONCEPT

To proof the basic usability of our framework we

executed 8 different experiments with different problem

complexities to be solved by the agent system. Each

experiment is repeated 30 times to reduce statistical

deviation. For each run we take the runtime beginning

with the first agent generation and ending at the first

successful detection. A successful detection is defined

by a mean absolute error of 0.001 over the whole

dataset. Each run has a maximal runtime of 1800

seconds. If no valid solution is found in time, the

execution is aborted and counted as an unsuccessful

execution. To proof the parallelisation concept we

repeated 8 times 30 experiments with 1 execution core

(one Planet) and 8 cores.

4.1 Experimental Setup

This section specifies the used configurations and

dependencies. All experiments are executed on a Dell

PowerEdge R815 with in total 4 AMD Opteron 6174

processors (each providing 12 cores with respectively

128KByte L1-cache, 512 KByte L2-cache and common

12 MByte L3-cache) and an overall RAM configuration

of 128 GByte. For the parallelization evaluation this

platform provides a scalable hardware environment.

 The challenge to be solved by the agent system is

generated synthetically. Because randomness in the

generation has huge impact on the detection system the

same dataset is used in all 30 runs per experiment. We

generated a five dimensional time series input stream

Figure 8: Measured ordered runtime

752

with 105 samples each. Further a result stream with the

same length is generated using one of the 8 functions in

formula (1) to (8). To measure the quality of the result a

metric calculating the mean absolute error is used.

f1 x1, … , x5 = x1 ∙ x2 (1)

f2 x1, … , x5 = sin x1 +
π

4

(2)

f3 x1, … , x5 = 42 ∙ x1 ∙ x1 + 22 ∙ x2 (3)

f4 x1, … , x5 = sin x1 ∙ x2 + 3 + 4 (4)

f5 x1, … , x5 = x3 + x4 + 4.3 ∙ sin x1 + 7
+ 1.65

(5)

f6 x1, … , x5 = x1 ∙ x1 + x2 ∙ x2 + x3 ∙ x3 + 22 (6)

f7 x1, … , x5 = −3.23 ∙ sin x1 ∙ sin x2 + 2.43

∙ sin x1 +
π

4

(7)

f8 x1, … , x5 = −122 ∙ x1 + 2.3 ∙ x2 + 0.2 ∙ x4

+ x3 ∙ sin 0.1 ∙ x4
(8)

4.2 Results

Figure 8 illustrates the results for the parallelised agent

system with 8 planets. Each line type represents the

different successfully ended runs for one of the

generator functions ordered by runtime. The y-scale is

logarithmic. As expected the mean runtime is higher if

the function is more complex. This value can also be

found in table 1. Some of the data lines do not have 30

samples, because not all runs resulted in a valid

solution. For function 1 to 6 the agents evolution always

leads to the correct structure. Especially for the last two

functions the highest runtimes increase strongly.

Table 1:Statistics for different functions

 Mean Std. Dev. Detection

Rate

f1 1.8 s 0.5 s 100 %

f2 1.8 s 0.6 s 100 %

f3 5.0 s 11.2 s 100 %

f4 9.9 s 23.9 s 100 %

f5 11.7 s 6.4 s 100 %

f6 20.6 s 31.0 s 100 %

f7 25.3 s 121.6 s 97 %

f8 73.4 s 84.4 s 37 %

This effect caused a deadlocked evolution, if the overall

diversity of the agents is low. When the overall number

of agents and the separation by multiple planets is

increased this probability decreases. This is indicated if

we compare the total number of detections and the

speedup as done in table 2. Here the functions five to

eight are not listed because the detection rate is too low

to acquire adequate measurements for a non-parallelized

system. Speedup for complex challenges (3-5) is

effective. As positive detection rates increase and

detection runtime decreases the positive effect is higher

than the expected factor 8. At the moment more planets

do not lead to a better system performance on the used

machine because the other system components (see

figure 6) consume the remaining system resources. We

conclude that also the agents only use heuristics for

interaction and learning the combined execution is

target-oriented.

Table 2: Statistics for parallelization

 Mean x1 Mean x8 Speedup Detection

Improveme

nt

f1 5,6 s 1.8 s 309 % 100 %

f2 6,5 s 1.8 s 356 % 100 %

f3 28,0 s 5.0 s 561 % 500 %

f4 82,0 s 9.9 s 826 % 230 %

f5 59,0 s 11.7 s 505 % 272 %

5. SUMMARY

Modeling and simulation of non formalized system

behavior still is a grand challenge for science and

engineering. As we demonstrated it is possible to

implement a machine learning system to help modeling

specialists to gain knowledge form the data produced by

the original system. In this scenario it is required to

formulate the produced recommendations in a human

comprehensible form. Differential equations (and

simple equations, as in this concept paper) are one

possible knowledge representation. And in difference,

from knowledge e.g. learned by a neuronal net,

knowledge is not encapsulated. Engineers have a huge

tool kit to continue processing such a result. As done for

a simulation system in (Bohlmann, Klinger and

Szczerbicka, 2009) such a agent based modeling

support system can easily connected to real word data

sources and could be helpful to enhance or generate

complex models for simulation environments (Zeigler,

Praehofer and Kim, 2000). As a result the complexity to

model a complex process is simplified by using the

analytic strength of the modeling engineer and the

knowledge compression strength of an agent based

machine learning environment.

6. FURTHER WORK

The further work has two key aspects of activity:

Increase the parallelization to be able to use more

agents. As mentioned before the memetic co-processor

cores use the majority of our machine resources. All

used memetic algorithms are suited for SIMD

coprocessors and would scale the system to about 40

planets. The second work to be done is to reduce the

number of problem specific parameters by the help of

control loops.

 Finally the framework is written as generic as

possible. There are only few dependencies e.g. the

problem has to be dividable into local challenges. So we

like to formulate solvers for different known problems

in the area of modeling and machine learning.

753

REFERENCES

Bohlmann, S. and Klinger, V. (2007)

Modellbildung für kontinuierliche Pro-

duktionsprozesse in der Papierindustrie.

Forschungsberichte der FHDW Hannover

(ISSN 1863-7043), 08:1–20.

Bohlmann, S., Klinger, V., and Szczerbicka, H. (2009)

HPNS - a Hybrid Process Net Simulation

Environment Executing Online Dynamic

Models of Industrial Manufacturing Systems.

In Proceedings of the 2009 Winter Simulation

Conference M. D. Rossetti, R. R. Hill, B.

Johansson, A. Dunkin, and R. G. Ingalls, eds.

Bohlmann, S., Klinger, V., and Szczerbicka, H. (2010a)

System Identification with Multi-Agentbased

Evolutionary Computation Using a Local

Optimization Kernel. In Submitted to ICMLA

2010 (International Conference on Machine

Learning and Applications).

Bohlmann, S., Klinger, V., and Szczerbicka, H. (2010b)

System identification with multi-agent-based

evolutionary computation using a local

optimization kernel. In The Ninth International

Conference on Machine Learning and

Applications, pages 840–845.

Bohlmann, S., Klinger, V., and Szczerbicka, H. (2010c)

 Co-simulation in large scale environments

using the HPNS framework. In Summer

Simulation Multiconference, Grand Challenges

in Modeling & Simulation. The Society for

Modeling and Simulation.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko,

C. D., Silverman, R., and Wu, A. Y. (2002)

An efficient k-means clustering algorithm:

Analysis and implementation. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 24:881–892.

Law, A. M. and Kelton, W. D. (2000)

Simulation Modeling and Analysis. McGraw-

Hill

Nelder, R. and Mead, J. (1965)

A simplex method for function minimization.

Computer Journal, 7(4):308–313.

Schmidt, M. and Lipson, H. (2007)

Comparison of tree and graph encodings as

function of problem complexity. In GECCO

’07: Proceedings of the 9th annual conference

on Genetic and evolutionary computation,

pages 1674–1679, New York, NY, USA.

ACM.

Zeigler, B. P., Praehofer, H., and Kim, T. G. (2000)

Theory of Modeling and Simulation:

Integrating Discrete Event and Continuous

Complex Dynamic Systems. Academic

Press, San Diego, USA, 2 edition.

AUTHORS BIOGRAPHY

SEBASTIAN BOHLMANN is a Ph.D. candidate at

Department of Simulation and Modelling - Institute of

Systems Engineering at the Leibniz Universit¨at

Hannover. He received a Dipl.-Ing. (FH) degree in

mechatronics engineering from FHDW university of

applied sciences. His research interests are machine

learning and heuristic optimization algorithms, complex

dynamic systems, control system synthesis and grid

computing. His email address is <bohlmann@sim.uni-

hannover.de>.

ARNE KLAUKE is a researcher at the university of

applied science FHDW in Hannover. He received a

Dipl.-Math. from the Gottfried Wilhelm Leibniz

Universit¨at Hannover. His email address is

<arne.klauke@fhdw.de>.

VOLKHARD KLINGER has been a full time professor

for embedded systems and computer science at the

university of applied sciences FHDW in Hannover and

Celle since 2002. After his academic studies at the

RWTH Aachen he received his Ph.D. in Electrical

Engineering from Technische Universität Hamburg-

Harburg. He teaches courses in computer science,

embedded systems, electrical engineering and

ASIC/system design. His email address is

<Volkhard.Klinger@fhdw.de>.

HELENA SZCZERBICKA is head of the Department

of Simulation and Modelling - Institute of Systems

Engineering at the Leibniz Universit¨at Hannover. She

received her Ph.D. in Engineering and her M.S in

Applied Mathematics from the Warsaw University of

Technology, Poland. She teaches courses in discrete-

event simulation, modeling methodology, queuing

theory, stochastic Petri Nets, distributed simulation,

computer organization and computer architecture. Her

email address is <hsz@sim.uni-hannover.de>.

754

