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ABSTRACT 

In this paper we give an overview of our multi-agent 

based model identification framework. We are 

identifying functional relationships in process data. We 

do this by using multi-agent based heuristic algorithms. 

Moreover we give a proof of concept concerning the 

abilities and performance of our system. 

 

Keywords: model synthesis, agent-based evolutionary 

computation 

 

1.  INTRODUCTION 

Manufacturing systems are one of the largest 

application areas for modelling and simulation. In 

particular the pulp and paper industry is one instance of 

a large-scale production processes (Bohlmann and 

Klinger, 2007). We have brought up a framework for 

modelling and simulation of those process environments 

in (Bohlmann, Klinger and Szczerbicka, 2009), 

(Bohlmann, Klinger and Szczerbicka, 2010b) and 

(Bohlmann, Klinger and Szczerbicka, 2010c). 

 This paper focuses on the identification procedure. 

We consider time series extracted from process data. 

These time series are subdivided in input and output 

series. The problem treated here, is to find a functional 

relationship between the input and output series. At the 

beginning it is unknown which of the input series are 

actually used in that relationship. Our approach to solve 

this problem is a multi-agent based learning strategy 

(Bohlmann, Klinger and Szczerbicka, 2010b).  

 In figure 1 the system identification overview is 

shown. It consists of two basic steps, the preprocessing 

and the multi-agent based optimization. The process 

data input (PData) is used to generate an appropriate 

process model (Law and Kelton, 2000). 

 To verify this identification procedure we have to 

evaluate the different steps very carefully not only to its 

technically correct function but on its performance 

behaviour. 

 

𝑓1  𝑥1 𝑡  ,…  ,  𝑥𝑚  𝑡 =  𝑦1 𝑡  , 𝑡 ∈  ℕ

⋮
𝑓𝑗   𝑥1 𝑡  ,…  ,  𝑥𝑚  𝑡 =  𝑦𝑗  𝑡  , 𝑡 ∈  ℕ

  (0) 

 

The verification strategy is based on a set of data 

sequences  x1 t ,… ,  xm t , t ∈ ℕ, called Input 

Sequences and Output Sequences  y1 t ,… ,  yj t
, t ∈ ℕ, 

which are related to the Input Sequences by a functional 

relationship f:ℝm ⟶ ℝj  (formula 0), illustrated in 

figure 2. 

 

 
Figure 1: Function block view 

 

 
Figure 2: Input/ Output sequence 

 

In figure 3 an example for m=10 and j=1 is shown. The 

problem we are solving is to identify this function f, 

only knowing values of  x1 t ,… ,  xm t  (thin lines) and 

 y t  (thick line) for a limited set T ⊂ ℕ of time indices, 

which may differ for each sequence. In this paper we 

are treating only problems with j=1. 

 Our approach for this challenge is formed by the 

identification framework used for process model 

identification and it uses the data management 

framework presented in (Bohlmann, Klinger and 

Szczerbicka, 2010c). 
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Figure 3: Input and output data series 

 

The pre-processing is followed by a Multi-Agent-based 

Learning Strategy (section 3.1.2) using memetic 

evolutionary algorithm.  

 In the next sections the identification framework is 

explained in detail. It consists essentially of two parts 

(see Figure 1): A data pre-processing unit and our 

evolutionary algorithm. Finally some examples, proving 

the functioning of the framework, are discussed. 

 

2. DATA PREPROCESSING 

In this section the preprocessing of the raw data is 

explained in detail. figure 4 presents the basic function 

blocks. 

 

 
Figure 4: Data Proprocessing 

 

2.1   Data Factory 

The data used for the identification process is either 

extracted from various sensors in a real system or they 

may be synthetic. In the first case the data is usually 

collected over a long time period and saved in a data 

archive. This raw data then runs through different 

preprocessor units, explained below, to build usable 

data series for the identification framework. In the 

second case the raw data is produced synthetic using 

random data streams and is then passed to the 

preprocessing units. 

 

2.2   Resampling the Data 

In this initial unit the weaknesses of the data-recording 

by the sensors are remedied. The sensors distributed 

over the system are usually not working periodic or 

even synchronously. Moreover they might sometimes 

measure values, which are obvious wrong. These error 

values are simply removed from the data set. The actual 

task in this module is to produce a time series of 

equidistant data samples, each of which describes the 

state of the whole system at a moment. 

 To achieve this, at first the data from each sensor is 

linearly interpolated and then smoothed by a 

convolution. After that the new data sequences are 

equalized with the original values from the sensors. 

Finally equidistant values from each sensor are picked 

and combined to data samples, which describe the 

whole system, as desired. 

 

2.3   Prefiltering the Data 

The environment built for the evolutionary algorithm, 

explained in the next section, needs a predetermined 

number of data samples. In general the number of data 

samples delivered by the resampling unit is too large. 

Moreover it may contain redundant data samples, 

containing no information. This may happen if the state 

of the real system does not change for a time period. In 

this unit the samples, which contain the most 

information, i.e. these with the highest entropy, are 

chosen. This is implemented in different prefilter 

modules.  

 

1. No Prefilter: The simplest way is to choose 

just the last 729 samples.  

2. Random Prefilter: The samples to be passed 

onto the planets are chosen randomly. 

3. Weighted Random Prefilter: The samples to 

pass on are chosen randomly, but with 

different probabilities. This probability 

corresponds to the angle between the input 

values of the current sample and its 

predecessor and successor.  

4. k-means Prefilter: In this method we are using 

a cluster algorithm to choose the samples to be 

passed on (Kanungo, Mount, Netanyahu, 

Piatko, Silverman and Wu, 2002). The data set 

delivered by the resampling unit is subdivided 

in blocks of a fixed size. In each of these 

blocks we build a fixed number of clusters and 

only the centres of these clusters are passed to 

the planets. We have decided to use k-means 

clustering because one can choose the number 

of centres from start. Furthermore the clusters 

generated by this algorithm are formed 

spherical, what seems to be the most suitable 

form for our purpose. 

 

2.4   Presorting the Data 

After the samples are selected they need to be arranged 

on the planets in a useful way. The simplest method is 

to keep them in their current order. But there are 

concepts, which can improve the system behaviour. 

 One approach to order the samples in a more useful 

way is the so called TSP Filling (Travelling Salesman 

Problem). The samples are arranged in a way that 

approximately minimizes the sum of the distances of 

neighbouring samples, with respect to a chosen metric. 

This concept can be generalized by not just taking the 

direct neighbours into account, but the next n 

neighbours in both directions for each sample. 
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3. MULTI-AGENT-BASED OPTIMIZATION 

The algorithm uses an evolutionary approach to find the 

functional relationship in the process data. We have 

created an environment which offers aliments to the 

creatures living in it. These creatures own a genotype, 

which they are trying to adapt to their location in the 

environment by building children with a changed 

genotype. A creature which is well fitted to its location 

has a better ability to absorb aliments from it. Aliments 

are used to perform various evolutionary operations to 

build a child. The genotype passed to the child can be 

mutated, crossed with the genotype of another creature, 

and enhanced in several ways. The creatures can move 

within their environment and interact with other 

creatures. 

 The environment is representing the data set, the 

local view is just a subset of it. The creatures are 

software agents and their genotype is a model function, 

approximating the functional relationship. We can rate 

how well an agent is fitted to its location by calculating 

the error of his model function using the local data and 

a search metric. 

In the following section we will give an overview 

of the system architecture, depicted in figure 5. 

 

3.1   System architecture overview 

The architecture is organized in four stages, the data 

processing and local and global agent environment. 

Each is arranged in functional levels, for data 

management, agent behaviour control, supervision, 

execution and synchronization, regarding the overall 

management. The basic level is called MPU (Multi 

Processor Unit) and represents the system thread 

representation. 

 The optimization starts with the initialization of the 

preprocessed data, managed in the data processing 

stage. The splitter in the supervision level supplies the 

evaluation units in the other stages with data samples. 

 To illustrate the agent based algorithm, we give a 

detailed description of the environment, the individuals 

live in, of the individuals themselves and of their 

behaviour. 

 
Figure 5: Planet Surface 

 

3.1.1   Agent Environment 

The environment of the agents consists of areas. Each 

area contains one data sample and can hold one agent. 

Moreover areas can be linked to other areas, called 

neighbours. These neighbours serve for two purposes. 

At first the agent held by one area can be moved onto 

one of the areas neighbouring areas. Secondly the links 

between the areas are used to build the set of data 

samples for the local learning. 

 The areas are aggregated in planets. The surface of 

a planet is a torus, represented by a quadratic field of 

areas. 

This surface is build in a recursive pattern of squares 

containing nine elements, filled meander like. This 

method leads to the planet size 93 = 729 and is 

illustrated in figure 6. Each area on a planet is linked to 

its four neighbours to the left, right, top and bottom. 

 Finally the planets build the universe, which is 

controlled by the universe supervisor. All planets are 

controlled by so called planet supervisors. Some of the 

areas on each planet are marked as beam areas. When a 

certain number of iterations have passed, the planet 

supervisor sends copies of all agents, which are placed 

on a beam area to a randomly chosen area on a 

randomly chosen planet. 

 

749



 
Figure 6: System Architecture 
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3.1.2  Software Agents 

The software agents are operating in the environment 

described before. Each agent owns a model function 

and is placed onto an area. The model function is stored 

in a tree representation and is build using elementary 

operations like sin, +, *, / the variables x1,..,xm and a set 

of parameters (Schmidt and Lipson, 2007). This concept 

is shown in figure 7. Moreover agents may build a 

child, to pass on their information. We have 

implemented in the following evolutionary operations: 

 

Replication: The individual produces a copy of 

himself. This is the most expensive operation. 

Cross: Two individuals interchange randomly 

chosen parts of their model functions. 

Mutate: A part of the model function is replaced by 

a randomly build function. 

Enhance: The structure of the model function is 

simplified, if possible. 

Short Learn: The parameters of the model function 

are fitted to the local learn data using a simple, 

but fast algorithm. 

Learn: A more sophisticated algorithm is used to 

calibrate the parameters of the model function. 

This operation is implemented in a memetic 

coprocessor. 

 

All of these operations have an energy effort, which is 

subtracted from the agents energy, if the operation is 

performed. Furthermore the agents can measure the 

error of their model function using different kind of 

search metrics. 

 
Figure 7: The tree representation of the model function 

 

3.1.3  Agent Behaviour 

Each iteration starts with an update of the agents 

properties. The age of the individual is increased. After 

that the energy level is recalculated. This happens as 

follows: The individual calculates the error of its model 

function using one of the search metrics described in 

section 3.4. If this error is too big the energy level is not 

increased. Else, the individual is allowed to absorb the 

energy offered by the area it is placed on and a value 

depending on the complexity of its model function is 

subtracted from its energy level. When these operations 

are done we decide whether the agent may live for one 

more iteration or not.  

 If the energy level is not positive the agent is 

removed. If the agent had a child, it is placed onto the 

area. 

 If the energy level is positive the agent tries to 

move to a randomly chosen neighbouring area. When 

the chosen area is empty, the agent just moves. If the 

area is already occupied by another agent, the procedure 

depends on the agent’s energy level. If it is not high 

enough to perform a cross operation, the agent does not 

move. Else a cross operation is performed. If the cross 

operation yields a new agent it is saved as the child of 

the original agent and the agents do not move. After the 

move operation, the individual tries to build a child, if 

none is present. Depending on the agent’s energy level, 

the agent performs a Replication, Mutate or Enhance 

operation to build his child. 

 In the next step the agent may perform a Learn 

operation, if he is not adult (without loss of energy), or 

if his energy is high enough it is decided randomly if 

the agent is allowed to learn or not. 

 Now the individual performs a short learn 

operation, if its age is appropriate. 

Finally, if the agent has moved in this iteration and 

owns a child, he tries to place it on his last area. 

 

3.2  Optimization stages 

In the last section the agents have been introduced. Here 

we map this agent based algorithm on the system 

architecture. According to the planet setup, there is the 

global stage (universe) and the local stage (one planet). 

The fourth stage is formed by memetic coprocessors, 

assigned to the planets. These stages form separate 

execution loops, which run in parallel. The listing below 

gives an overview of these three loops.  

 

1. Global Stage: This loop is used to manage the 

elite population. Agents nominated in the local 

loop are passed via the MPI (Message Passing 

Interface, synchronization level) to the EVA 

Executor (execution level) and then to the 

Judge (supervision level), which decides, if the 

agent is added to the elite population (agent 

level). The agents in the elite population are 

evaluated on the full data set (data level). If 

one of them fulfils the termination criterion the 

algorithm stops. The universe processor (MPU 

level) returns the ranking of the best 

individuals if the algorithm terminates. 

2. Local Stage: In this stage the agents are 

generated and put onto the planets. Once they 

are placed on an area, the agents start their life 

cycle, described in subsection 3.1.3. In the data 

level the agents evaluate their model function, 

using a search metric and a subset of the 

challenge data set, called local learn data. In 

the MPI (synchronization level) agents are 

exchanged between the planets. 
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3. Memetic Stage: In this loop agents, which were 

passed from the Operators (agent level, local 

stage) to the memetic unit (execution level), 

are optimized by more expensive algorithms, 

like downhill simplex (DHS) (Nelder and 

Mead, 1965). To evaluate the error of the 

model function, a small test data set is used. 

The agents are then passed back to the EVA 

Executor in the execution level of the local 

loop. 

 

3.3  The Elite Population 

There are two opportunities for an individual to get 

nominated for the elite population. The first is when an 

individual is removed from the planet and has lived for 

at least 200 iterations. Furthermore an individual is 

nominated for the elite population after every 250 

iterations. The universe supervisor chooses the best 25 

individuals from all nominated agents.  

 The elite population is used to check the 

termination criterion: The model functions in the elite 

population are evaluated not just using the local 

learning set, but the data from the whole universe. If 

one of them has an error under a predefined border the 

algorithm terminates and returns this model function. 

 

3.4  Search Metrics 

The agents are able to use different search metrics to 

estimate the error of their model functions. For each 

data sample in the local learn set, which is build using 

the neighbouring areas, the agent calculates the 

difference between the original output and the output 

calculated by the model function. For this step the agent 

can use the euclidean or the absolute distance. In the 

next step these values are aggregated by building the 

mean value or the maximum over all samples. They 

might perform these steps using not all, but a randomly 

chosen subset of their local learn data, in these cases the 

metric is called partial. 

 

4. PROOF OF CONCEPT 

To proof the basic usability of our framework we 

executed 8 different experiments with different problem 

complexities to be solved by the agent system. Each 

experiment is repeated 30 times to reduce statistical 

deviation. For each run we take the runtime beginning 

with the first agent generation and ending at the first 

successful detection. A successful detection is defined 

by a mean absolute error of 0.001 over the whole 

dataset. Each run has a maximal runtime of 1800 

seconds. If no valid solution is found in time, the 

execution is aborted and counted as an unsuccessful 

execution. To proof the parallelisation concept we 

repeated 8 times 30 experiments with 1 execution core 

(one Planet) and 8 cores.  

 

4.1 Experimental Setup 

This section specifies the used configurations and 

dependencies. All experiments are executed on a Dell 

PowerEdge R815 with in total 4 AMD Opteron 6174 

processors (each providing 12 cores with respectively 

128KByte L1-cache, 512 KByte L2-cache and common 

12 MByte L3-cache) and an overall RAM configuration 

of 128 GByte. For the parallelization evaluation this 

platform provides a scalable hardware environment. 

 The challenge to be solved by the agent system is 

generated synthetically. Because randomness in the 

generation has huge impact on the detection system the 

same dataset is used in all 30 runs per experiment. We 

generated a five dimensional time series input stream 

Figure 8: Measured ordered runtime 
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with 105 samples each. Further a result stream with the 

same length is generated using one of the 8 functions in 

formula (1) to (8). To measure the quality of the result a 

metric calculating the mean absolute error is used.  

 

f1 x1,… , x5 = x1 ∙ x2 (1) 

f2 x1,… , x5 = sin  x1 +
π

4
  

(2) 

f3 x1,… , x5 = 42 ∙ x1 ∙ x1 + 22 ∙ x2 (3) 

f4 x1,… , x5 = sin x1 ∙ x2 + 3 + 4 (4) 

f5 x1,… , x5 = x3 + x4 + 4.3 ∙ sin x1 + 7 
+ 1.65 

(5) 

f6 x1,… , x5 = x1 ∙ x1 + x2 ∙ x2 + x3 ∙ x3 + 22 (6) 

f7 x1,… , x5 = −3.23 ∙ sin x1 ∙ sin x2 + 2.43

∙ sin  x1 +
π

4
  

(7) 

f8 x1,… , x5 = −122 ∙ x1 + 2.3 ∙ x2 + 0.2 ∙ x4

+ x3 ∙ sin 0.1 ∙ x4  
(8) 

 

4.2  Results 

Figure 8 illustrates the results for the parallelised agent 

system with 8 planets. Each line type represents the 

different successfully ended runs for one of the 

generator functions ordered by runtime. The y-scale is 

logarithmic. As expected the mean runtime is higher if 

the function is more complex. This value can also be 

found in table 1. Some of the data lines do not have 30 

samples, because not all runs resulted in a valid 

solution. For function 1 to 6 the agents evolution always 

leads to the correct structure. Especially for the last two 

functions the highest runtimes increase strongly.  

 

Table 1:Statistics for different functions 

 Mean Std. Dev. Detection 

Rate 

f1 1.8 s 0.5 s 100 % 

f2 1.8 s 0.6 s 100 % 

f3 5.0 s 11.2 s 100 % 

f4 9.9 s 23.9 s 100 % 

f5 11.7 s 6.4 s 100 % 

f6 20.6 s 31.0 s 100 % 

f7 25.3 s 121.6 s 97 % 

f8 73.4 s 84.4 s 37 % 

 

This effect caused a deadlocked evolution, if the overall 

diversity of the agents is low. When the overall number 

of agents and the separation by multiple planets is 

increased this probability decreases. This is indicated if 

we compare the total number of detections and the 

speedup as done in table 2. Here the functions five to 

eight are not listed because the detection rate is too low 

to acquire adequate measurements for a non-parallelized 

system. Speedup for complex challenges (3-5) is 

effective. As positive detection rates increase and 

detection runtime decreases the positive effect is higher 

than the expected factor 8. At the moment more planets 

do not lead to a better system performance on the used 

machine because the other system components (see 

figure 6) consume the remaining system resources. We 

conclude that also the agents only use heuristics for 

interaction and learning the combined execution is 

target-oriented. 

 

Table 2: Statistics for parallelization 

 Mean x1 Mean x8 Speedup Detection 

Improveme

nt 

f1 5,6 s 1.8 s 309 % 100 % 

f2 6,5 s 1.8 s 356 % 100 % 

f3 28,0 s 5.0 s 561 % 500 % 

f4 82,0 s 9.9 s 826 % 230 % 

f5 59,0 s 11.7 s 505 % 272 % 

 

5. SUMMARY 

Modeling and simulation of non formalized system 

behavior still is a grand challenge for science and 

engineering. As we demonstrated it is possible to 

implement a machine learning system to help modeling 

specialists to gain knowledge form the data produced by 

the original system. In this scenario it is required to 

formulate the produced recommendations in a human 

comprehensible form. Differential equations (and 

simple equations, as in this concept paper) are one 

possible knowledge representation. And in difference, 

from knowledge e.g. learned by a neuronal net, 

knowledge is not encapsulated. Engineers have a huge 

tool kit to continue processing such a result. As done for 

a simulation system in (Bohlmann, Klinger and 

Szczerbicka, 2009) such a agent based modeling 

support system can easily connected to real word data 

sources and could be helpful to enhance or generate 

complex models for simulation environments (Zeigler, 

Praehofer and Kim, 2000). As a result the complexity to 

model a complex process is simplified by using the 

analytic strength of the modeling engineer and the 

knowledge compression strength of an agent based 

machine learning environment. 

 

6. FURTHER WORK 

The further work has two key aspects of activity: 

Increase the parallelization to be able to use more 

agents. As mentioned before the memetic co-processor 

cores use the majority of our machine resources. All 

used memetic algorithms are suited for SIMD 

coprocessors and would scale the system to about 40 

planets. The second work to be done is to reduce the 

number of problem specific parameters by the help of 

control loops. 

 Finally the framework is written as generic as 

possible. There are only few dependencies e.g. the 

problem has to be dividable into local challenges. So we 

like to formulate solvers for different known problems 

in the area of modeling and machine learning. 
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