
AN OPTIMAL NON-BLOCKING DISPATCHING IN FREE-CHOICE MANUFACTURING
FLOWLINES BY USING MACHINE-JOB INCIDENCE MATRIX

Ivica Sindičić (a), Stjepan Bogdan (b), Tamara Petrović (b)

(a) ABB, Bani 72, 10000 Zagreb, Croatia
(b) LARICS - Laboratory for Robotics and Intelligent Control Systems, Department of Control and Computer

Engineering, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

(a)ivica.sindicic@gmail.com , (b)stjepan.bogdan@fer.hr

ABSTRACT
In this paper we extend a method for resource allocation
in particular class of flexible manufacturing system,
namely, free-choice multiple reentrant flowlines
(FMRF), which is based on MJI matrix. The proposed
method is a solution to the problem on how to allocate
jobs to resources and how to allocate resources to jobs.
A solution is in a form of repeatable resource sequence
over the set of resources available for particular choice
job. As addition proposed in this paper, the solution is
enhanced by the procedure that provides an optimal
utilization of resources based on operation price and
balanced use of all resources. Although efficiency of the
proposed methods have been demonstrated on examples
involving manufacturing workcells, the method can be
used for other discrete event systems as well, as long as
the system under study belongs to free-choice multiple
reentrant flowlines class.

Keywords: dispatching, manufacturing systems, optimal
control

1. INTRODUCTION
The first step in the supervisory controller design is
modeling of the system and investigation of its
structural properties. There are many approaches to
modeling and analysis of manufacturing systems,
including automata [1], Petri nets [2, 10], alphabet-
based approaches, perturbation methods [3], control
theoretic techniques, expert systems design, and so on.

One way to model relations between tasks in an
FMS is in form of Steward sequencing matrix [4], also
referred to as design structure matrix (DSM). DSM is a
square matrix containing a list of tasks in rows and
columns. The order of tasks in rows or columns
indicates the execution sequence. Although very useful
in production planning, DSM lacks of information
related to the resources required for execution of tasks.
This aspect of an FMS is captured by the resource
requirements matrix [5], also know as the machine-part
incidence matrix (MPI). Each column of MPI represents
one resource, while rows represent part types processed
by the system. The most common usage of MPI is in the
field of manufacturing cells design by implementation

of various clustering methods [6]. In [17] we proposed
construction of machine-job incidence matrix (MJI)
which can be obtained from MPI and DSM matrices.

Efficient procedures for determination of simple
circular waits (CWs) [7, 8] as well as other important
structural properties (which are responsible for stability
in the sense of absence of deadlock), such as critical
siphons and critical subsystems [9, 11], based on MJI,
are presented in [13]. It should be noted that MJI matrix
can be straightforwardly transformed in matrix model
described in [9].

Generally, scheduling requires a) allocation
(dispatching) of available resources to predetermined
operations (tasks), and b) definition of sequences in
order to provide stable behavior of the system. Usually,
supervisory controller not only stabilizes the system (in
a sense of deadlock and bounded buffers) but in the
same time optimizes some performance criteria.

Herein we extend a method for resource allocation
in particular class of FMS, namely, free-choice multiple
reentrant manufacturing systems (FMRF), which is
based on MJI matrix, described in details in [17]. A
solution is in a form of repeatable resource sequence
over the set of resources available for particular choice
job. As addition, proposed in this paper, the solution is
enhanced by the procedure that provides an optimal
usage of resources based on price and balanced use of
all resources.

2. SYSTEM DESCRIPTION AND PROBLEM

FORMULATION
We make the following assumptions that define the sort
of discrete-part manufacturing systems: No pre-
emption – once assigned, a resource cannot be removed
from a job until it is completed, Mutual exclusion – a
single resource can be used for only one job at a time,
Hold while waiting – a process holds the resources
already allocated to it until it has all resources required
to perform a job. Furthermore, we assume that there are
no machine failures. Multiple reentrant flowlines
(MRF) class of systems, investigated herein, has the
following properties: a) each part type has a strictly
defined sequence of operations, b) each operation in the
system requires one and only one resource with no two

722

consecutive jobs using the same resource, c) there are
no choice jobs, d) there are no assembly jobs, e) there
are shared resources in the system.

2.1. System description
Let Π be the set of distinct types of parts produced (or
customers served) by an FMS. Then each part type Pk ∈
Π is characterized by a predetermined sequence of job
operations { }1 2 3, , , ...,

k

k k k k k
LJ J J J J= with each operation

employing at least one resource. (Note that some of
these job operations may be similar, e.g. i

kJ and j
kJ

with i ≠ j may both be drilling operations.) We
uniquely associate with each job sequence kJ the

operations of raw part-in, in
kJ , and completed product-

out, out
kJ .

Denote the system resources with { } 1
n

i iR r == , where

ri∈R can represent a pool of multiple resources each
capable of performing the same type of job operation. In
this notation kR R⊂ represents the set of resources
utilized by job sequence kJ . Note that k

k
R R

∈Π
= ∪ and

k

k
J J

∈Π
= ∪ represent all resources and jobs in a

particular FMS. Since the system could be re-entrant, a
given resource kr R∈ may be utilized for more than one
operation k k

iJ J∈ (sequential sharing). Also, certain
resources may be used in the processing of more than
one part-type so that for some {l, k}∈Π, l≠k,

l kR R∩ ≠ ∅ (parallel sharing). Resources that are
utilized by more than one operation in either of these
two ways are called shared resources, while the
remaining are called non-shared resources. Thus, one
can partition the set of system resources
as s nsR R R= ∪ , with Rs and Rns indicating the sets of
shared and non-shared resources, respectively. For any
r∈R we define the resource job set J(r). Obviously,

() 1J r = (> 1) if r∈Rns (r∈Rs). Resource r, with its job
set J(r), comprise resource loop L(r), () ()L r r J r= ∪ .

We define a job vector v : J → ℵ and a resource
vector r : R → ℵ that represent the set of jobs and the
set of resources corresponding to their nonzero
elements. The set of jobs (resources) represented by v
(r) is called the support of v (r), denoted sup(v)
(sup(r)); i.e. given v = [v1 v2 … vq]T, vector element vi
>0 if and only if job vi∈ sup(v). In the same manner,
given r = [r1 r2 … rp]T, vector element ri >0 if and only
if resource ri∈sup(r). Usually, index i is replaced with
job (resource) notation, for example, rMA stands for the
component of resource vector r that corresponds to
resource MA. The definitions of job and resource
vectors imply that the job and resource sets should be
ordered.

MRF class is a special case of FMRF - systems
with jobs that do not have predetermined resources

assigned. That is, several resources might be capable
and available to perform a specific job (MRF property c
is not valid, i.e. there are jobs with choice). We define
R(k

iJ) as a set of resources that could be allocated to

choice job k k
iJ J∈ .

An example of FMRF workcell is given in Figure
1. with J = {RP1, BP, MP, RP2} and R = {M1, M2, B,
R}. From buffer (job BP), part proceeds to machine M1
or machine M2 (choice job MP). Hence, vector
representation of resources that could be allocated to
choice job MP is rMP = [1 1 0 0]T and
R(MP)=sup(rMP)={M1, M2}.

2.2. Problem formulation
Since the system contains shared resources and choice
jobs, the scheduling problem discussed in the paper is
twofold: i) for a given choice job k k

iJ J∈ define

allocation sequence of resources in R(k
iJ), and ii) for a

given shared resource rs∈Rs with resource job set J(rs),
define dispatching policy. Both solutions, allocation
sequence and dispatching policy, should be such that
overall system is stable in a sense of deadlock.

A solution of problem i) offers an answer on how
to allocate resources to jobs. For that purpose we
propose a result in a form of repeatable resource
sequence over the set of resources available for
particular choice job.

On the other hand problem ii) is related to the
number of active jobs in a particular parts of FMRF
systems, called critical subsystems. In the chapters that
follow we show why critical subsystems are important,
how they can be determined from MJI matrix, and how
their content (number of active jobs) can be controlled.
In fact, solution to problem ii) describes how to allocate
jobs to resources.

Figure 1: An example of FMRF class of FMS

3. MACHINE-JOB INCIDENCE MATRIX (MJI)

As we stated in Introduction, DSM is a square matrix
containing a list of tasks in rows and columns with
matrix elements indicating an execution sequence. The
second matrix used for the system description is MPI. It
captures relations between resources and parts
processed by the system. Since the sequence

{ }1 2 3, , , ...,
k

k k k k k
LJ J J J J= represents part Pk processing

723

order, by combining DSM and MPI matrices, we get a
general form of machine-job incidence matrix Λ for an
FMRF system [17]. In case job i is performed by
resource j, matrix element (i, j) is equal to ‘1’, otherwise
is ‘0’. For an MRF system, each operation in the system
requires only one resource (there are no choice jobs),
hence, exactly one element ‘1’ would appear in each
row of MJI matrix. On the other hand, column
representing shared resource comprises multiple entries
of ‘1’.

1R 2R …
qR

 1
1J 0/1 0/1 … 0/1

 1
2J 0/1 0/1 L 0/1

 M M M M

1
1
L

J 0/1 0/1 L 0/1

 2
1J 0/1 0/1 L 0/1

Λ = M M M M

2
2
L

J 0/1 0/1 L 0/1

 M M M M

1
mJ 0/1 0/1 L 0/1

 M M M M

m
m
L

J 0/1 0/1 L 0/1

Machine-job incidence matrix can be defined

separately for each part type in an FMS.In that case
overall MJI matrix can be written as:

T1 2 ... m⎡ ⎤= ⎣ ⎦
T T TΛ Λ Λ Λ (1)

For the system given in Figure 2. MJI attains the
following form:

 M1 M2 B R
 RP1 0 0 0 1
Λ = BP 0 0 1 0
 MP 1 1 0 0
 RP2 0 0 0 1

It can be seen that robot R is shared resource as the
corresponding column has two elements equal to ‘1’.
 As we demonstrate in [17] one of the benefits
provided by MJI matrix is reduction of computational
complexity in FMRF system analysis and simulation.

4. MJI AND RESOURCE SEQUENCING

As already mentioned, in addition to the assumptions
made at the beginning of Chapter II, a general class of
FMRF systems has the following nonrestrictive
capabilities: i) some jobs have the option of being
machined in a resource from a set of resources
(allocation of jobs), ii) job/part routings are NOT
deterministic, iii) for each job there exists a material
handling buffer (routing resource) that routes parts.

In this Chapter we are interested to determine
repeatable resource sequence over the set of resources
available for execution of each choice job in the system.
The sequence should prevent conflicts and deadlocks
simultaneously. In the analysis that follows we consider
one part-type regular FMRF with each buffer capable of
holding one part at a time.

Let MJI matrix of the system is given as

1 2 3 4 5 1 2 3 4

1

1

2

2

3

3

4

4

5

1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
M M M M M B B B B

J

JB

J

JB

J

JB

J

JB

J

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ
 (2)

From the matrix we see that a part production requires
sequence of 5 jobs, and system is composed of 5
machines and 4 buffers. For choice jobs J2, J3 and J4,
we have R(J2)={M2, M3}, R(J3)={M3, M4, M5}, and
R(J4)={M2, M4}. All machines, except M5, are shared
resources. There are many part routes that complete the
required job sequence - to mention just few of them:
σ1={M1→M2→M3→M2→M1},
σ2={M1→M3→M5→M4→M1},
σ3={M1→M3→M3→M4→M1}, and so on. We
partition set of part routes, denoted Σ, into two disjoint
sets, Σ = ΣR U ΣNR, with ΣR comprising all part routs
with multiple use of resources allocated to choice jobs,
and ΣNR containing all part routes without multiple use
of resources. In our example σ1 and σ3 belong to ΣR,
while σ2 is an element of ΣNR.

It is obvious that conflicts might occur in σi ∈ΣR
since same resource is used for execution of more than
one job. In σ1 resource M2 is used for jobs J2 and J4.
On the other hand part routes in ΣNR are inherently
conflict free. We define resource sequences as
combination of several routes from ΣNR. As a result, the
structure of repeatable resource sequences over the set
of resources available for execution of choice jobs
would, by itself, provide not only conflict free but also
deadlock free behavior of the system.

The number of all possible part routs, N = | Σ|, is

defined as ,
11

()
n m

i j
ji

N
==

= ∑∏ Λ where n and m

correspond to the number of rows and columns of Λ ,
respectively. In our example one has N =
1·1·2·1·3·1·2·1·1=12. For each part route σi we define
MJI sub-matrix iΛ in a way that in case of multiple
entries ‘1’ in row (choice job), sub-matrix comprises
only the one that corresponds with resource belonging
to the part route. For σ2={M1→M3→M5→M4→M1}
MJI sub-matrix attains a form

724

2

1 2 3 4 5 1 2 3 4

1

1

2

2

3

3

4

4

5

1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0

M M M M M B B B B

J

JB

J

JB

J

JB

J

JB

J

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ
 .

Having defined sub-matrices, search for sequences in Σ
is in fact search for all MJI sub-matrices that are
characterized by single entry ‘1’ in each row and
multiple or no entry ‘1’ in each column. It is easy to
show that there exists a procedure of complexity O(N)
for calculation of such matrices.

Resource sequences are related to choice jobs, for
this reason, we introduce reduced form of MJI sub-
matrices, denoted *iΛ , such that encompass only rows
corresponding to those jobs, and without columns
related to the buffers. Reduced form of 2Λ from
previous example is given as

*2

2

3

4

1 2 3 4 5

0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

J

J

J

M M M M M

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Λ
 .

Now, let us suppose that resource allocation policy
requires that resources M3 and M2 should be used
repetitively, one after the other, for execution of job J2.
This repeatable resource allocation sequence can be
written in a form of matrix

J2

1 2 3 4 5

0 0 1 0 0
0 1 0 0 0

M M M M M

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

S
 ,

or in general form
1

2

j

j

j

j

s
s

sω

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M
S . (3)

Resource allocation sequence matrix should be

defined for each choice job in the system. Our goal is to
find set { }jSℑ = (where w = ℑ equals to the number
of choice jobs in the system) such that system has no
conflicts and it is deadlock free. In [17] it has been
proven that elements of such set, i.e. sequence matrices,
are formed of rows of MJI sub-matrices.

As an example, let us examine 3-step sequence for
system (2), defined by the following resource allocation
sequence matrices,

1
2

2
J2 2

3
2

0 0 1 0 0
0 0 1 0 0
0 1 0 0 0

J

J

J

s
s
s

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

S

1
3

2
J3 3

3
3

0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

J

J

J

s
s
s

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

S

1
4

2
J4 4

3
4

0 1 0 0 0
0 1 0 0 0
0 0 0 1 0

J

J

J

s
s
s

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

S .

In order to get a better insight in the system

behavior, Figure 2. presents how parts pass through the
line. It should be noted that sequences are executed in a
way that new allocation of resources (new step) is
performed after all jobs are finished and parts reside in
the buffers. First part enters the system and it is
processed by M3 (J2M3-‘1’ in the first row of SJ2),
than, it proceeds to job J3 on M4 (J3M4-‘1’ in the first
row of SJ3), and than to job J4 on M2 (J4M2--‘1’ in the
first row of SJ4). The second part enters the system and
it is processed by M3 (J2M3-‘1’ in the second row of
SJ2), than, it proceeds to job J3 on M5 (J3M5-‘1’ in the
second row of SJ3), and so on. Conflict occurs for the
first time at k+2 as J4 on part 1 is planned for M2 while,
in the same time, the third part, that just entered the
system, requires the same machine (J2 on M2).

This example clearly demonstrates that repeatable
resource sequences can lead the system in conflict. In
[17] it has been shown how to determine conflict-free
set { }jSℑ = . Furthermore, we proved that usage of
conflict-free set of resource allocation sequences not
only resolves possible conflicts in the system, but also
has direct consequence on the system stability, i.e. it
provides deadlock-free behavior of the system.

Figure 2: Presentation of parts passing through the line.

4.1. Sequence optimization
In order to determine an optimal sequence we introduce
cost matrix WΛ . The cost matrix, with the form

identical to MJI matrix Λ , captures cost of execution
of ith job by using jth resource. By using cost matrix we
can extract cost of each MJI sub matrix as

1 1

()
n n

p p
ij

i j
C

= =

= ∑∑ WΛ , (4)

725

 where T()p p= ⋅W WΛ Λ Λ , p
NR∈ΣΛ , 1..p k= , is

an MJI submatrix. If one assumes that sequence
matrices are comprised of ω rows (sequence of ω
repeatable steps), where each MJI submatrix pΛ will

be used pω times, i.e.
1

k

p
p

ω ω
=

=∑ ,

, 0p pω ω ω∈ ≤ ≤� , then the total cost generated
by those sequences is

1

k
tot p

p
p

C Cω
=

=∑ . (5)

It is clear that minimization of the total cost, defined as
(5), is trivial problem – one should use only pΛ with
the smallest pC in order to achieve minimal cost.
However, in that case it might happen that utilization of
the system resources would be highly unbalanced or
even some resources would not be used at all. Hence,
the cost function should be extended with a relation that
captures resources utilizations.
For each MJI sub-matrix one can define a resource
utilization vector as

 Tp p= ⋅u 1 Λ , (6)
where 1mx1 is vector with all elements equal to 1. As a
result resource utilization vector ui is a binary vector
with jth element equal to 1 if corresponding resource
participates in execution of the sequence containing
rows of iΛ sub-matrix. Finally, an integer vector that
represents overall usage of the system resources is
determined as

1

k
p

p
p
ω

=

=∑u u . (7)

Now, the second objective, balanced usage of the
system resources, can be defined in the following form

(1) (1) , , 1.. ,
(1) (1)

i

j

u i j q
u

ε ε
ε ε

− +≤ ≤ ∀ =
+ −

 (8)

where ui and uj are ith and jth component of u, ε is design
parameter such that 0 1ε≤ < , and q is the number of
resources that should be balanced (for q = m all
resources in the system shall be included in
optimization). Fully balanced utilization of resources is
achieved if 1 , 1..,i

j
i j q

u
u

= ∀ = . However, this goal

might be very difficult (in some cases even impossible)
to obtain, which depends on the system structure and
executed sequence. Hence, by introducing parameter ε
one is able to relax rigorous balancing requirement – for
ε ≈ 1 the system could become unbalanced, while for ε
= 0 one requires full balance of the system resources
exploitation.

Minimization of (5) by varying 1,...,,p p kω =

under conditions (8) with predefined ε and ω is a

mixed integer linear programming problem which can
be solved using standard algorithms.

4.2. Case study

The proposed method has been tested on the system
presented in [15] and [16]. Although, this example has
only two choice jobs and it is comprised of MRF and
FMRF sub-systems, it has been chosen so that the
proposed method can be compared with various control
techniques already implemented on this particular
manufacturing system. The system’s PN model is
shown in Figure 3. The system has 3 part types, P1, P2
and P3, 4 machines M1-M4, and 3 robots R1-R3. Part
routes for P1 and P2 are predetermined (MRF), while
P3 has choice jobs (FMRF). All resources, except for
M1, are shared (only utilization of shared resources will
be optimized).

Figure 3: PN model of the system used for the case

study [15].

The goal is to find the optimal sequence that includes all
shared resources in the system for 6ω = and 0.2ε = .

Such value of ε gives 0.8 1.2i

j

u
u

≤ ≤ , i.e. it is required

that usage of resources is balanced. The following costs
have been used in optimization:

cM11=6, cM31=4, cM22=5, cM42=9.

Three MJI sub-matrices have been used for construction
of sequences such that u1= [1 1 0]T, u2= [0 0 1]T and
u3= [0 1 1]T, where components correspond with
resources M2, M3 and M4. This gives overall usage of
shared resources as

1 2 3 T
1 2 3 1 1 3 2 3[]ω ω ω ω ω ω ω ω= + + = + +u u u u

. Optimization yields to the following values: 1 3ω = ,

2 2ω = , 3 1ω = with total usage of resource within the
sequence equal to u = [3 4 3]T as it is shown in Figure 5.
Results obtained by simulation with MJIWorkshop,
software tool presented in [12], are shown in Figures 5

726

and 6. It can be seen from Figure 6 that system is
deadlock free, i.e. flow of the parts is uninterrupted.

Figure 5: Utilization of M2, M3 and M4 within the

sequence.

Figure 6: Utilization of all resource in the system.

5. CONCLUSION

In a finite-buffer flexible manufacturing systems,

any dispatching policy for interrupted part flow has to
essentially take into account the composition of the
interconnection between jobs and resources. The
proposed optimal non-blocking dispatching policy is
based on machine-job incidence matrix (MJI), obtained
from Steward sequencing matrix and Kusiak machine-
part incidence matrix, and explained in details in [17].

Since FMRF systems contain shared resources and
choice jobs, a solution to allocation of resources to jobs
is determined in a form of repeatable resource sequence
over the set of resources available for particular choice
job. Obtained sequences not only stabilize the system
but provide an optimal utilization of resources based on
price and balanced use of all resources.

Efficiency of the proposed method has been
demonstrated on an example involving multi-part type
manufacturing system.

REFERENCES
[1] W.M. Wonham, Supervisory Control of Discrete Event

Systems, Lecture notes, 2005.
[2] T. Murata, Petri nets: properties, analysis and

applications, Proc. IEEE, 77, 4, 1989, pp. 541–580.

[3] Y.C. Ho, X.R. Cao, Perturbation Analysis of Discrete
Event Dynamic Systems, Kluwer Academic Publishers,
1991.

[4] D.V. Steward, The Design Structure System: A Method
for Managing the Design of Complex Systems, IEEE
Transactions on Engineering Management, 28, 1981, pp.
71-74.

[5] A.Kusiak, J. Ahn, Intelligent Scheduling of Automated
Machining Systems, Computer-Integrated
Manufacturing Systems, 5, 1, 1992, pp. 3-14.

[6] T.R. Browning, Applying the Design Structure Matrix to
System Decomposition and Integration Problems: A
Review and New Directions, IEEE Transactions on
Engineering Management, 48, 3, 2001, pp. 292-306.

[7] M.D. Jeng, F. DiCesare, Synthesis Using Resource
Control Nets for Modeling Shared-Resource Systems,
IEEE Trans. Rob. Autom. RA-11, 1995, pp. 317–327.

[8] R.A. Wysk, N.S. Yang, S. Joshi, Detection of Deadlocks
in Flexible Manufacturing Cells, IEEE Trans. Rob.
Autom, 7, 6, 1991, pp. 853−859.

[9] S. Bogdan, F.L. Lewis, J. Mireles, Z. Kovacic,
Manufacturing Systems Control Design: a matrix based
approach, Springer, 2006.

[10] M.V. Iordache, P.J. Antsaklis, Supervisory Control of
Concurrent Systems: A Petri Net Structural Approach,
Birkhauser, Boston, USA – 2006.

[11] M.C. Zhou, M.P. Fanti, Deadlock resolution in
computer-integrated systems, Marcel Dekker/CRC Press,
New York 2005.

[12] I. Sindičić, T. Petrović, S. Bogdan, Modeling and
Simulation of Manufacturing Systems based on Machine-
Job Incidence Matrix, Proc. Int. Conference on
Mathematical Modelling, Vienna, 2009.

[13] T. Petrović, S. Bogdan, I. Sindičić, Determination of
Circular Waits in Multiple-Reentrant Flowlines based on
Machine-job Incidence Matrix, Proc. European Control
Conference, Budapest, 2009.

[14] S. Lee, D.M. Tilbury, Deadlock-Free Resource
Allocation Control for a Reconfigurable Manufacturing
System With Serial and Parallel Configuration, IEEE
Trans. on SMC-part C, 37, 6, 2007, pp.1373-1381.

[15] ZhiWu Li, MengChu Zhou; Two-Stage Method for
Synthesizing Liveness Enforcing Supervisors for
Flexible Manufacturing Systems Using Petri Nets, IEEE
Transactions on industial informatics, Vol. 2, No. 4,
November 2006, pp. 313-325

[16] I.Sindičić, S.Bogdan, T.Petrović; Dispatching in Free-
choice Multiple Reentrant Manufacturing Flowlines by
using machine-Job Incidence Matrix; 6th IEEE
Conference on Automation Science and Engineering –
CASE 2010, p617-623, Toronto, Canada, 22-24. August
2010

[17] I.Sindičić, S.Bogdan, T.Petrović; Resource Allocation in
Free-choice Multiple Reentrant Manufacturing Systems
Based on Machine-job Incidence Matrix;, IEEE
Transactions on Industrial Informatics, Vol. 7, No. 1,
2011, pp. 105-114.

727

