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ABSTRACT 
In this paper we extend a method for resource allocation 
in particular class of flexible manufacturing system, 
namely, free-choice multiple reentrant flowlines 
(FMRF), which is based on MJI matrix. The proposed 
method is a solution to the problem on how to allocate 
jobs to resources and how to allocate resources to jobs. 
A solution is in a form of repeatable resource sequence 
over the set of resources available for particular choice 
job. As addition proposed in this paper, the solution is 
enhanced by the procedure that provides an optimal 
utilization of resources based on operation price and 
balanced use of all resources. Although efficiency of the 
proposed methods have been demonstrated on examples 
involving manufacturing workcells, the method can be 
used for other discrete event systems as well, as long as 
the system under study belongs to free-choice multiple 
reentrant flowlines class. 

 
Keywords: dispatching, manufacturing systems, optimal 
control 

 
1. INTRODUCTION 
The first step in the supervisory controller design is 
modeling of the system and investigation of its 
structural properties. There are many approaches to 
modeling and analysis of manufacturing systems, 
including automata [1], Petri nets [2, 10], alphabet-
based approaches, perturbation methods [3], control 
theoretic techniques, expert systems design, and so on. 

One way to model relations between tasks in an 
FMS is in form of Steward sequencing matrix [4], also 
referred to as design structure matrix (DSM). DSM is a 
square matrix containing a list of tasks in rows and 
columns. The order of tasks in rows or columns 
indicates the execution sequence. Although very useful 
in production planning, DSM lacks of information 
related to the resources required for execution of tasks. 
This aspect of an FMS is captured by the resource 
requirements matrix [5], also know as the machine-part 
incidence matrix (MPI). Each column of MPI represents 
one resource, while rows represent part types processed 
by the system. The most common usage of MPI is in the 
field of manufacturing cells design by implementation 

of various clustering methods [6]. In [17] we proposed 
construction of machine-job incidence matrix (MJI) 
which can be obtained from MPI and DSM matrices. 

Efficient procedures for determination of simple 
circular waits (CWs) [7, 8] as well as other important 
structural properties (which are responsible for stability 
in the sense of absence of deadlock), such as critical 
siphons and critical subsystems [9, 11], based on MJI, 
are presented in [13]. It should be noted that MJI matrix 
can be straightforwardly transformed in matrix model 
described in [9]. 

Generally, scheduling requires a) allocation 
(dispatching) of available resources to predetermined 
operations (tasks), and b) definition of sequences in 
order to provide stable behavior of the system. Usually, 
supervisory controller not only stabilizes the system (in 
a sense of deadlock and bounded buffers) but in the 
same time optimizes some performance criteria. 

Herein we extend a method for resource allocation 
in particular class of FMS, namely, free-choice multiple 
reentrant manufacturing systems (FMRF), which is 
based on MJI matrix, described in details in [17]. A 
solution is in a form of repeatable resource sequence 
over the set of resources available for particular choice 
job. As addition, proposed in this paper, the solution is 
enhanced by the procedure that provides an optimal 
usage of resources based on price and balanced use of 
all resources. 
 
2. SYSTEM DESCRIPTION AND PROBLEM 

FORMULATION 
We make the following assumptions that define the sort 
of discrete-part manufacturing systems:  No pre-
emption – once assigned, a resource cannot be removed 
from a job until it is completed, Mutual exclusion – a 
single resource can be used for only one job at a time, 
Hold while waiting – a process holds the resources 
already allocated to it until it has all resources required 
to perform a job. Furthermore, we assume that there are 
no machine failures. Multiple reentrant flowlines 
(MRF) class of systems, investigated herein, has the 
following properties: a) each part type has a strictly 
defined sequence of operations, b) each operation in the 
system requires one and only one resource with no two 
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consecutive jobs using the same resource, c) there are 
no choice jobs, d) there are no assembly jobs, e) there 
are shared resources in the system. 

 
2.1. System description 
Let Π be the set of distinct types of parts produced (or 
customers served) by an FMS. Then each part type Pk ∈ 
Π is characterized by a predetermined sequence of job 
operations { }1 2 3, , , ...,

k

k k k k k
LJ J J J J=  with each operation 

employing at least one resource. (Note that some of 
these job operations may be similar, e.g. i

kJ and j
kJ  

with i ≠  j may both be drilling operations.) We 
uniquely associate with each job sequence kJ the 

operations of raw part-in, in
kJ , and completed product-

out, out
kJ . 

Denote the system resources with { } 1
n

i iR r == , where 

ri∈R can represent a pool of multiple resources each 
capable of performing the same type of job operation. In 
this notation kR R⊂  represents the set of resources 
utilized by job sequence kJ . Note that k

k
R R

∈Π
= ∪  and 

k

k
J J

∈Π
= ∪  represent all resources and jobs in a 

particular FMS. Since the system could be re-entrant, a 
given resource kr R∈ may be utilized for more than one 
operation k k

iJ J∈  (sequential sharing). Also, certain 
resources may be used in the processing of more than 
one part-type so that for some {l, k}∈Π, l≠k, 

l kR R∩ ≠ ∅  (parallel sharing). Resources that are 
utilized by more than one operation in either of these 
two ways are called shared resources, while the 
remaining are called non-shared resources. Thus, one 
can partition the set of system resources 
as s nsR R R= ∪ , with Rs and Rns indicating the sets of 
shared and non-shared resources, respectively. For any 
r∈R we define the resource job set J(r). Obviously, 

( ) 1J r = (> 1) if r∈Rns (r∈Rs). Resource r, with its job 
set J(r), comprise resource loop L(r), ( ) ( )L r r J r= ∪ . 

We define a job vector v : J → ℵ and a resource 
vector     r : R → ℵ that represent the set of jobs and the 
set of resources corresponding to their nonzero 
elements. The set of jobs (resources) represented by v 
(r) is called the support of v (r), denoted sup(v) 
(sup(r)); i.e. given v = [v1 v2 … vq]T, vector element vi 
>0 if and only if job vi∈ sup(v). In the same manner, 
given r = [r1 r2 … rp]T, vector element ri >0 if and only 
if resource ri∈sup(r). Usually, index i is replaced with 
job (resource) notation, for example, rMA stands for the 
component of resource vector r that corresponds to 
resource MA. The definitions of job and resource 
vectors imply that the job and resource sets should be 
ordered. 

MRF class is a special case of FMRF - systems 
with jobs that do not have predetermined resources 

assigned. That is, several resources might be capable 
and available to perform a specific job (MRF property c 
is not valid, i.e. there are jobs with choice). We define 
R( k

iJ ) as a set of resources that could be allocated to 

choice job k k
iJ J∈ . 

An example of FMRF workcell is given in Figure 
1. with J = {RP1, BP, MP, RP2} and R = {M1, M2, B, 
R}. From buffer (job BP), part proceeds to machine M1 
or machine M2 (choice job MP). Hence, vector 
representation of resources that could be allocated to 
choice job MP is rMP = [1 1 0 0 ]T and 
R(MP)=sup(rMP)={M1, M2}. 

 
2.2. Problem formulation 
Since the system contains shared resources and choice 
jobs, the scheduling problem discussed in the paper is 
twofold: i) for a given choice job k k

iJ J∈ define 

allocation sequence of resources in R( k
iJ ), and ii) for a 

given shared resource rs∈Rs with resource job set J(rs), 
define dispatching policy. Both solutions, allocation 
sequence and dispatching policy, should be such that 
overall system is stable in a sense of deadlock. 

A solution of problem i) offers an answer on how 
to allocate resources to jobs. For that purpose we 
propose a result in a form of repeatable resource 
sequence over the set of resources available for 
particular choice job. 

On the other hand problem ii) is related to the 
number of active jobs in a particular parts of FMRF 
systems, called critical subsystems. In the chapters that 
follow we show why critical subsystems are important, 
how they can be determined from MJI matrix, and how 
their content (number of active jobs) can be controlled. 
In fact, solution to problem ii) describes how to allocate 
jobs to resources. 
 

 
Figure 1:  An example of FMRF class of FMS 
 

3. MACHINE-JOB INCIDENCE MATRIX (MJI) 
 

As we stated in Introduction, DSM is a square matrix 
containing a list of tasks in rows and columns with 
matrix elements indicating an execution sequence. The 
second matrix used for the system description is MPI. It 
captures relations between resources and parts 
processed by the system. Since the sequence 

{ }1 2 3, , , ...,
k

k k k k k
LJ J J J J=  represents part Pk processing 
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order, by combining DSM and MPI matrices, we get a 
general form of machine-job incidence matrix Λ  for an 
FMRF system [17]. In case job i is performed by 
resource j, matrix element (i, j) is equal to ‘1’, otherwise 
is ‘0’. For an MRF system, each operation in the system 
requires only one resource (there are no choice jobs), 
hence, exactly one element ‘1’ would appear in each 
row of MJI matrix. On the other hand, column 
representing shared resource comprises multiple entries 
of ‘1’. 

 
  

1R  2R  … 
qR  

 1
1J  0/1 0/1 … 0/1 

 1
2J  0/1 0/1 L  0/1 

 M  M  M   M  
 

1
1
L

J  0/1 0/1 L  0/1 

 2
1J  0/1 0/1 L  0/1 

Λ = M  M  M   M  
 

2
2
L

J  0/1 0/1 L  0/1 

 M  M  M   M  
 

1
mJ  0/1 0/1 L  0/1 

 M  M  M   M  
 

m
m
L

J  0/1 0/1 L  0/1 

 
Machine-job incidence matrix can be defined 

separately for each part type in an FMS.In that case 
overall MJI matrix can be written as: 

T1 2 ... m⎡ ⎤= ⎣ ⎦
T T TΛ Λ Λ Λ      (1) 

For the system given in Figure 2. MJI attains the 
following form: 

 
  M1 M2 B R 
 RP1 0 0 0 1 
Λ = BP 0 0 1 0 
 MP 1 1 0 0 
 RP2 0 0 0 1 

 
It can be seen that robot R is shared resource as the 
corresponding column has two elements equal to ‘1’. 
 As we demonstrate in [17] one of the benefits 
provided by MJI matrix is reduction of computational 
complexity in FMRF system analysis and simulation. 

 
4. MJI AND RESOURCE SEQUENCING 
 

As already mentioned, in addition to the assumptions 
made at the beginning of Chapter II, a general class of 
FMRF systems has the following nonrestrictive 
capabilities: i) some jobs have the option of being 
machined in a resource from a set of resources 
(allocation of jobs), ii) job/part routings are NOT 
deterministic, iii) for each job there exists a material 
handling buffer (routing resource) that routes parts. 

In this Chapter we are interested to determine 
repeatable resource sequence over the set of resources 
available for execution of each choice job in the system. 
The sequence should prevent conflicts and deadlocks 
simultaneously. In the analysis that follows we consider 
one part-type regular FMRF with each buffer capable of 
holding one part at a time. 

Let MJI matrix of the system is given as 
 

1 2 3 4 5 1 2 3 4

1

1

2

2

3

3

4

4

5

1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
M M M M M B B B B

J

JB

J

JB

J

JB

J

JB

J

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ
  (2) 

From the matrix we see that a part production requires 
sequence of 5 jobs, and system is composed of 5 
machines and 4 buffers. For choice jobs J2, J3 and J4, 
we have R(J2)={M2, M3}, R(J3)={M3, M4, M5}, and 
R(J4)={M2, M4}. All machines, except M5, are shared 
resources. There are many part routes that complete the 
required job sequence - to mention just few of them: 
σ1={M1→M2→M3→M2→M1}, 
σ2={M1→M3→M5→M4→M1}, 
σ3={M1→M3→M3→M4→M1}, and so on. We 
partition set of part routes, denoted Σ, into two disjoint 
sets, Σ = ΣR U ΣNR, with ΣR comprising all part routs 
with multiple use of resources allocated to choice jobs, 
and ΣNR containing all part routes without multiple use 
of resources. In our example σ1 and σ3 belong to ΣR, 
while σ2 is an element of ΣNR.   

It is obvious that conflicts might occur in σi ∈ΣR 
since same resource is used for execution of more than 
one job. In σ1 resource M2 is used for jobs J2 and J4. 
On the other hand part routes in ΣNR are inherently 
conflict free. We define resource sequences as 
combination of several routes from ΣNR. As a result, the 
structure of repeatable resource sequences over the set 
of resources available for execution of choice jobs 
would, by itself, provide not only conflict free but also 
deadlock free behavior of the system. 

The number of all possible part routs, N = | Σ|, is 

defined as ,
11

( )
n m

i j
ji

N
==

= ∑∏ Λ  where n and m 

correspond to the number of rows and columns of Λ , 
respectively. In our example one has N = 
1·1·2·1·3·1·2·1·1=12. For each part route σi we define 
MJI sub-matrix iΛ  in a way that in case of multiple 
entries ‘1’ in row (choice job), sub-matrix comprises 
only the one that corresponds with resource belonging 
to the part route. For σ2={M1→M3→M5→M4→M1} 
MJI sub-matrix attains a form 
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2

1 2 3 4 5 1 2 3 4

1

1

2

2

3

3

4

4

5

1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0

M M M M M B B B B

J

JB

J

JB

J

JB

J

JB

J

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ
  . 

Having defined sub-matrices, search for sequences in Σ 
is in fact search for all MJI sub-matrices that are 
characterized by single entry ‘1’ in each row and 
multiple or no entry ‘1’ in each column. It is easy to 
show that there exists a procedure of complexity O(N) 
for calculation of such matrices. 

Resource sequences are related to choice jobs, for 
this reason, we introduce reduced form of MJI sub-
matrices, denoted *iΛ , such that encompass only rows 
corresponding to those jobs, and without columns 
related to the buffers. Reduced form of  2Λ  from 
previous example is given as 

*2

2

3

4

1 2 3 4 5

0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

J

J

J

M M M M M

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Λ
  . 

Now, let us suppose that resource allocation policy 
requires that resources M3 and M2 should be used 
repetitively, one after the other, for execution of job J2. 
This repeatable resource allocation sequence can be 
written in a form of matrix 

J2

1 2 3 4 5

0 0 1 0 0
0 1 0 0 0

M M M M M

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

S
  , 

or in general form 
1

2

j

j

j

j

s
s

sω

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M
S .   (3) 

 
Resource allocation sequence matrix should be 

defined for each choice job in the system. Our goal is to 
find set { }jSℑ =  (where w = ℑ  equals to the number 
of choice jobs in the system) such that system has no 
conflicts and it is deadlock free. In [17] it has been 
proven that elements of such set, i.e. sequence matrices, 
are formed of rows of MJI sub-matrices. 

As an example, let us examine 3-step sequence for 
system (2), defined by the following resource allocation 
sequence matrices, 

1
2

2
J2 2

3
2

0 0 1 0 0
0 0 1 0 0
0 1 0 0 0

J

J

J

s
s
s

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

S  

1
3

2
J3 3

3
3

0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

J

J

J

s
s
s

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

S        

1
4

2
J4 4

3
4

0 1 0 0 0
0 1 0 0 0
0 0 0 1 0

J

J

J

s
s
s

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

S  . 

 
In order to get a better insight in the system 

behavior, Figure 2. presents how parts pass through the 
line. It should be noted that sequences are executed in a 
way that new allocation of resources (new step) is 
performed after all jobs are finished and parts reside in 
the buffers. First part enters the system and it is 
processed by M3 (J2M3-‘1’ in the first row of SJ2), 
than, it proceeds to job J3 on M4 (J3M4-‘1’ in the first 
row of SJ3), and than to job J4 on M2 (J4M2--‘1’ in the 
first row of SJ4). The second part enters the system and 
it is processed by M3 (J2M3-‘1’ in the second row of 
SJ2), than, it proceeds to job J3 on M5 (J3M5-‘1’ in the 
second row of SJ3), and so on. Conflict occurs for the 
first time at k+2 as J4 on part 1 is planned for M2 while, 
in the same time, the third part, that just entered the 
system, requires the same machine (J2 on M2). 

This example clearly demonstrates that repeatable 
resource sequences can lead the system in conflict.  In 
[17] it has been shown how to determine conflict-free 
set { }jSℑ = .  Furthermore, we proved that usage of 
conflict-free set of resource allocation sequences not 
only resolves possible conflicts in the system, but also 
has direct consequence on the system stability, i.e. it 
provides deadlock-free behavior of the system. 

 

Figure 2: Presentation of parts passing through the line. 
 

4.1. Sequence optimization 
In order to determine an optimal sequence we introduce 
cost matrix WΛ . The cost matrix, with the form 

identical to MJI matrix Λ , captures cost of execution 
of ith job by using jth resource. By using cost matrix we 
can extract cost of each MJI sub matrix as 

 
1 1

( )
n n

p p
ij

i j
C

= =

= ∑∑ WΛ ,   (4) 
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 where T( )p p= ⋅W WΛ Λ Λ , p
NR∈ΣΛ , 1..p k= , is 

an MJI submatrix. If one assumes that sequence 
matrices are comprised of ω  rows (sequence of ω  
repeatable steps), where each MJI submatrix pΛ  will 

be used pω  times, i.e.  
1

k

p
p

ω ω
=

=∑ , 

, 0p pω ω ω∈ ≤ ≤� , then the total cost generated 
by those sequences is 

 
1

k
tot p

p
p

C Cω
=

=∑ .  (5) 

It is clear that minimization of the total cost, defined as 
(5), is trivial problem – one should use only pΛ  with 
the smallest pC in order to achieve minimal cost. 
However, in that case it might happen that utilization of 
the system resources would be highly unbalanced or 
even some resources would not be used at all. Hence, 
the cost function should be extended with a relation that 
captures resources utilizations. 
For each MJI sub-matrix one can define a resource 
utilization vector as 

 Tp p= ⋅u 1 Λ ,   (6) 
where 1mx1 is vector with all elements equal to 1. As a 
result resource utilization vector ui is a binary vector 
with jth element equal to 1 if corresponding resource 
participates in execution of the sequence containing 
rows of iΛ  sub-matrix. Finally, an integer vector that 
represents overall usage of the system resources is 
determined as 

 
1

k
p

p
p
ω

=

=∑u u .   (7) 

Now, the second objective, balanced usage of the 
system resources, can be defined in the following form 
 

(1 ) (1 ) , , 1.. ,
(1 ) (1 )

i

j

u i j q
u

ε ε
ε ε

− +≤ ≤ ∀ =
+ −

 (8) 

where ui and uj are ith and jth component of u, ε is design 
parameter such that 0 1ε≤ < , and q is the number of 
resources that should be balanced (for q = m all 
resources in the system shall be included in 
optimization). Fully balanced utilization of resources is 
achieved if 1 , 1..,i

j
i j q

u
u

= ∀ = . However, this goal 

might be very difficult (in some cases even impossible) 
to obtain, which depends on the system structure and 
executed sequence. Hence, by introducing parameter ε 
one is able to relax rigorous balancing requirement – for 
ε ≈ 1 the system could become unbalanced, while for ε 
= 0 one requires full balance of the system resources 
exploitation. 

Minimization of (5) by varying 1,...,,p p kω =  

under conditions (8) with predefined ε and ω  is a 

mixed integer linear programming problem which can 
be solved using standard algorithms. 

 
4.2. Case study 

The proposed method has been tested on the system 
presented in [15] and [16]. Although, this example has 
only two choice jobs and it is comprised of MRF and 
FMRF sub-systems, it has been chosen so that the 
proposed method can be compared with various control 
techniques already implemented on this particular 
manufacturing system. The system’s PN model is 
shown in Figure 3. The system has 3 part types, P1, P2 
and P3, 4 machines M1-M4, and 3 robots R1-R3. Part 
routes for P1 and P2 are predetermined (MRF), while 
P3 has choice jobs (FMRF). All resources, except for 
M1, are shared (only utilization of shared resources will 
be optimized).  

 
Figure 3: PN model of the system used for the case 

study [15]. 
 
The goal is to find the optimal sequence that includes all 
shared resources in the system for 6ω =  and 0.2ε = . 

Such value of ε gives 0.8 1.2i

j

u
u

≤ ≤ , i.e. it is required 

that usage of resources is balanced. The following costs 
have been used in optimization: 

 
cM11=6, cM31=4, cM22=5, cM42=9.  

 
Three MJI sub-matrices have been used for construction 
of sequences such that u1= [1 1 0]T, u2= [0 0 1]T and 
u3= [0 1 1]T, where components correspond with 
resources M2, M3 and M4. This gives overall usage of 
shared resources as 

1 2 3 T
1 2 3 1 1 3 2 3[ ]ω ω ω ω ω ω ω ω= + + = + +u u u u

. Optimization yields to the following values: 1 3ω = , 

2 2ω = , 3 1ω =  with total usage of resource within the 
sequence equal to u = [3 4 3]T as it is shown in Figure 5.  
Results obtained by simulation with MJIWorkshop, 
software tool presented in [12], are shown in Figures 5 
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and 6. It can be seen from Figure 6 that system is 
deadlock free, i.e. flow of the parts is uninterrupted. 
 

 
Figure 5: Utilization of M2, M3 and M4 within the 

sequence. 
 

 
Figure 6: Utilization of all resource in the system. 

 
5. CONCLUSION 

 
In a finite-buffer flexible manufacturing systems, 

any dispatching policy for interrupted part flow has to 
essentially take into account the composition of the 
interconnection between jobs and resources. The 
proposed optimal non-blocking dispatching policy is 
based on machine-job incidence matrix (MJI), obtained 
from Steward sequencing matrix and Kusiak machine-
part incidence matrix, and explained in details in [17]. 

Since FMRF systems contain shared resources and 
choice jobs, a solution to allocation of resources to jobs 
is determined in a form of repeatable resource sequence 
over the set of resources available for particular choice 
job. Obtained sequences not only stabilize the system 
but provide an optimal utilization of resources based on 
price and balanced use of all resources. 

Efficiency of the proposed method has been 
demonstrated on an example involving multi-part type 
manufacturing system.  
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