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ABSTRACT 
This paper presents an efficient implementation of a 
well-known computational model for simulating lava 
flows on Graphical Processing Units (GPU) using the 
Compute Unified Device Architecture (CUDA) 
interface developed by NVIDIA. GPUs are specifically 
designated for efficiently processing graphic datasets. 
However, recently, they are also being exploited for 
achieving exceptional computational results even for 
applications not directly connected with the Computer 
Graphics field. We here show an implementation of the 
SCIARA Cellular Automata model for simulating lava 
flows on graphic processors using CUDA. Carried out 
experiments show that significant performance 
improvements are achieved, over a factor of 100, 
depending on the problem size, adopted device and type 
of performed memory optimization, confirming how 
graphics hardware can represent a valid solution for the 
implementation for Cellular Automata models. 

 
Keywords: Cellular Automata, Lava flows simulation, 
GPGPU programming, CUDA. 

 
1. INTRODUCTION 
High Performance Computing (HPC) (Grama et al. 
2003) adopts numerical simulations as an instrument for 
solving complex equation systems which rule the 
dynamics of complex systems as, for instance, a lava 
flow or a forest fire. In recent years, Parallel Computing 
has undergone a significant revolution with the 
introduction of GPGPU technology (General-Purpose 
computing on Graphics Processing Units), a technique 
that uses the graphics card processor (the GPU – 
Graphics Processing Unit) for purposes other than 
graphics. Currently, GPUs outperform CPUs on floating 
point performance and memory bandwidth, both by a 
factor of roughly 100. As a confirmation of the 
increasing trend in the power of GPUs, leading 
companies such as Intel have already integrated GPUs 
into their latest products to better exploit the capabilities 
of their devices, such as in some releases of the Core i5 
and Core i7 processing units. Although the extreme 
processing power of graphic processors may be used for 
general purpose computations, a GPU may not be 
suitable for every computational problem: only a 
parallel program that results suitable and optimized for 
GPU architectures can fully take advantage of the 

power of these devices. In fact, the performance of a 
GPGPU program that does not sufficiently exploit a 
GPU’s capabilities can often be  worse than that of a 
simple sequential one running on a CPU, such as when 
data transfer from main memory to video memory 
results crucial. Nevertheless, GPU applications to the 
important field of Computational Fluid Dynamics 
(CFD) are increasing both for quantity and quality 
among the Scientific Community (e.g., Tolke and 
Krafczyka 2008, Zuo and Chen 2010). 

Among the different methodologies used for 
modelling geological processes, such as numerical 
analysis, high order difference approximations and 
finite differences, Cellular Automata (CA) (von 
Neumann 1966) has proven  to be particularly suitable 
when the behaviour of the system to be modelled can be 
described in terms of local interactions. Originally 
introduced by von Neumann in the 1950s to study self-
reproduction issues, CA are discrete computational 
models widely utilized for modeling and simulating 
complex systems. Well known examples are the Lattice 
Gas Automata and Lattice Boltzmann models (Succi 
2004), which are particularly suitable for modelling 
fluid dynamics at a microscopic level of description. 
However, many complex phenomena (e.g. landslides or 
lava flows) are difficult to be modeled at such scale, as 
they generally evolve on large areas, thus needing a 
macroscopic level of description. Moreover, since they 
may also be difficult to be modelled through standard 
approaches, such as differential equations Macroscopic 
Cellular Automata (MCA) (Di Gregorio and Serra 
1999) can represent a valid alternative. Several 
successful attempts have been carried out regarding 
solutions for parallelizing MCA simulation models 
(e.g., D’Ambrosio and Spataro 2007). In this research 
context, the CAMELot virtual laboratory and the 
libAuToti scientific library represent valid solutions for 
implementing and automatically parallelizing MCA 
models on distributed memory machines while, for 
shared memory architectures, some effective OpenMP 
parallelizations have been implemented for CA-like 
models, such as for fire spread simulations, Lattice 
Boltzmann models or lava flow modeling (Oliverio et 
al. 2011). However, few examples of GPGPU 
applications for CA-like models do exist (Tolke 2008) 
and to our knowledge, none regarding the MCA 
approach. This paper presents a implementation of a 
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well-known, reliable and efficient MCA model widely 
adopted for lava flow risk assessment, namely the 
SCIARA model (Rongo et al. 2008), in GPGPU 
environments. Tests performed on two types of GPU 
hardware, a Geforce GT 330M graphic card and a Tesla 
C1060 computing processor, have shown the validity of 
this kind of approach.  

In the following sections, after a brief description 
of the basic version of the SCIARA MCA model for 
lava flows, a quick overview of GPGPU paradigm 
together with the CUDA framework is presented. 
Subsequently, the specific model implementation and 
performance analysis referred to benchmark simulations 
of a real event and different CA spaces are reported, 
while conclusions and possible outlooks are shown at 
the end of the paper. 

 
2. CELLULAR AUTOMATA AND THE SCIARA 

MODEL FOR LAVA FLOW SIMULATION  
As previously stated, CA are dynamical systems, 

discrete in space and time. They can be thought as a 
regular n-dimensional lattice of sites or, equivalently, as 
an n-dimensional space (called cellular space) 
partitioned in cells of uniform size (e.g. square or 
hexagonal for n=2), each one embedding an identical 
finite automaton. The cell state changes by means of the 
finite automaton transition function, which defines local 
rules of evolution for the system, and is applied to each 
cell of the CA space at discrete time steps. The states of 
neighbouring cells (which usually includes the central 
cell) constitute the cell input. The CA initial 
configuration is defined by the finite automata states at 
time t=0. The global behaviour of the system emerges, 
step by step, as a consequence of the simultaneous 
application of the transition function to each cell of the 
cellular space. 

When dealing with the modelling of spatial 
extended dynamical systems, MCA can represent a 
valid choice especially if their dynamics can be 
described in terms of local interaction at macroscopic 
level. Well known examples of successful applications 
of MCA include the simulation of lava (Crisci et al. 
2004) and debris flows (Di Gregorio et al. 1999), forest 
fires (Trunfio 2004), agent based social processes (Di 
Gregorio et al. 2001) and highway traffic (Di Gregorio 
et al. 2008), besides many others. 

By extending the classic definition of 
Homogeneous CA, MCA facilitate the definition of 
several aspects considered relevant for the correct 
simulation of the complex systems to be modelled. In 
particular, MCA provide the possibility to “decompose” 
the CA cell state in “substates” and to allow the 
definition of “global parameters”. Moreover, the 
dynamics of MCA models (especially those developed 
for the simulation of complex macroscopic physical 
systems such as debris or lava flows) is often “guided” 
by the “Minimisation Algorithm of the Differences” (cf. 
Di Gregorio and Serra 1999), which translates in 
algorithmic terms the general principle for which 
natural systems leads towards a situation of equilibrium. 

Refer to Di Gregorio and Serra (1999) for a complete 
description of the algorithm, besides theorems and 
applications. 

 
2.1. The MCA lava flow model SCIARA 
SCIARA is a family of bi-dimensional MCA lava flow 
models, successfully applied to the simulation of many 
real cases, such as the 2001 Mt. Etna (Italy) Nicolosi 
lava flow (Crisci et al. 2004), the 1991 Valle del Bove 
(Italy) lava event (Barca et al. 1994) which occurred on 
the same volcano and employed for risk mitigation 
(D’Ambrosio et al. 2006). In this work, the basic 
version of SCIARA (Barca et al. 1993) was considered 
and its application to the 2001 Nicolosi event and to 
benchmark grids shown. 

SCIARA considers the surface over which the 
phenomenon evolves as subdivided in square cells of 
uniform size. Each cell changes its state by means of the 
transition function, which takes as input the state of the 
cells belonging to the von Neumann neighbourhood. It 
is formally defined as 

SCIARA = < R, X, Q , P, σ > 

where: 

• R is the set of points, with integer coordinates, 
which defines the 2-dimensional cellular space 
over which the phenomenon evolves. The generic 
cell in R is individuated by means of a couple of 
integer coordinates (i, j), where 0 ≤ i < imax and  
0 ≤ j < jmax. 

• X = {(0,0), (0, -1), (1, 0), (-1, 0), (0, 1)} is the so 
called von Neumann neighbourhood relation, a 
geometrical pattern which identifies the cells 
influencing the state transition of the central cell.  

• Q is the set of cell states; it is subdivided in the 
following substates: 

- Qz is the set of values representing the 
topographic altitude (m); 

- Qh is the set of values representing the lava 
thickness (m); 

- QT is the set of values representing the lava 
temperature (K°); 

- Qo
5 are the sets of values representing the 

lava outflows from the central cell to the 
neighbouring ones (m). 

The Cartesian product of the substates defines the 
overall set of state Q: 

Q = Qz × Qh × QT ×Qo
5 

• P is set of global parameters ruling the CA 
dynamics: 

- PT={Tvent, Tsol, Tint}, the subset of parameters 
ruling lava viscosity, which specify the 
temperature of lava at the vents, at 
solidification and the “intermediate” 
temperature (needed for computing lava 
adherence), respectively; 
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- Pa={avent, asol, aint}, the subset of parameters 
which specify the values of adherence of 
lava at the vents, at solidification and at the 
“intermediate” temperature, respectively; 

- pc, the cooling parameter, ruling the 
temperature drop due to irradiation; 

- pr, the relaxation rate parameter, which 
affects the size of outflows. 

• σ : Q5→ Q is the deterministic cell transition 
function. It is composed by four “elementary 
processes”, briefly described in the following: 
- Outflows computation (σ1). It determines the 

outflows from the central cell to the 
neighbouring ones by applying the 
minimisation algorithm of the differences; 
note that the amount of lava which cannot 
leave the cell, due to the effect of viscosity, 
is previously computed in terms of 
adherence. Parameters involved in this 
elementary process are: PT and Pa. 

- Lava thickness computation (σ2). It 
determines the value of lava thickness by 
considering the mass exchange among the 
cells. No parameters are involved in this 
elementary process. 

- Temperature computation (σ3). It determines 
the lava temperature by considering the 
temperatures of incoming flows and the 
effect of thermal energy loss due to surface 
irradiation. The only parameter involved in 
this elementary process is pc. 

- Solidification (σ4). It determines the lava 
solidification when temperature drops below 
a given threshold, defined by the parameter 
Tsol. 

3. GPU AND GPGPU PROGRAMMING 
As alternative to standard parallel architecture, the term 
GPGPU (General-Purpose computing on Graphics 
Processing Units) refers to the use of the card processor 
(the GPU) as a parallel device for purposes other than 
graphic elaboration. In recent years, mainly due to the 
stimulus given by the increasingly demanding 
performance of gaming and graphics applications in 
general, graphic cards have undergone a huge 
technological evolution, giving rise to highly parallel 
devices, characterized by a multithreaded and multicore 
architecture and with very fast and large memories. A 
GPU can be seen as a computing device that is capable 
of executing an elevated number of independent threads 
in parallel. In general, a GPU consists in a number (e.g., 
16) of SIMD (Single Instruction, Multiple Data) 
multiprocessors with a limited number of floating-point 
processors that access a common shared-memory within 
the multiprocessor. To better understand the enormous 
potential of GPUs, some comparisons with the CPU are 
noticeable: a medium-performance GPU (e.g. the 
NVIDIA Geforce GT200 family) is able to perform 
nearly 1000 GFLOPS (Giga Floating Point Operations 

per Second), while an Intel Core i7 has barely 52 
GFLOPS. In addition, the most interesting aspect still is  
the elevated parallelism that a GPU permits. For 
instance, the NVIDIA GeForce 8800 GTX has 16 
multiprocessors each with 8 processors for a total of 
128 basic cores, while a standard multi-core CPU has 
few, though highly-functional, cores. Another 
motivation of GPUs increasing utilization as parallel 
architecture regards costs. Until a few years ago, in 
order to have the corresponding computing power of a  
medium range GPU of today (which costs 
approximately a few hundred Euros), it was necessary 
to spend tens of thousands of Euros. Thus, GPGPU has 
not only led to a drastic reduction of computation time, 
but also to significant cost savings. Summarizing, it is 
not misleading to affirm that the computational power 
of GPUs has exceeded that of PC-based CPUs by more 
than one order of magnitude while being available for a 
comparable price. In the last years, NVIDIA has 
launched a new product line called Tesla, which is 
specifically designed for High Performance Computing. 

Supported on Windows and Linux Operating 
systems, NVIDIA CUDA technology (NVIDIA CUDA 
2011a) permits software development of applications by 
adopting the standard C language, libraries and drivers. 
In CUDA, threads can access different memory 
locations during execution. Each thread has its own 
private memory, each block has a (limited) shared 
memory that is visible to all threads in the same block 
and finally all threads have access to global memory. 
The CUDA programming model provides three key 
abstractions: the hierarchy with which the threads are 
organized, the memory organization and the functions 
that are executed in parallel, called kernels. These 
abstractions allow the programmer to partition the 
problem into many sub-problems that can be handled 
and resolved individually. 

 
3.1. CUDA Threads and Kernels 
A GPU can be seen as a computing device that is 
capable of executing an elevated number of independent 
threads in parallel. In addition, it can be thought as an 
additional coprocessor of the main CPU (called in the 
CUDA context Host). In a typical GPU application, 
data-parallel like portions of the main application are 
carried out on the device by calling a function (called 
kernel) that is executed by many threads. Host and 
device have their own separate DRAM memories, and 
data is usually copied from one DRAM to the other by 
means of optimized API calls. 

CUDA threads can cooperate together by sharing a 
common fast shared-memory (usually 16KB), 
eventually synchronizing in some points of the kernel, 
within a so-called thread-block, where each thread is 
identified by its thread ID. In order to better exploit the 
GPU, a thread block usually contains from 64 up to 512 
threads, defined as three-dimensional array of type 
dim3 (containing three integers defining each 
dimension). A thread can be referred within a block by 
means of the built-in global variable threadIdx. 
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While the number of threads within a block is limited, it 
is possible to launch kernels with a larger total number 
of threads by batching together blocks of threads, by 
means of a grid of blocks, usually defined as a two-
dimensional array, also of type dim3 (with the third 
component set to 1). In this case, however, thread 
cooperation is reduced since threads that belong to 
different blocks do not share the same memory and thus 
cannot synchronize and communicate with each other. 
As for threads, a built-in global variable, blockIdx, 
can be used for accessing the block index within the 
grid. Currently, the maximum number of blocks is 
65535 in each dimension. Threads in a block are 
synchronized by calling the syncthreads() 
function: once all threads have reached this point, 
execution resumes normally. As previously reported, 
one of the fundamental concepts in CUDA is the kernel. 
This is nothing but a C function, which once invoked is 
performed in parallel by all threads that the programmer 
has defined. To define a kernel, the programmer uses 
the __global__ qualifier before the definition of the 
function. This function can be executed only by the 
device and can be only called by the host. To define the 
dimension of the grid and blocks on which the kernel 
will be launched on, the user must specify an expression 
of the form <<< Grid_Size, Block_Size >>>, 
placed between the kernel name and argument list. 

What follows is a classic pattern of a CUDA 
application: 

 
• Allocation and initialization of data 

structures in RAM memory; 
• Allocation of data structures in the device 

and transfer of data from RAM to the 
memory of the device; 

• Definition of the block and thread grids; 
• Performing one or more kernel; 
• Transferring of data from the device 

memory to Host memory. 
 
Eventually, it must be pointed out that a typical 

CUDA application has parts that are normally 
performed in a serial fashion, and other parts that are 
performed in parallel. 

 
3.2. Memory hierarchy 
In CUDA, threads can access different memory 
locations during execution. Each thread has its own 
private memory, each block has a (limited) shared 
memory that is visible to all threads in the same block, 
and finally all threads have access to global memory. In 
addition to these memory types, two other read-only, 
fast on-chip memory types can be defined: texture 
memory and constant memory. 

As expected, memory usage is crucial for the 
performance. For example, the shared memory is much 
faster than the global memory and the use of one rather 
than the other can dramatically increase or decrease 
performance. By adopting variable type qualifiers, the 
programmer can define variables that reside in the 

global memory space of the device (with 
__device__) or variables that reside in the shared 
memory space (with __shared__) that are thus 
accessible only from threads within a block. Typical 
latency for accessing global memory variables is 200-
300 clock cycles, compared with only 2-3 clock cycles 
for shared memory locations. For this reason, to 
improve performances variable accesses should be 
carried out in the shared memory rather than global 
memory, wherever possible. However, each variable or 
data structure allocated in shared memory must first be 
initialized in the global memory, and afterwards 
transferred in the shared one (NVIDIA CUDA 2011b). 
This means that to copy data in the shared memory, 
global memory access must be first performed. So, the 
more his type of data is accessed, the more convenient 
is to use this type of memory: so, for few accesses it is 
evident that shared memory is not convenient to use. As 
a consequence, a preliminary analysis of data access of 
the considered algorithm should be performed in order 
to evaluate the tradeoff, and thus, convenience of using 
shared memory. 

 
4. IMPLEMENTATION OF THE SCIARA 

MODEL AND EXPERIMENT RESULTS 
As previously stated, Cellular Automata models, such 
as SCIARA, can be straightforwardly implemented on 
parallel computers due to their underlying parallel 
nature. In fact, since Cellular Automata methods require 
only next neighbor interaction, they are very suitable 
and can be efficiently implemented even on GPUs. In 
literature, to our knowledge, no examples of 
Macroscopic Cellular Automata modeling with GPUs 
are found, while some interesting CA-like 
implementations, such as Lattice Boltzmann kernels, are 
more frequent (e.g., Tolke 2008; Kuznik et al. 2010). 

In this work, two different implementations of the 
SCIARA lava flow computational model were carried 
out, a first straightforward version which uses only 
global memory for the entire CA space partitioning and 
a second, but more performing one, which adopts (also) 
shared memory for CA space substate allocation. What 
follows is an excerpt of the core of the general CUDA 
algorithm (cf. Section 2.1): 

 
// CA loop 
for(int step=0; step< Nstep; step++) { 
 
  // add lava at craters 
  crater <<<1, num_craters>>>(Aread,Awrite);   
  // s1 
  calc_flows<<<dimGrid,dimBlock>>>(Aread,Awrite);  
  // s2 
  calc_width <<<dimGrid, dimBlock>>>(Aread,Awrite);  
  // s3 
  calc_temp<<<dimGrid, dimBlock>>>(Aread,Awrite);  
  // s4 
  calc_quote <<<dimGrid, dimBlock>>>(Aread,Awrite); 
 
 
// swap matrixes  
copy<<<dimGrid,dimBlock>>>(Awrite,N,Aread,Substat_N); 
} 
cudaMemcpy(A, Aread, size, cudaMemcpyDeviceToHost ); 
// copy data to Host 
} 
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In the time loop four basic kernels, calc_flows, 
calc_width, calc_temp and calc_quote are 
launched corresponding to the four elementary 
processes of SCIARA, σ1, σ2, σ3 and σ4, respectively, 
as described in Spingola et al. (2008). The crater() 
kernel refers to the crater cell(s), which is obviously 
invoked on a smaller grid that the previous ones. The 
model was implemented by adopting a system of double 
matrixes for the CA space representation, one (Aread) 
for reading cell neighbor substates and a second 
(Awrite) for writing the new substate value. This 
choice has proven to be efficient, since it allows to 
separate the substates reading phase from the update 
phase, after the application of the transition function, 
thus ensuring data integrity and consistency in a given 
step of the simulation. After applying the transition 
function to all the cell space, the main matrix must be 
updated, replacing values with the corresponding 
support matrix ones (swap matrixes phase). In this 
implementation, a CA step is simulated by more logical 
substeps where, after crater cells are updated (by means 
of the crater), lava outflows are calculated according 
to the σ1 elementary process. When all outflows are 
computed, and therefore all outflow substates are 
consistent, the actual distribution takes place, producing 
the new value of the quantity of lava in each cell of the 
CA. Subsequently, each cell reads from a neighbour cell 
the associated outflow substate corresponding to the 
quantity of inflowing lava σ2 elementary process). In 
this phase, the σ3 and σ4 elementary processes are 
applied to the new quantity of lava of the cell. At the 
end of the CA loop, data is copied back to the Host 
memory by the cudaMemcpy function.  

Regarding the specific implementation, the first 
thing to decide on is what thread mapping should be 
adopted to better exploit the fine-grain parallelism of 
the CUDA architecture. For example, one might 
consider using a thread for each row or each column, as 
occurs in a typical data-parallel implementation (e.g., 
Oliverio et al. 2011). However, when working in 
CUDA with arrays, the most widely adopted technique 
is to match each cell of the array with a thread (e.g., 
Tolke 2008). The number of threads per block should be 
a multiple of 32 threads, because this provides optimal 
computing efficiency (NVIDIA CUDA 2011b) and thus 
we have chosen to build blocks of size 32 × 16, 
corresponding to the maximum value (512) of number 
of threads permitted for each block. What follows is an 
excerpt for defining the grid of blocks that was 
considered for SCIARA: 

 
#define BLOCK_SIZE_X 32 
#define BLOCK_SIZE_Y 16 
... 
int dimX; // CA x dimension 
int dimY; // CA y dimension 
dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y); 
 
int n_blocks_x = dimX/dimBlock.x; 
int n_blocks_y = dimY/dimBlock.y; 
 
dim3 dimGrid(n_blocks_x, n_blocks_y); 

... 
// invoke kernel functions 
 
kernel<<<dimGrid, dimBlock>>>(...); 
… 

 
Once that the grid of blocks (and threads) were 

defined in this simple manner, kernels are managed so 
that each cell (i, j) of SCIARA is associated to each 
thread (i, j). This is simply done, for each invoked 
kernel (i.e., calc_flows, calc_width, 
calc_temp and calc_quote), by associating each 
row and column of the CA with the corresponding 
thread as in this simple scheme: 

 
__global__ void kernel(...) {  
 
  int col = blockIdx.x * blockDim.x +     
threadIdx.x; 
  int row = blockIdx.y * blockDim.y + 
threadIdx.y; 
 
// memory allocation (shared, global, etc) 
    ... 
/** transition function for cell[row][col] ** 
    ... 
} 

 
 

5. TESTS AND PERFORMANCE RESULTS 
Two CUDA graphic devices were adopted for 
experiments: a NVIDIA high-end Tesla C1060 and a 
Geforce GT 330M graphic card. In particular, the Tesla 
computing processor has 240 processor cores, 4 GB 
global memory and high-bandwidth communication 
between CPU and GPU, whereas the less performing 
graphic card has 48 cores and 512 MB global memory. 
The sequential SCIARA reference version was 
implemented on a 2.66 GHz Intel Core i7 based desktop 
computer. The sequential CPU version is identical to 
the version that was developed for the GPUs, that is, no 
optimizations were adopted in the former version. In 
practice, at every step, the CA space array is scrolled 
and the transition function applied to each cell of the 
CA where lava is present. 

Many tests have been performed regarding both 
performance and verification of the accuracy of the 
results. Regarding performance tests, the best 
implementation has regarded a version which adopts a 
hybrid (shared/global) memory allocation. 

As known, access to a location in shared memory 
of each multiprocessor has a much lower latency than 
that carried out on the global device memory. On the 
other hand, an access to a shared-memory location 
necessary needs a first access to global memory (cf. 
Section 3.2). For this reason, an accurate analysis was 
carried out in determining how much memory access 
each thread does for each CA substate matrix. This 
investigation gave rise to a “hybrid'” memory access 
pattern, where shared memory allocation was adopted 
for those kernels accessing CA matrixes more than two 
times. For illustrative purposes, Figure 1 shows how 
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shared memory is used in the context of our GPU 
implementation. 

 
 

 
Figure 1: Memory mapping of the CA space allocated 
in global memory with a portion of shared memory. 
Shaded areas represent portions of neighbouring block 
areas which need to be swapped at each CA step to 
ensure data consistency. 

 
A first test regarded the simulation of well-known 

and documented real lava flow event, the Mt. Etna 
Nicolosi event (Crisci et al. 2004) occurred in July, 
2001. Table 1 (first row) reports the first results of tests 
carried out for this experiment, where the CA space is a 
819 × 382 two-dimensional grid. The simulation was 
carried out for 15000 steps, considering one crater for 
lava flow emission. In order to further stress the 
efficiency of the GPU version, further benchmarks 
experiments were performed by considering four 
different hypothetical CA spaces, namely 5122, 10242, 
20482 and 40962 grids, with cells representing inclined 
planes, with many craters located over the grid (cf. 
Table 1 - from second row).  

 
Table 1: Execution times of experiments (in seconds) 
carried out for evaluating the performance the GPU 
version of the SCIARA MCA lava-flow model on the 
considered hardware. The 819 × 382 matrix refers to the 
2001 Mt. Etna event. Other grid dimensions refer to 
inclined planes. N/A (Not Available) data are due to 
device lack of memory capacity. 
 

Performance results (in seconds) 
CA dim / 
Device 

Intel i7 
(sequential) Geforce Tesla 

819×382 741 46 11.8 
5122 677 31.4 5.6 

10242 2716 99.1 21.4 
20482 11480 344.5 81.1 
40962 47410 N/A 307 

 
Timings reported for the considered GPU devices 

indicate their full suitability for parallelizing CA 
models. Even if applied to a simple MCA model, 
performance results show the incredible computational 
power of the considered GPUs in terms of execution 

time reduction, significantly outperforming the CPU 
implementation up to 150× for large grid sizes. Other 
tests were also performed on a completely global 
memory version. In this case results, here omitted for 
brevity, have shown how the use of shared memory can 
improve performances up to 50%, with respect to the 
total global memory version. 

Eventually, to test if single-precision data can be 
considered sufficient for SCIARA simulations, tests 
were carried out on the 2001 lava flow event (15000 CA 
steps) and compared results produced by the GPU 
version with those produced by the CPU (sequential) 
version with single precision data (i.e., float type 
variables), and those produced still by the same GPU 
version against a double precision CPU implementation 
(i.e., double type variables). In each case, comparison 
results were satisfactory, since the areal extensions of 
simulations resulted the same, except for few errors of 
approximation in a limited number of cells. In 
particular, comparing the GPU version with the CPU 
single-precision version approximation differences at 
the third significant digit were only for 4% of cells, 
while differences were less for remaining cells. 
Differences were even minor compared to the previous 
case by considering the single precision GPU version 
and a CPU version which adopts double-precision 
variables. 

 
6. CONCLUSIONS 
This paper reports the implementation of a Macroscopic 
Cellular Automata model using GPU architectures. As 
shown, the CUDA technology, in combination with the 
an efficient memory management, can produce a very 
efficient version of the SCIARA lava flow simulator. 
Although results are indeed already satisfactory, future 
developments can regard further improvements for both 
increasing performances and implementing more 
advanced MCA models. 

The results obtained in this work are to be 
considered positive and extremely encouraging. As 
confirmed by the increasing number of applications in 
the field of scientific computing in general, GPGPU 
programming represents a valid alternative to traditional 
microprocessors in high-performance computer systems 
of the future.  
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