
GPGPU PROGRAMMING AND CELLULAR AUTOMATA:
IMPLEMENTATION OF THE SCIARA LAVA FLOW SIMULATION CODE

Giuseppe Filippone(a) William Spataro(b), Giuseppe Spingola(c), Donato D’Ambrosio(d),
Rocco Rongo(e), Giovanni Perna(f) , Salvatore Di Gregorio(g)

(a) (b) (c) (d) (f) (g)Department of Mathematics and HPCC, University of Calabria, Italy
(e) Department of Earth Sciences and HPCC, University of Calabria, Italy

(c)filippone@mat.unical.it, (a)spataro@unical.it, (b)g.spingola@gmail.com,

(d)d.dambrosio@unical.it, (e)rongo@unical.it, (f)gioper86@gmail.com, (g)dig@unical.it,

ABSTRACT
This paper presents an efficient implementation of a
well-known computational model for simulating lava
flows on Graphical Processing Units (GPU) using the
Compute Unified Device Architecture (CUDA)
interface developed by NVIDIA. GPUs are specifically
designated for efficiently processing graphic datasets.
However, recently, they are also being exploited for
achieving exceptional computational results even for
applications not directly connected with the Computer
Graphics field. We here show an implementation of the
SCIARA Cellular Automata model for simulating lava
flows on graphic processors using CUDA. Carried out
experiments show that significant performance
improvements are achieved, over a factor of 100,
depending on the problem size, adopted device and type
of performed memory optimization, confirming how
graphics hardware can represent a valid solution for the
implementation for Cellular Automata models.

Keywords: Cellular Automata, Lava flows simulation,
GPGPU programming, CUDA.

1. INTRODUCTION
High Performance Computing (HPC) (Grama et al.
2003) adopts numerical simulations as an instrument for
solving complex equation systems which rule the
dynamics of complex systems as, for instance, a lava
flow or a forest fire. In recent years, Parallel Computing
has undergone a significant revolution with the
introduction of GPGPU technology (General-Purpose
computing on Graphics Processing Units), a technique
that uses the graphics card processor (the GPU –
Graphics Processing Unit) for purposes other than
graphics. Currently, GPUs outperform CPUs on floating
point performance and memory bandwidth, both by a
factor of roughly 100. As a confirmation of the
increasing trend in the power of GPUs, leading
companies such as Intel have already integrated GPUs
into their latest products to better exploit the capabilities
of their devices, such as in some releases of the Core i5
and Core i7 processing units. Although the extreme
processing power of graphic processors may be used for
general purpose computations, a GPU may not be
suitable for every computational problem: only a
parallel program that results suitable and optimized for
GPU architectures can fully take advantage of the

power of these devices. In fact, the performance of a
GPGPU program that does not sufficiently exploit a
GPU’s capabilities can often be worse than that of a
simple sequential one running on a CPU, such as when
data transfer from main memory to video memory
results crucial. Nevertheless, GPU applications to the
important field of Computational Fluid Dynamics
(CFD) are increasing both for quantity and quality
among the Scientific Community (e.g., Tolke and
Krafczyka 2008, Zuo and Chen 2010).

Among the different methodologies used for
modelling geological processes, such as numerical
analysis, high order difference approximations and
finite differences, Cellular Automata (CA) (von
Neumann 1966) has proven to be particularly suitable
when the behaviour of the system to be modelled can be
described in terms of local interactions. Originally
introduced by von Neumann in the 1950s to study self-
reproduction issues, CA are discrete computational
models widely utilized for modeling and simulating
complex systems. Well known examples are the Lattice
Gas Automata and Lattice Boltzmann models (Succi
2004), which are particularly suitable for modelling
fluid dynamics at a microscopic level of description.
However, many complex phenomena (e.g. landslides or
lava flows) are difficult to be modeled at such scale, as
they generally evolve on large areas, thus needing a
macroscopic level of description. Moreover, since they
may also be difficult to be modelled through standard
approaches, such as differential equations Macroscopic
Cellular Automata (MCA) (Di Gregorio and Serra
1999) can represent a valid alternative. Several
successful attempts have been carried out regarding
solutions for parallelizing MCA simulation models
(e.g., D’Ambrosio and Spataro 2007). In this research
context, the CAMELot virtual laboratory and the
libAuToti scientific library represent valid solutions for
implementing and automatically parallelizing MCA
models on distributed memory machines while, for
shared memory architectures, some effective OpenMP
parallelizations have been implemented for CA-like
models, such as for fire spread simulations, Lattice
Boltzmann models or lava flow modeling (Oliverio et
al. 2011). However, few examples of GPGPU
applications for CA-like models do exist (Tolke 2008)
and to our knowledge, none regarding the MCA
approach. This paper presents a implementation of a

696

mailto:spataro@unical.it
mailto:d.dambrosio@unical.it
mailto:rongo@unical.it
mailto:dig@unical.it

well-known, reliable and efficient MCA model widely
adopted for lava flow risk assessment, namely the
SCIARA model (Rongo et al. 2008), in GPGPU
environments. Tests performed on two types of GPU
hardware, a Geforce GT 330M graphic card and a Tesla
C1060 computing processor, have shown the validity of
this kind of approach.

In the following sections, after a brief description
of the basic version of the SCIARA MCA model for
lava flows, a quick overview of GPGPU paradigm
together with the CUDA framework is presented.
Subsequently, the specific model implementation and
performance analysis referred to benchmark simulations
of a real event and different CA spaces are reported,
while conclusions and possible outlooks are shown at
the end of the paper.

2. CELLULAR AUTOMATA AND THE SCIARA

MODEL FOR LAVA FLOW SIMULATION
As previously stated, CA are dynamical systems,

discrete in space and time. They can be thought as a
regular n-dimensional lattice of sites or, equivalently, as
an n-dimensional space (called cellular space)
partitioned in cells of uniform size (e.g. square or
hexagonal for n=2), each one embedding an identical
finite automaton. The cell state changes by means of the
finite automaton transition function, which defines local
rules of evolution for the system, and is applied to each
cell of the CA space at discrete time steps. The states of
neighbouring cells (which usually includes the central
cell) constitute the cell input. The CA initial
configuration is defined by the finite automata states at
time t=0. The global behaviour of the system emerges,
step by step, as a consequence of the simultaneous
application of the transition function to each cell of the
cellular space.

When dealing with the modelling of spatial
extended dynamical systems, MCA can represent a
valid choice especially if their dynamics can be
described in terms of local interaction at macroscopic
level. Well known examples of successful applications
of MCA include the simulation of lava (Crisci et al.
2004) and debris flows (Di Gregorio et al. 1999), forest
fires (Trunfio 2004), agent based social processes (Di
Gregorio et al. 2001) and highway traffic (Di Gregorio
et al. 2008), besides many others.

By extending the classic definition of
Homogeneous CA, MCA facilitate the definition of
several aspects considered relevant for the correct
simulation of the complex systems to be modelled. In
particular, MCA provide the possibility to “decompose”
the CA cell state in “substates” and to allow the
definition of “global parameters”. Moreover, the
dynamics of MCA models (especially those developed
for the simulation of complex macroscopic physical
systems such as debris or lava flows) is often “guided”
by the “Minimisation Algorithm of the Differences” (cf.
Di Gregorio and Serra 1999), which translates in
algorithmic terms the general principle for which
natural systems leads towards a situation of equilibrium.

Refer to Di Gregorio and Serra (1999) for a complete
description of the algorithm, besides theorems and
applications.

2.1. The MCA lava flow model SCIARA
SCIARA is a family of bi-dimensional MCA lava flow
models, successfully applied to the simulation of many
real cases, such as the 2001 Mt. Etna (Italy) Nicolosi
lava flow (Crisci et al. 2004), the 1991 Valle del Bove
(Italy) lava event (Barca et al. 1994) which occurred on
the same volcano and employed for risk mitigation
(D’Ambrosio et al. 2006). In this work, the basic
version of SCIARA (Barca et al. 1993) was considered
and its application to the 2001 Nicolosi event and to
benchmark grids shown.

SCIARA considers the surface over which the
phenomenon evolves as subdivided in square cells of
uniform size. Each cell changes its state by means of the
transition function, which takes as input the state of the
cells belonging to the von Neumann neighbourhood. It
is formally defined as

SCIARA = < R, X, Q , P, σ >

where:

• R is the set of points, with integer coordinates,
which defines the 2-dimensional cellular space
over which the phenomenon evolves. The generic
cell in R is individuated by means of a couple of
integer coordinates (i, j), where 0 ≤ i < imax and
0 ≤ j < jmax.

• X = {(0,0), (0, -1), (1, 0), (-1, 0), (0, 1)} is the so
called von Neumann neighbourhood relation, a
geometrical pattern which identifies the cells
influencing the state transition of the central cell.

• Q is the set of cell states; it is subdivided in the
following substates:

- Qz is the set of values representing the
topographic altitude (m);

- Qh is the set of values representing the lava
thickness (m);

- QT is the set of values representing the lava
temperature (K°);

- Qo
5 are the sets of values representing the

lava outflows from the central cell to the
neighbouring ones (m).

The Cartesian product of the substates defines the
overall set of state Q:

Q = Qz × Qh × QT ×Qo
5

• P is set of global parameters ruling the CA
dynamics:

- PT={Tvent, Tsol, Tint}, the subset of parameters
ruling lava viscosity, which specify the
temperature of lava at the vents, at
solidification and the “intermediate”
temperature (needed for computing lava
adherence), respectively;

697

- Pa={avent, asol, aint}, the subset of parameters
which specify the values of adherence of
lava at the vents, at solidification and at the
“intermediate” temperature, respectively;

- pc, the cooling parameter, ruling the
temperature drop due to irradiation;

- pr, the relaxation rate parameter, which
affects the size of outflows.

• σ : Q5→ Q is the deterministic cell transition
function. It is composed by four “elementary
processes”, briefly described in the following:
- Outflows computation (σ1). It determines the

outflows from the central cell to the
neighbouring ones by applying the
minimisation algorithm of the differences;
note that the amount of lava which cannot
leave the cell, due to the effect of viscosity,
is previously computed in terms of
adherence. Parameters involved in this
elementary process are: PT and Pa.

- Lava thickness computation (σ2). It
determines the value of lava thickness by
considering the mass exchange among the
cells. No parameters are involved in this
elementary process.

- Temperature computation (σ3). It determines
the lava temperature by considering the
temperatures of incoming flows and the
effect of thermal energy loss due to surface
irradiation. The only parameter involved in
this elementary process is pc.

- Solidification (σ4). It determines the lava
solidification when temperature drops below
a given threshold, defined by the parameter
Tsol.

3. GPU AND GPGPU PROGRAMMING
As alternative to standard parallel architecture, the term
GPGPU (General-Purpose computing on Graphics
Processing Units) refers to the use of the card processor
(the GPU) as a parallel device for purposes other than
graphic elaboration. In recent years, mainly due to the
stimulus given by the increasingly demanding
performance of gaming and graphics applications in
general, graphic cards have undergone a huge
technological evolution, giving rise to highly parallel
devices, characterized by a multithreaded and multicore
architecture and with very fast and large memories. A
GPU can be seen as a computing device that is capable
of executing an elevated number of independent threads
in parallel. In general, a GPU consists in a number (e.g.,
16) of SIMD (Single Instruction, Multiple Data)
multiprocessors with a limited number of floating-point
processors that access a common shared-memory within
the multiprocessor. To better understand the enormous
potential of GPUs, some comparisons with the CPU are
noticeable: a medium-performance GPU (e.g. the
NVIDIA Geforce GT200 family) is able to perform
nearly 1000 GFLOPS (Giga Floating Point Operations

per Second), while an Intel Core i7 has barely 52
GFLOPS. In addition, the most interesting aspect still is
the elevated parallelism that a GPU permits. For
instance, the NVIDIA GeForce 8800 GTX has 16
multiprocessors each with 8 processors for a total of
128 basic cores, while a standard multi-core CPU has
few, though highly-functional, cores. Another
motivation of GPUs increasing utilization as parallel
architecture regards costs. Until a few years ago, in
order to have the corresponding computing power of a
medium range GPU of today (which costs
approximately a few hundred Euros), it was necessary
to spend tens of thousands of Euros. Thus, GPGPU has
not only led to a drastic reduction of computation time,
but also to significant cost savings. Summarizing, it is
not misleading to affirm that the computational power
of GPUs has exceeded that of PC-based CPUs by more
than one order of magnitude while being available for a
comparable price. In the last years, NVIDIA has
launched a new product line called Tesla, which is
specifically designed for High Performance Computing.

Supported on Windows and Linux Operating
systems, NVIDIA CUDA technology (NVIDIA CUDA
2011a) permits software development of applications by
adopting the standard C language, libraries and drivers.
In CUDA, threads can access different memory
locations during execution. Each thread has its own
private memory, each block has a (limited) shared
memory that is visible to all threads in the same block
and finally all threads have access to global memory.
The CUDA programming model provides three key
abstractions: the hierarchy with which the threads are
organized, the memory organization and the functions
that are executed in parallel, called kernels. These
abstractions allow the programmer to partition the
problem into many sub-problems that can be handled
and resolved individually.

3.1. CUDA Threads and Kernels
A GPU can be seen as a computing device that is
capable of executing an elevated number of independent
threads in parallel. In addition, it can be thought as an
additional coprocessor of the main CPU (called in the
CUDA context Host). In a typical GPU application,
data-parallel like portions of the main application are
carried out on the device by calling a function (called
kernel) that is executed by many threads. Host and
device have their own separate DRAM memories, and
data is usually copied from one DRAM to the other by
means of optimized API calls.

CUDA threads can cooperate together by sharing a
common fast shared-memory (usually 16KB),
eventually synchronizing in some points of the kernel,
within a so-called thread-block, where each thread is
identified by its thread ID. In order to better exploit the
GPU, a thread block usually contains from 64 up to 512
threads, defined as three-dimensional array of type
dim3 (containing three integers defining each
dimension). A thread can be referred within a block by
means of the built-in global variable threadIdx.

698

While the number of threads within a block is limited, it
is possible to launch kernels with a larger total number
of threads by batching together blocks of threads, by
means of a grid of blocks, usually defined as a two-
dimensional array, also of type dim3 (with the third
component set to 1). In this case, however, thread
cooperation is reduced since threads that belong to
different blocks do not share the same memory and thus
cannot synchronize and communicate with each other.
As for threads, a built-in global variable, blockIdx,
can be used for accessing the block index within the
grid. Currently, the maximum number of blocks is
65535 in each dimension. Threads in a block are
synchronized by calling the syncthreads()
function: once all threads have reached this point,
execution resumes normally. As previously reported,
one of the fundamental concepts in CUDA is the kernel.
This is nothing but a C function, which once invoked is
performed in parallel by all threads that the programmer
has defined. To define a kernel, the programmer uses
the __global__ qualifier before the definition of the
function. This function can be executed only by the
device and can be only called by the host. To define the
dimension of the grid and blocks on which the kernel
will be launched on, the user must specify an expression
of the form <<< Grid_Size, Block_Size >>>,
placed between the kernel name and argument list.

What follows is a classic pattern of a CUDA
application:

• Allocation and initialization of data

structures in RAM memory;
• Allocation of data structures in the device

and transfer of data from RAM to the
memory of the device;

• Definition of the block and thread grids;
• Performing one or more kernel;
• Transferring of data from the device

memory to Host memory.

Eventually, it must be pointed out that a typical

CUDA application has parts that are normally
performed in a serial fashion, and other parts that are
performed in parallel.

3.2. Memory hierarchy
In CUDA, threads can access different memory
locations during execution. Each thread has its own
private memory, each block has a (limited) shared
memory that is visible to all threads in the same block,
and finally all threads have access to global memory. In
addition to these memory types, two other read-only,
fast on-chip memory types can be defined: texture
memory and constant memory.

As expected, memory usage is crucial for the
performance. For example, the shared memory is much
faster than the global memory and the use of one rather
than the other can dramatically increase or decrease
performance. By adopting variable type qualifiers, the
programmer can define variables that reside in the

global memory space of the device (with
__device__) or variables that reside in the shared
memory space (with __shared__) that are thus
accessible only from threads within a block. Typical
latency for accessing global memory variables is 200-
300 clock cycles, compared with only 2-3 clock cycles
for shared memory locations. For this reason, to
improve performances variable accesses should be
carried out in the shared memory rather than global
memory, wherever possible. However, each variable or
data structure allocated in shared memory must first be
initialized in the global memory, and afterwards
transferred in the shared one (NVIDIA CUDA 2011b).
This means that to copy data in the shared memory,
global memory access must be first performed. So, the
more his type of data is accessed, the more convenient
is to use this type of memory: so, for few accesses it is
evident that shared memory is not convenient to use. As
a consequence, a preliminary analysis of data access of
the considered algorithm should be performed in order
to evaluate the tradeoff, and thus, convenience of using
shared memory.

4. IMPLEMENTATION OF THE SCIARA

MODEL AND EXPERIMENT RESULTS
As previously stated, Cellular Automata models, such
as SCIARA, can be straightforwardly implemented on
parallel computers due to their underlying parallel
nature. In fact, since Cellular Automata methods require
only next neighbor interaction, they are very suitable
and can be efficiently implemented even on GPUs. In
literature, to our knowledge, no examples of
Macroscopic Cellular Automata modeling with GPUs
are found, while some interesting CA-like
implementations, such as Lattice Boltzmann kernels, are
more frequent (e.g., Tolke 2008; Kuznik et al. 2010).

In this work, two different implementations of the
SCIARA lava flow computational model were carried
out, a first straightforward version which uses only
global memory for the entire CA space partitioning and
a second, but more performing one, which adopts (also)
shared memory for CA space substate allocation. What
follows is an excerpt of the core of the general CUDA
algorithm (cf. Section 2.1):

// CA loop
for(int step=0; step< Nstep; step++) {

 // add lava at craters
 crater <<<1, num_craters>>>(Aread,Awrite);
 // s1
 calc_flows<<<dimGrid,dimBlock>>>(Aread,Awrite);
 // s2
 calc_width <<<dimGrid, dimBlock>>>(Aread,Awrite);
 // s3
 calc_temp<<<dimGrid, dimBlock>>>(Aread,Awrite);
 // s4
 calc_quote <<<dimGrid, dimBlock>>>(Aread,Awrite);

// swap matrixes
copy<<<dimGrid,dimBlock>>>(Awrite,N,Aread,Substat_N);
}
cudaMemcpy(A, Aread, size, cudaMemcpyDeviceToHost);
// copy data to Host
}

699

In the time loop four basic kernels, calc_flows,
calc_width, calc_temp and calc_quote are
launched corresponding to the four elementary
processes of SCIARA, σ1, σ2, σ3 and σ4, respectively,
as described in Spingola et al. (2008). The crater()
kernel refers to the crater cell(s), which is obviously
invoked on a smaller grid that the previous ones. The
model was implemented by adopting a system of double
matrixes for the CA space representation, one (Aread)
for reading cell neighbor substates and a second
(Awrite) for writing the new substate value. This
choice has proven to be efficient, since it allows to
separate the substates reading phase from the update
phase, after the application of the transition function,
thus ensuring data integrity and consistency in a given
step of the simulation. After applying the transition
function to all the cell space, the main matrix must be
updated, replacing values with the corresponding
support matrix ones (swap matrixes phase). In this
implementation, a CA step is simulated by more logical
substeps where, after crater cells are updated (by means
of the crater), lava outflows are calculated according
to the σ1 elementary process. When all outflows are
computed, and therefore all outflow substates are
consistent, the actual distribution takes place, producing
the new value of the quantity of lava in each cell of the
CA. Subsequently, each cell reads from a neighbour cell
the associated outflow substate corresponding to the
quantity of inflowing lava σ2 elementary process). In
this phase, the σ3 and σ4 elementary processes are
applied to the new quantity of lava of the cell. At the
end of the CA loop, data is copied back to the Host
memory by the cudaMemcpy function.

Regarding the specific implementation, the first
thing to decide on is what thread mapping should be
adopted to better exploit the fine-grain parallelism of
the CUDA architecture. For example, one might
consider using a thread for each row or each column, as
occurs in a typical data-parallel implementation (e.g.,
Oliverio et al. 2011). However, when working in
CUDA with arrays, the most widely adopted technique
is to match each cell of the array with a thread (e.g.,
Tolke 2008). The number of threads per block should be
a multiple of 32 threads, because this provides optimal
computing efficiency (NVIDIA CUDA 2011b) and thus
we have chosen to build blocks of size 32 × 16,
corresponding to the maximum value (512) of number
of threads permitted for each block. What follows is an
excerpt for defining the grid of blocks that was
considered for SCIARA:

#define BLOCK_SIZE_X 32
#define BLOCK_SIZE_Y 16
...
int dimX; // CA x dimension
int dimY; // CA y dimension
dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y);

int n_blocks_x = dimX/dimBlock.x;
int n_blocks_y = dimY/dimBlock.y;

dim3 dimGrid(n_blocks_x, n_blocks_y);

...
// invoke kernel functions

kernel<<<dimGrid, dimBlock>>>(...);
…

Once that the grid of blocks (and threads) were

defined in this simple manner, kernels are managed so
that each cell (i, j) of SCIARA is associated to each
thread (i, j). This is simply done, for each invoked
kernel (i.e., calc_flows, calc_width,
calc_temp and calc_quote), by associating each
row and column of the CA with the corresponding
thread as in this simple scheme:

__global__ void kernel(...) {

 int col = blockIdx.x * blockDim.x +
threadIdx.x;
 int row = blockIdx.y * blockDim.y +
threadIdx.y;

// memory allocation (shared, global, etc)
 ...
/** transition function for cell[row][col] **
 ...
}

5. TESTS AND PERFORMANCE RESULTS
Two CUDA graphic devices were adopted for
experiments: a NVIDIA high-end Tesla C1060 and a
Geforce GT 330M graphic card. In particular, the Tesla
computing processor has 240 processor cores, 4 GB
global memory and high-bandwidth communication
between CPU and GPU, whereas the less performing
graphic card has 48 cores and 512 MB global memory.
The sequential SCIARA reference version was
implemented on a 2.66 GHz Intel Core i7 based desktop
computer. The sequential CPU version is identical to
the version that was developed for the GPUs, that is, no
optimizations were adopted in the former version. In
practice, at every step, the CA space array is scrolled
and the transition function applied to each cell of the
CA where lava is present.

Many tests have been performed regarding both
performance and verification of the accuracy of the
results. Regarding performance tests, the best
implementation has regarded a version which adopts a
hybrid (shared/global) memory allocation.

As known, access to a location in shared memory
of each multiprocessor has a much lower latency than
that carried out on the global device memory. On the
other hand, an access to a shared-memory location
necessary needs a first access to global memory (cf.
Section 3.2). For this reason, an accurate analysis was
carried out in determining how much memory access
each thread does for each CA substate matrix. This
investigation gave rise to a “hybrid'” memory access
pattern, where shared memory allocation was adopted
for those kernels accessing CA matrixes more than two
times. For illustrative purposes, Figure 1 shows how

700

shared memory is used in the context of our GPU
implementation.

Figure 1: Memory mapping of the CA space allocated
in global memory with a portion of shared memory.
Shaded areas represent portions of neighbouring block
areas which need to be swapped at each CA step to
ensure data consistency.

A first test regarded the simulation of well-known

and documented real lava flow event, the Mt. Etna
Nicolosi event (Crisci et al. 2004) occurred in July,
2001. Table 1 (first row) reports the first results of tests
carried out for this experiment, where the CA space is a
819 × 382 two-dimensional grid. The simulation was
carried out for 15000 steps, considering one crater for
lava flow emission. In order to further stress the
efficiency of the GPU version, further benchmarks
experiments were performed by considering four
different hypothetical CA spaces, namely 5122, 10242,
20482 and 40962 grids, with cells representing inclined
planes, with many craters located over the grid (cf.
Table 1 - from second row).

Table 1: Execution times of experiments (in seconds)
carried out for evaluating the performance the GPU
version of the SCIARA MCA lava-flow model on the
considered hardware. The 819 × 382 matrix refers to the
2001 Mt. Etna event. Other grid dimensions refer to
inclined planes. N/A (Not Available) data are due to
device lack of memory capacity.

Performance results (in seconds)
CA dim /
Device

Intel i7
(sequential) Geforce Tesla

819×382 741 46 11.8
5122 677 31.4 5.6

10242 2716 99.1 21.4
20482 11480 344.5 81.1
40962 47410 N/A 307

Timings reported for the considered GPU devices

indicate their full suitability for parallelizing CA
models. Even if applied to a simple MCA model,
performance results show the incredible computational
power of the considered GPUs in terms of execution

time reduction, significantly outperforming the CPU
implementation up to 150× for large grid sizes. Other
tests were also performed on a completely global
memory version. In this case results, here omitted for
brevity, have shown how the use of shared memory can
improve performances up to 50%, with respect to the
total global memory version.

Eventually, to test if single-precision data can be
considered sufficient for SCIARA simulations, tests
were carried out on the 2001 lava flow event (15000 CA
steps) and compared results produced by the GPU
version with those produced by the CPU (sequential)
version with single precision data (i.e., float type
variables), and those produced still by the same GPU
version against a double precision CPU implementation
(i.e., double type variables). In each case, comparison
results were satisfactory, since the areal extensions of
simulations resulted the same, except for few errors of
approximation in a limited number of cells. In
particular, comparing the GPU version with the CPU
single-precision version approximation differences at
the third significant digit were only for 4% of cells,
while differences were less for remaining cells.
Differences were even minor compared to the previous
case by considering the single precision GPU version
and a CPU version which adopts double-precision
variables.

6. CONCLUSIONS
This paper reports the implementation of a Macroscopic
Cellular Automata model using GPU architectures. As
shown, the CUDA technology, in combination with the
an efficient memory management, can produce a very
efficient version of the SCIARA lava flow simulator.
Although results are indeed already satisfactory, future
developments can regard further improvements for both
increasing performances and implementing more
advanced MCA models.

The results obtained in this work are to be
considered positive and extremely encouraging. As
confirmed by the increasing number of applications in
the field of scientific computing in general, GPGPU
programming represents a valid alternative to traditional
microprocessors in high-performance computer systems
of the future.

ACKNOWLEDGMENTS

This work was partially funded by the European
Com-mission - European Social Fund (ESF) and by the
Regione Calabria.

REFERENCES
Barca, D., Crisci, G.M., Di Gregorio, S., Nicoletta, F.,

1993. Cellular automata methods for modelling
lava flow: simulation of the 1986-1987 eruption,
Mount Etna, Sicily. In: Kilburn, C.R.J., Luongo,
G. (Eds.), Active lavas: monitoring and modelling.
UCL Press, London, 12, 291-309.

Barca, D., G.M. Crisci, Di Gregorio, S., Nicoletta, F.
1994. Cellular Automata for simulating lava

701

Flows: A method and examples of the Etnean
eruptions. Transport Theory and Statistical
Physics, 23, 195-232.

Crisci, G.M., Di Gregorio, S. , Rongo, R., Spataro, W.,
2004. The simulation model SCIARA: the 1991
and 2001 at Mount Etna. Journal of Vulcanology
and Geothermal Research, 132, 253-267.

D’Ambrosio, D., Rongo, R., Spataro, W., Avolio, M.V.,
Lupiano, V. , 2006. Lava Invasion Susceptibility
Hazard Mapping Through Cellular Automata. In:
S. El Yacoubi, B. Chopard, and S. Bandini (Eds.),
ACRI 2006, Lecture Notes in Computer Science,
4173, Springer-Verlag, Berlin Heidelberg, 452-
461.

D’Ambrosio, D., Spataro, W., 2007. Parallel
evolutionary modelling of geological processes.
Parallel Computing 33 (3), 186–212.

Di Gregorio, S., Mele, F., Minei, G., 2001. Automi
Cellulari Cognitivi. Simulazione di evacuazione,
Proceedings “Input 2001”, Seconda Conferenza
Nazionale Informatica Pianificazione Urbana e
Territoriale, (in Italian) Democrazia e Tecnologia.

Di Gregorio, S., Rongo, R., Siciliano, C., Sorriso-
Valvo, M., Spataro, W., 1999. Mount Ontake
landslide simulation by the cellular automata
model SCIDDICA-3. Physics and Chemistry of the
Earth, Part A, 24, 97-100.

Di Gregorio, S., Serra, R., 1999. An empirical method
for modelling and simulating some complex
macroscopic phenomena by cellular automata. Fut.
Gener. Comp. Syst., 16, 259–271.

Di Gregorio, S., Umeton, R., Bicocchi, A., Evangelisti,
A., Gonzalez, M., 2008. Highway Traffic Model
Based on Cellular Automata: Preliminary
Simulation Results with Congestion Pricing
Considerations. Proceedings of 20th European
Modeling & Simulation Symposium (EMSS), pp.
665-674. September 17-19, Campora S.G., CS,
Italy.

Grama, A., Karypis, G., Kumar, V., Gupta, A., 2003.
An Introduction to Parallel Computing: Design
and Analysis of Algorithms, Second Edition. USA:
Addison Wesley.

Kuznik, F., Obrecht, C., Rusaouen, G., Roux, J.J., 2010.
LBM based flow simulation using GPU computing
processor. Computers and Mathematics with
Applications, 59, 2380–2392.

NVIDIA CUDA C Programming Guide, 2011a.
Available from:
http://developer.download.nvidia.com/compute/cu
da [accessed 27 June 2011]

NVIDIA CUDA C Best Practices Guide, 2011b.
Available from:
http://developer.download.nvidia.com/compute/cu
da [accessed 27 June 2011]

Oliverio, M., Spataro, W. , D’Ambrosio, D. , Rongo, R.,
Spingola, G., Trunfio, G.A., 2011. OpenMP
parallelization of the SCIARA Cellular Automata
lava flow model: performance analysis on shared-
memory computers. Proceedings of International

Conference on Computational Science, ICCS
2011, Procedia Computer Science, 4, pp. 271-280.

Rongo, R., Spataro, W., D'Ambrosio, D., Avolio, M.V.,
Trunfio, G.A., Di Gregorio, S., 2008. Lava flow
hazard evaluation through cellular automata and
genetic algorithms: an application to Mt Etna
volcano. Fundamenta Informaticae, 87, 247–268.

Spingola, G. , D’Ambrosio, D., Spataro, W., Rongo, R.
Zito, G., 2008. Modeling Complex Natural
Phenomena with the libAuToti Cellular Automata
Library: An example of application to Lava Flows
Simulation. Proceedings of International
Conference on Parallel and Distributed
Processing Tecniques and Applications, pp. 44-50.
July 14-17, 2008, Las Vegas, Nevada, USA

Succi, S, 2004. The Lattice Boltzmann Equation for
Fluid Dynamics and Beyond, UK: Oxford
University Press.

Tolke, J., Krafczyka, M., 2008. TeraFLOP computing
on a desktop PC with GPUs for 3D CFD. Int.
Journ. of Comput. Fluid Dynamics, 22 (7), 443–
456.

Tolke, J., 2008. Implementation of a lattice Boltzmann
kernel using the compute unified device
architecture developed by NVIDIA. Comput. Vis.
Sci., 13 1, 29–39.

Trunfio, G.A., 2004. Predicting Wildfire Spreading
Through a Hexagonal Cellular Automata Model.
In: P.M.A. Sloot, B. Chopard and A.G.Hoekstra
(Eds.), ACRI 2004, LNCS 3305, Springer, Berlin,
2004, 725-734.

von Neumann, J. (Edited and completed by A. Burks),
1966. Theory of self-reproducing automata. USA:
University of Illinois Press.

Zuo, W., Chen, Q., 2010. Fast and informative flow
simulations in a building by using fast fluid
dynamics model on graphics processing unit.
Build. Envir., 45, 3, 747–757.

702

