
A METHODOLOGY FOR THE DEVS SIMULATION GRAPH CONSTRU CTION

Adedoyin Adegoke(a), Ibrahima Amadou(b), Hamidou Togo(b), Mamadou K. Traoré(c)

(a) African University of Science and Technology, Abuja (Nigeria)
(b)Université de Bamako (Mali)

(c) LIMOS, CNRS UMR 6158, Université Blaise Pascal, Clermont-Ferrand 2 (France)

(a)aadegoke@aust.edu.ng, (b)temena2004@yahoo.fr, (c)traore@isima.fr

ABSTRACT
Various DEVS (Discrete Event Systems Specification)
implementations exist but differ in the approaches
considered for use. These approaches include how
events are processed, the simulation architecture in use,
the existing procedures (set of rules/algorithm), the
organizational architecture (of the simulator) and so on.
This work attempts to formalize a generic approach to
Parallel and Distributed Simulation (PADS) with DEVS
as well as embody these approaches by providing
formal definitions that can be standardized for use
during DEVS implementation. Therefore, we propose a
DEVS Simulation Graph which gives basic information
about the necessary elements that are useful for the
analysis and construction of a DEVS simulator. The
major aim is to help identify these elements before
implementation and ease the development of a DEVS
simulator.

Keywords: PADS, DEVS, Simulation Graph, Simulator

1. INTRODUCTION
DEVS (Discrete Event System Specification) can be
called a universal simulation Turing machine as it offers
a platform for the modeling and simulation of
sophisticated systems in a variety of domains. It unifies
various formalisms and provides a general description
for the construction and execution of a model from an
original system. Due to the separation of concerns in
DEVS, the modeler needs to focus only on the models
being created avoiding the details about how the
simulator was built.
 Parallel and Distributed Simulation (PADS)
(Fujimoto 1990) has been a widely researched area in
recent years. Its prominence offers increase in execution
speed, reduction in execution time, execution of larger
simulation models and increased processor fault
tolerance to a possible failure. In addition, it provides a
solution to the scientific need to federate existing and
naturally dispersed simulation codes.
 Although PADS is a matured field of study, its
adaptability to existing modeling and simulation
formalisms is an arduous task. PADS with DEVS
implementation strategies differ from one another.
Based on this heterogeneous factor the intrinsic

elements used in developing DEVS simulators are not
formally defined for these strategies. Hence, this work
will attempt to identify and capture the elements
commonly used in these strategies as well as propose a
more generic approach and formal framework which is
deemed necessary. These fundamental elements are in
terms of the simulator’s tree structure, the number of
execution streams and the number of computing
resources.

The rest of the paper is organized as follow:
Section 2 presents a review of some existing works in
the area of PADS with DEVS. Section 3 presents the
foundations of DEVS simulation i.e. the Simulation
Tree, the concept of the Simulation Graph and the
fundamental elements. Section 4 presents a
methodology and basic operations which are useful for
the construction of the Simulation Graph. In section 5,
we present a case study and a look at Simulation Graph
approaches in existing works. Finally, we conclude in
Section 6.

2. PADS WITH DEVS – IMPLEMENTATIONS
We take a look at some implementations which have
attempted combining PADS with DEVS.
 Himmelspach, Ewald, Leye, and Uhrmacher (2007)
proposed a Parallel Sequential Simulator which was
implemented to ease the distribution of DEVS models
on several physical processors consequently introducing
the need for partitioning and load balancing. Also, it
proposes performing Sequential and/or Parallel
execution.
 Parallel variant of the CD++ (Wainer 2009) tool
was designed to execute DEVS models on parallel
memory architectures i.e. with the idea of distributing
the simulating entities on different physical processors.
 DEVS-Ada/TW (Christensen and Zeigler 1990) is
the first attempt to combine DEVS and Time Warp
mechanism for Optimistic Distributed simulation. The
hierarchical DEVS model is partitioned at the highest
level of the hierarchy and as a consequence, the
flexibility of partitioning models is restricted.
 The DOHS (Distributed Optimistic Hierarchical
Simulation) scheme proposed by Kim, Seong, Kim and
Park (1996) is a method of distributed simulation for
hierarchical and modular DEVS models. It uses the

675

Time Warp mechanism for global synchronization.
Each node of the simulation tree structure is revised to
adapt to a simulation parallel/distributed environment.

There are also other variants that take the structure
of non-hierarchical DEVS model to help reduce the cost
of exchanged messages in the simulator. This is the case
of optimistic simulation in P-CD++ (Qi and Wainer
2007) an optimistic version of the CD++ tool which was
developed for the simulation of DEVS and Cell-DEVS
models.

Contrary to optimistic approaches, few parallel
DEVS simulators belong to the conservative class. In
(Zeigler, Praehofer and Kim 2000), a distributed
simulation framework (Conservative Parallel DEVS
Simulator) is described for non-hierarchical DEVS
models using conservative synchronization. In addition,
the performance of a conservative approach depends
strictly on a good look-ahead.

3. FROM DEVS SIMULATION TREE TO DEVS

SIMULATION GRAPH
We interpret the building of a Parallel and Distributed
Simulation (PADS) with DEVS as a move from the
original Simulation Tree (ST) to a Simulation Graph
(SG).

3.1. DEVS Sequential Simulation Tree
DEVS formalism (Zeigler, Praehofer and Kim 2000)
specifies system behavior as well as system structure.
System behavior in DEVS is described as input and
output events as well as states while system structure is
built from the composition of atomic or coupled
models. A coupled model is composed of several
atomic or coupled models and atomic model is a basic
component that cannot be decomposed any further.

A DEVS model is built according to specification
i.e. Classic DEVS or Parallel DEVS. CDEVS (Classic
DEVS System Specification) was introduced in 1976 by
Zeigler (Zeigler 1976) to simulate and execute models
sequentially on single processor machine. As a solution
to the rigidity in CDEVS, the appropriate execution of
simultaneous events has led to the concept of process
and to PDEVS (Parallel DEVS System Specification)
(Chow and Zeigler 1994).

Figure 1: DEVS Simulation Tree

DEVS model execution is driven through the

simulation tree which serves as vital element in
construction of a DEVS simulator. The tree consists of

simulating nodes which are used for executing DEVS
models. These nodes are Coordinators, Simulators and
Root Coordinator which are organized in a hierarchy
that mimics the hierarchical structure of a DEVS model.

A DEVS atomic model is executed by assigning a
simulator to it and to a DEVS coupled model a
coordinator is assigned. Root Coordinator is a special
coordinator that drives the global aspects of the
simulation on a tree; it initializes and ends the
simulation (when a termination condition is detected).

3.2. PADS with DEVS Simulation Graph
Due to the increasing number of complex model
systems it is necessary to improve efficiencies and
performances of DEVS simulators. A typical PADS
with DEVS implementation will result in the Simulation
Graph (SG). A SG is a representation of the relationship
between a DEVS simulator’s fundamental elements
which are simulation tree, process and processor.

Figure 2: DEVS Simulation Graph

The structure of the DEVS simulator tree can be

altered to improve performance of a simulator either by
reducing (also known as flattening) the number of nodes
on the tree as seen in (Jafer and Wainer 2009) or
increasing the number of nodes (with specialized
Coordinators and Simulators) as seen in (Troccoli and
Wainer 2003).

Also, this tree can be split to form sub-trees based
on the analysis of the model’s structure. A simulator
with single tree structure is designed with the use of a
central scheduler called the Root Coordinator while in a
multiple tree structure simulator each of the sub-trees
has its own central scheduler/Root Coordinator and

Root Coordinator

Simulator

Coordinator

Active
Entities

Passive
Entities

Legend

Legend

Root Coordinator

Simulator

Coordinator

Simulation Graph

Processor

Process

Tree

676

different simulation clocks. This is the preferable
solution in distributed simulation.

We define a process as a stream of execution. It
contains two types of entities during execution; they are
active and passive entities. An active entity is an entity
that is currently active in an execution stream (e.g. Java
threads, ADA Tasks, etc.). While a passive entity is part
of an execution stream but not actively involved until it
is activated e.g. function calling in Object Oriented
Paradigm. We consider that a process would have at
most one active entity. If a process has more than one
active entity, those entities are then regarded as being
autonomous sub-processes. Also, there can be more
than one passive entity in a process.

A processor is a computing resource that allows
the execution of a program (a process, an entire tree,
any other executable code) on itself.

4. METHODOLOGY FOR BUILDING THE

SIMULATION GRAPH
The state chart provides an overview of the method and
the trajectories describe the set of all possible paths that
can be taken during the construction of the Simulation
Graph (SG).

The SG construction is driven based on the
analysis of the initial Simulation Tree, the available
number of Processes and Processors. An overview of
this methodological approach is given by the following
state chart. It is worth noting that the methodology
iterates on each state until some user-defined
satisfaction criteria are reached (optimal splitting,
optimal clustering, optimal mapping and optimal
transformation).

Figure 3: Simulation Graph Methodology

The process of Transformation, Splitting,

Clustering and Mapping continues until it is certain that
a good performance or speed will be gained during
simulation from the new Simulation Graph.

4.1. Simulation Skeleton and Bundle

Informally presented, the Simulation Skeleton is the
structure of the simulation protocol that can fit the
PADS scheme. The Simulation Bundle is a collection of
cluster of nodes. Examples are shown with Figures 4
and 5.

Figure 4: Simulation Skeleton

Figure 5: Simulation Bundle

4.2. Simulation Structures Formalized
Definition 1: A Simulation Tree T, can be defined as

� �	� �,�, � 	
With:

• � ∈ �
• �:	� → ℘��� where ℘��� is Power Set of �
• ������ � ∅
• ������ � ∅,	 ∀	� ∈ � � ���
• ��������	���� � 1

Where:

R: the Root Coordinator of the tree
N: the set of nodes of the tree
�: a function that maps a child node to its parent

A node is a "parent" of another node (its child) if it is
one step higher in the hierarchy.

For example:

Tree T will be defined as

� � �!�
� � �!, ", �, #, $, %, &�
��!� � �"�
��"� � ��, #, $�
��#� � �%, &�
���� � ��$� � ��%� � ��&� � ∅

Definition 2: Simulation Tree � can also be defined as

� �	� �,�, % 	

A

B

C D E

F G

677

With:
• � ∈ �
• % ⊂ � (�� � ����
• ��,)� ∈ %	 ⟺)	 ∈ ����

Using Definition 2 for the example above, � and � will
be defined as same while % will be

% � ��A, B�, �B, C�, �B, D�, �B, E�, �D, F�, �D, G��

Definition 3: A Simulation Skeleton is defined by

2 �	� ����, �, � 	
With

• �� 	 ∈ �	∀	i
• �:	� → ℘��� where ℘��� is Power Set of �
• ������� � ∅	∀�
• ������ � ∅,	 ∀	� ∈ � � ⋃����

Definition 4: A Simulation Bundle is formally defined
as

" �� ����, �, �, 56, ��7689� 	
With

• � ����, �, � 	 as a skeleton

• 56	is the set of Processes

• ��7689�:	� → 56

Definition 5: A Simulation Graph is defined by

& �� ����, �, �, 56, 5�, ��7689�,:�; 	
With

• � ����, �, �, 56, ��7689� 	 is a Simulation

Bundle

• 5� is a set of Processors

• Map: 56 → 5�

4.3. Basic Operations Formalized
In this section we show that moving from a Simulation
Tree (ST) to a Simulation Graph (SG) can be
decomposed into basic operations and later we will
show the methodology that drives this process.

4.3.1. Split
It is a function used for creating a partition of
simulating entities/nodes from a simulation tree.

Definition 6: Split:	< → Σ

With
� �	� �,�, � 	
2;��8��� �	� ����, �′, �′ 	
Based on the following conditions:

• � ∈ ⋃����
• �� � �⋃����
• �′/� � �

Where < is the set of all possible trees and Σ is the set of
all possible skeletons.

4.3.2. Cluster
This function takes the available number of nodes and
groups them into Processes.

Definition 7: Cluster: � → 56

Where
56 is the set of Processes.
Based on the conditions that

• ��7689����;�	is Connex ∀; ∈ 	56
• ∀	;� , ;� ∈ 	56, 	;� � ;� ,

��7689��;�� ⋂��7689�@;�A � 	∅,

4.3.3. Map
This function takes the set of available Processes and
plots them onto the set of available Processors.

Definition 8: Map: 56 → 5�

Where
• 56	is the set of Processes
• 5� is the set of Processors

Based on the following condition
 ∀	;� , ;� ∈ 	56, 	;� � ;� , :�;�;��⋂:�;@;�A � ∅	

4.3.4. Transform
Transform is a function used for altering the Simulation
Tree structure either by expansion or reduction. This
altering is done on the number of available nodes (not
including the Root Coordinators) on the Tree and their
relationships.
Definition 9: ����6�B��, ��, %�, %�C:	< → <

����6�B��, ��, %�, %�C�� �,�, % 	� �� �,��, %� 	

With
• �� � �⋃	�� � ��
• %� � %⋃	%� � %�

Where
• �� is the set of nodes to be added to �
• �� is the set of nodes to be removed from �
• %� is the set of relationships to be added to %
• %� is the set of relationships to be removed

from %
Based on the following conditions:

• ��	 ⋂ 	� � 	∅
• ��	 ⊂ � � ���
• %�	 ⊂ �� (���⋃���⋃��� (� � ����
• %�	 ⊆ %

5. APPLICATION

5.1. Case Study
In this study we describe a possible path in the
application of the Simulation Graph construction
methodology. This application starts with the original
DEVS tree. At the Transform stage the tree structure is
modified by reduction after which the tree is Split to
create a partition of nodes also increasing the number of
Root Coordinators on the entire tree. These partitions of
nodes are grouped into available number of Processes
thereby creating a Simulation Bundle (Figure 6c). At

678

the final stage (Map), a Simulation Graph was created
by mapping the each Process on the Simulation Bundle
to an available number of Processors. See Figure 6.

Figure 6: Application of Simulation Graph
Methodology

5.2. Works Revisited

In a more general overview, most DEVS
implementation decisions have been observed to be
based on the fundamental elements i.e. simulation tree,
process and processor. We present some of them here
and their Simulation Graph.

To explain the strategies in the literature in a more
formal way we suggest the Tree-Process-Processor
notation. It consists in defining the number of elements

for each aspect of PADS. We use N for “many
elements”. For example, a 1-1-1 scheme is a Simulation
Graph with 1 tree, 1 process and 1 processor while N-
N-1 is a Simulation Graph with many trees, many
processes and 1 processor.

PythonDEVS (Bolduc and Vangheluwe 2002) is a
1-1-1 strategy. It uses the CDEVS formalism in
specifying models and as a consequence it performs
sequential simulation.

The Abstract Threaded Simulator of the James II
(Himmelspach and Uhrmacher 2006) package uses a 1-
N-1 strategy with its processes created using Java
threads. Depending on the memory size of the processor
and the model size, the cost of creating threads gets
expensive as the number of models increases. This is a
critical factor to be considered when using many
processes.

In (Troccoli and Wainer 2003), the Parallel CD++
Simulator is a 1-N-N strategy. Also, new simulation
nodes were used on the tree thereby expanding it. This
methodology better suits distributed simulation but
increases the cost of communication between the nodes.
Also, Parallel Sequential Simulator by Himmelspach,
Ewald, Leye and Uhrmacher (2007) uses this 1-N-N
strategy.

The Conservative CD++ (Jafer and Wainer 2010)
is an N-N-N strategy. In order to reduce communication
costs between the nodes the simulator was flattened.
The flattening involves a reduction in the number of
nodes on the simulation tree. Some other works that
uses the N-N-N strategy include DEVS-Ada/TW
(Christensen and Zeigler 1990), DOHS scheme by Kim,
Seong, Kim and Park (1996) and Optimistic Parallel
CD++ (Qi and Wainer 2007).

Also, we observed that having an implementation
which involves the use of N-1-1 strategy or N-1-N
strategy is not realistic. The reason for this is execution
of each tree is asynchronous and can be done
simultaneously using many processes instead.

6. CONCLUSION
This paper is part of a more general research direction
in that we investigate various approaches commonly
used in PADS with DEVS to build simulators. We
presented the Simulation Graph concept to help ease the
process of building DEVS simulators and provide a
common platform for different implementation
strategies. This was achieved through the identification
of the fundamental elements used in DEVS simulators
and the relationship between them. Thus, with this we
were able to provide definitions for a formal framework
as opposed to the traditional intuitive way of
constructing a DEVS simulator. Also, we presented a
possible path in the application of the Simulation Graph
and revisited works by identifying their Simulation
Graph approach. Further works include automating this
process by implementing the methodology in SimStudio
package (Traoré 2008).

D

E

F

D

E

F

A B C

A B C

(a)

(b)

(c)

(d)

(e)

Split

Cluster

Map

Transform
 (by Flattening A, B, C)

A B C

A B C

D

E

F

679

ACKNOWLEDGMENTS
The work in this paper is partly funded by grants from
RAMSES (Réseau Africain pour la Mutualisation et le
Soutien des poles d'Excellence Scientifique).

REFERENCES
Bolduc, J., Vangheluwe, H., 2002. A Modeling and

Simulation Package for Classic Hierarchical
DEVS. Technical Report, McGill University,
School of Computer Science.

Chow, A. C., Zeigler, B. P., 1994.Revised DEVS: A
Parallel, Hierarchical, Modular Modeling
Formalism. Proceedings of the Winter Simulation
Conference

Christensen, E.R., Zeigler, B. P., 1990. Distributed
Discrete Event Simulation: Combining DEVS and
Time Warp. In Proceedings of the SCS Eastern
Multiconference on AI and Simulation Theory and
Applications

Fujimoto, R. M., 1990. Parallel Discrete Event
Simulation. Communications of the ACM, 33(10),
30-53.

Himmelspach, J., Ewald, R., Leye, S., Uhrmacher, A.,
2007. Parallel and Distributed Simulation of
Parallel DEVS Models. Proceedings of the 2007
Spring Simulation Multiconference.

Himmelspach, J., Uhrmacher, A., 2006, Sequential
Processing of PDEVS Models. Proceedings of the
3rd EMSS, 239-244.

Jafer, S., Wainer. G. A., 2009. Flattened Conservative
Parallel Simulator for DEVS and CELL-DEVS.
Proceedings of CSE (1), 443-448.

Jafer, S., Wainer. G. A., 2010. Conservative DEVS – A
Novel Protocol for Parallel Conservative
Simulation of DEVS and Cell-DEVS Models.
Proceedings of 2010 Spring Simulation
Conference (SpringSim10), DEVS symposium 168-
175.

Kim, K. H., Seong, Y. R., Kim, T. G., Park, K. H.,
1996. Distributed Simulation of Hierarchical
DEVS Models: Hierarchical Scheduling Locally
and Time Warp Globally. TRANSACTIONS of the
SCS International 13, no. 3, 135-154.

Qi, L., Wainer, G. A., 2007. Parallel Environment for
DEVS and Cell-DEVS Models. SIMULATION
83(6), 449-471.

Traoré, M. K., 2008. SimStudio. A Next Generation
Modeling and Simulation Framework,
SIMUTools’08, ISBN 978-963-9799-20-21. March
3-7, Marseille, France

Troccoli, A., Wainer, G., 2003. Implementing Parallel
Cell-DEVS. Proceedings of the 36th Annual
Symposium on Simulation, 273-277. March 30-
April 02.

Wainer, G. A., 2009. Discrete-Event Modeling and
Simulation: A practitioner's Approach. New York:
CRC Press.

Zeigler, B. P., 1976. Theory of Modeling and
Simulation. New York; Wiley-Interscience.

Zeigler, B. P., Praehofer, H., Kim, T. G., 2000.Theory
of Modeling and Simulation. Integrating Discrete
Event and Continuous Complex Dynamic Systems.
London; Academic Press.

680

