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ABSTRACT 
Various DEVS (Discrete Event Systems Specification) 
implementations exist but differ in the approaches 
considered for use. These approaches include how 
events are processed, the simulation architecture in use, 
the existing procedures (set of rules/algorithm), the 
organizational architecture (of the simulator) and so on. 
This work attempts to formalize a generic approach to 
Parallel and Distributed Simulation (PADS) with DEVS 
as well as embody these approaches by providing 
formal definitions that can be standardized for use 
during DEVS implementation. Therefore, we propose a 
DEVS Simulation Graph which gives basic information 
about the necessary elements that are useful for the 
analysis and construction of a DEVS simulator. The 
major aim is to help identify these elements before 
implementation and ease the development of a DEVS 
simulator.  
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1. INTRODUCTION 
DEVS (Discrete Event System Specification) can be 
called a universal simulation Turing machine as it offers 
a platform for the modeling and simulation of 
sophisticated systems in a variety of domains. It unifies 
various formalisms and provides a general description 
for the construction and execution of a model from an 
original system. Due to the separation of concerns in 
DEVS, the modeler needs to focus only on the models 
being created avoiding the details about how the 
simulator was built. 
 Parallel and Distributed Simulation (PADS) 
(Fujimoto 1990) has been a widely researched area in 
recent years. Its prominence offers increase in execution 
speed, reduction in execution time, execution of larger 
simulation models and increased processor fault 
tolerance to a possible failure. In addition, it provides a 
solution to the scientific need to federate existing and 
naturally dispersed simulation codes.  
 Although PADS is a matured field of study, its 
adaptability to existing modeling and simulation 
formalisms is an arduous task. PADS with DEVS 
implementation strategies differ from one another. 
Based on this heterogeneous factor the intrinsic 

elements used in developing DEVS simulators are not 
formally defined for these strategies. Hence, this work 
will attempt to identify and capture the elements 
commonly used in these strategies as well as propose a 
more generic approach and formal framework which is 
deemed necessary. These fundamental elements are in 
terms of the simulator’s tree structure, the number of 
execution streams and the number of computing 
resources. 

The rest of the paper is organized as follow: 
Section 2 presents a review of some existing works in 
the area of PADS with DEVS. Section 3 presents the 
foundations of DEVS simulation i.e. the Simulation 
Tree, the concept of the Simulation Graph and the 
fundamental elements. Section 4 presents a 
methodology and basic operations which are useful for 
the construction of the Simulation Graph.  In section 5, 
we present a case study and a look at Simulation Graph 
approaches in existing works. Finally, we conclude in 
Section 6. 

 
2. PADS WITH DEVS – IMPLEMENTATIONS 
We take a look at some implementations which have 
attempted combining PADS with DEVS. 
 Himmelspach, Ewald, Leye, and Uhrmacher (2007) 
proposed a Parallel Sequential Simulator which was 
implemented to ease the distribution of DEVS models 
on several physical processors consequently introducing 
the need for partitioning and load balancing. Also, it 
proposes performing Sequential and/or Parallel 
execution. 
 Parallel variant of the CD++ (Wainer 2009) tool 
was designed to execute DEVS models on parallel 
memory architectures i.e. with the idea of distributing 
the simulating entities on different physical processors.
 DEVS-Ada/TW (Christensen and Zeigler 1990) is 
the first attempt to combine DEVS and Time Warp 
mechanism for Optimistic Distributed simulation. The 
hierarchical DEVS model is partitioned at the highest 
level of the hierarchy and as a consequence, the 
flexibility of partitioning models is restricted. 
 The DOHS (Distributed Optimistic Hierarchical 
Simulation) scheme proposed by Kim, Seong, Kim and 
Park (1996) is a method of distributed simulation for 
hierarchical and modular DEVS models. It uses the 
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Time Warp mechanism for global synchronization. 
Each node of the simulation tree structure is revised to 
adapt to a simulation parallel/distributed environment.  

There are also other variants that take the structure 
of non-hierarchical DEVS model to help reduce the cost 
of exchanged messages in the simulator. This is the case 
of optimistic simulation in P-CD++ (Qi and Wainer 
2007) an optimistic version of the CD++ tool which was 
developed for the simulation of DEVS and Cell-DEVS 
models.  

Contrary to optimistic approaches, few parallel 
DEVS simulators belong to the conservative class. In 
(Zeigler, Praehofer and Kim 2000), a distributed 
simulation framework (Conservative Parallel DEVS 
Simulator) is described for non-hierarchical DEVS 
models using conservative synchronization. In addition, 
the performance of a conservative approach depends 
strictly on a good look-ahead. 

 
3. FROM DEVS SIMULATION TREE TO DEVS 

SIMULATION GRAPH 
We interpret the building of a Parallel and Distributed 
Simulation (PADS) with DEVS as a move from the 
original Simulation Tree (ST) to a Simulation Graph 
(SG). 

3.1. DEVS Sequential Simulation Tree 
DEVS formalism (Zeigler, Praehofer and Kim 2000) 
specifies system behavior as well as system structure. 
System behavior in DEVS is described as input and 
output events as well as states while system structure is 
built from the composition of atomic or coupled 
models. A coupled model is composed of several 
atomic or coupled models and atomic model is a basic 
component that cannot be decomposed any further.  

A DEVS model is built according to specification 
i.e. Classic DEVS or Parallel DEVS. CDEVS (Classic 
DEVS System Specification) was introduced in 1976 by 
Zeigler (Zeigler 1976) to simulate and execute models 
sequentially on single processor machine. As a solution 
to the rigidity in CDEVS, the appropriate execution of 
simultaneous events has led to the concept of process 
and to PDEVS (Parallel DEVS System Specification) 
(Chow and Zeigler 1994).  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: DEVS Simulation Tree 

 
DEVS model execution is driven through the 

simulation tree which serves as vital element in 
construction of a DEVS simulator. The tree consists of 

simulating nodes which are used for executing DEVS 
models. These nodes are Coordinators, Simulators and 
Root Coordinator which are organized in a hierarchy 
that mimics the hierarchical structure of a DEVS model. 

A DEVS atomic model is executed by assigning a 
simulator to it and to a DEVS coupled model a 
coordinator is assigned. Root Coordinator is a special 
coordinator that drives the global aspects of the 
simulation on a tree; it initializes and ends the 
simulation (when a termination condition is detected). 

 
3.2. PADS with DEVS Simulation Graph 
Due to the increasing number of complex model 
systems it is necessary to improve efficiencies and 
performances of DEVS simulators. A typical PADS 
with DEVS implementation will result in the Simulation 
Graph (SG). A SG is a representation of the relationship 
between a DEVS simulator’s fundamental elements 
which are simulation tree, process and processor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: DEVS Simulation Graph 
 
The structure of the DEVS simulator tree can be 

altered to improve performance of a simulator either by 
reducing (also known as flattening) the number of nodes 
on the tree as seen in (Jafer and Wainer 2009) or 
increasing the number of nodes (with specialized 
Coordinators and Simulators) as seen in (Troccoli and 
Wainer 2003). 

Also, this tree can be split to form sub-trees based 
on the analysis of the model’s structure. A simulator 
with single tree structure is designed with the use of a 
central scheduler called the Root Coordinator while in a 
multiple tree structure simulator each of the sub-trees 
has its own central scheduler/Root Coordinator and 
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different simulation clocks. This is the preferable 
solution in distributed simulation. 

We define a process as a stream of execution. It 
contains two types of entities during execution; they are 
active and passive entities. An active entity is an entity 
that is currently active in an execution stream (e.g. Java 
threads, ADA Tasks, etc.). While a passive entity is part 
of an execution stream but not actively involved until it 
is activated e.g. function calling in Object Oriented 
Paradigm. We consider that a process would have at 
most one active entity. If a process has more than one 
active entity, those entities are then regarded as being 
autonomous sub-processes. Also, there can be more 
than one passive entity in a process.  

A processor is a computing resource that allows 
the execution of a program (a process, an entire tree, 
any other executable code) on itself.  
 
4. METHODOLOGY FOR BUILDING THE 

SIMULATION GRAPH 
The state chart provides an overview of the method and 
the trajectories describe the set of all possible paths that 
can be taken during the construction of the Simulation 
Graph (SG). 

The SG construction is driven based on the 
analysis of the initial Simulation Tree, the available 
number of Processes and Processors. An overview of 
this methodological approach is given by the following 
state chart. It is worth noting that the methodology 
iterates on each state until some user-defined 
satisfaction criteria are reached (optimal splitting, 
optimal clustering, optimal mapping and optimal 
transformation).  

 
Figure 3: Simulation Graph Methodology 

 
The process of Transformation, Splitting, 

Clustering and Mapping continues until it is certain that 
a good performance or speed will be gained during 
simulation from the new Simulation Graph. 

 
4.1. Simulation Skeleton and Bundle 

Informally presented, the Simulation Skeleton is the 
structure of the simulation protocol that can fit the 
PADS scheme. The Simulation Bundle is a collection of 
cluster of nodes. Examples are shown with Figures 4 
and 5. 

 

 

 

 

 

 

Figure 4: Simulation Skeleton 
 

 

 

 

 

 

Figure 5: Simulation Bundle 
 

4.2. Simulation Structures Formalized 
Definition 1: A Simulation Tree T, can be defined as 

� �	� �,�, � 	 
With: 

• � ∈ � 
• �:	� → ℘��� where ℘��� is Power Set of � 
• ������ � ∅ 
• ������ � ∅,	 ∀	� ∈ � � ��� 
• ��������	���� � 1 

Where: 

R: the Root Coordinator of the tree 
N: the set of nodes of the tree 
�: a function that maps a child node to its parent 

A node is a "parent" of another node (its child) if it is 
one step higher in the hierarchy. 

For example:  

  

 

 

 

 

 

 

Tree T will be defined as  

� � �!�  
� � �!, ", �, #, $, %, &�  
��!� � �"�  
��"� � ��, #, $�  
��#� � �%, &�  
���� � ��$� � ��%� � ��&� � ∅  

Definition 2:  Simulation Tree � can also be defined as 

� �	� �,�, % 	 

A 

B 

C D E 

F G 
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With: 
• � ∈ � 
• % ⊂ � ( �� � ����  
• ��, )� ∈ %	 ⟺ )	 ∈ ���� 

Using Definition 2 for the example above, � and � will 
be defined as same while % will be 

% � ��A, B�, �B, C�, �B, D�, �B, E�, �D, F�, �D, G�� 

Definition 3: A Simulation Skeleton is defined by 

2 �	� ����, �, � 	 
With 

• �� 	 ∈ �	∀	i 
• �:	� → ℘��� where ℘��� is Power Set of � 
• ������� � ∅	∀� 
• ������ � ∅,	 ∀	� ∈ � � ⋃���� 

 

Definition 4: A Simulation Bundle is formally defined 
as 

" �� ����, �, �, 56, ��7689� 	 
With 

• � ����, �, � 	 as a skeleton 

• 56	is the set of Processes  

• ��7689�:	� → 56 

 

Definition 5: A Simulation Graph is defined by 

& �� ����, �, �, 56, 5�, ��7689�,:�; 	 
With 

• � ����, �, �, 56, ��7689� 	 is a Simulation 

Bundle 

• 5� is a set of Processors 

• Map: 56 → 5� 

 

4.3. Basic Operations Formalized 
In this section we show that moving from a Simulation 
Tree (ST) to a Simulation Graph (SG) can be 
decomposed into basic operations and later we will 
show the methodology that drives this process. 

4.3.1. Split 
It is a function used for creating a partition of 
simulating entities/nodes from a simulation tree. 

Definition 6: Split:	< → Σ 

With 
� �	� �,�, � 	  
2;��8��� �	� ����, �′, �′ 	  
Based on the following conditions: 

• � ∈ ⋃���� 
• �� � �⋃���� 
•  �′/� � � 

Where < is the set of all possible trees and Σ is the set of 
all possible skeletons. 
 

4.3.2. Cluster 
This function takes the available number of nodes and 
groups them into Processes. 

Definition 7: Cluster: � → 56 

Where  
56 is the set of Processes. 
Based on the conditions that 

• ��7689����;�	is Connex ∀; ∈ 	56  
• ∀	;� , ;� ∈ 	56, 	;� � ;� ,

��7689��;�� ⋂��7689�@;�A � 	∅, 
 
4.3.3. Map 
This function takes the set of available Processes and 
plots them onto the set of available Processors. 

Definition 8: Map: 56 → 5� 

Where  
• 56	is the set of Processes  
• 5� is the set of Processors 

Based on the following condition 
 ∀	;� , ;� ∈ 	56, 	;� � ;� , :�;�;��⋂:�;@;�A � ∅	  

 

4.3.4. Transform 
Transform is a function used for altering the Simulation 
Tree structure either by expansion or reduction. This 
altering is done on the number of available nodes (not 
including the Root Coordinators) on the Tree and their 
relationships. 
Definition 9:  ����6�B��, ��, %�, %�C:	< → < 

����6�B��, ��, %�, %�C�� �,�, % 	� �� �,��, %� 	 

With 
• �� � �⋃	�� � �� 
• %� � %⋃	%� � %� 

Where 
• �� is the set of nodes to be added to � 
• �� is the set of nodes to be removed from � 
• %� is the set of relationships to be added to % 
• %� is the set of relationships to be removed 

from % 
Based on the following conditions: 

• ��	 ⋂ 	� � 	∅ 
• ��	 ⊂ � � ��� 
• %�	 ⊂ �� ( ���⋃���⋃��� ( � � ���� 
• %�	 ⊆ % 

 
5. APPLICATION 

5.1. Case Study 
In this study we describe a possible path in the 
application of the Simulation Graph construction 
methodology. This application starts with the original 
DEVS tree. At the Transform stage the tree structure is 
modified by reduction after which the tree is Split to 
create a partition of nodes also increasing the number of 
Root Coordinators on the entire tree. These partitions of 
nodes are grouped into available number of Processes 
thereby creating a Simulation Bundle (Figure 6c). At 
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the final stage (Map), a Simulation Graph was created 
by mapping the each Process on the Simulation Bundle 
to an available number of Processors. See Figure 6. 

 
 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6: Application of Simulation Graph 
Methodology   

  
5.2. Works Revisited 

In a more general overview, most DEVS 
implementation decisions have been observed to be 
based on the fundamental elements i.e. simulation tree, 
process and processor. We present some of them here 
and their Simulation Graph. 

To explain the strategies in the literature in a more 
formal way we suggest the Tree-Process-Processor 
notation. It consists in defining the number of elements 

for each aspect of PADS. We use N for “many 
elements”. For example, a 1-1-1 scheme is a Simulation 
Graph with 1 tree, 1 process and 1 processor while N-
N-1 is a Simulation Graph with many trees, many 
processes and 1 processor. 

PythonDEVS (Bolduc and Vangheluwe 2002) is a 
1-1-1 strategy. It uses the CDEVS formalism in 
specifying models and as a consequence it performs 
sequential simulation. 

The Abstract Threaded Simulator of the James II 
(Himmelspach and Uhrmacher 2006) package uses a 1-
N-1 strategy with its processes created using Java 
threads. Depending on the memory size of the processor 
and the model size, the cost of creating threads gets 
expensive as the number of models increases. This is a 
critical factor to be considered when using many 
processes.  

In (Troccoli and Wainer 2003), the Parallel CD++ 
Simulator is a 1-N-N strategy. Also, new simulation 
nodes were used on the tree thereby expanding it. This 
methodology better suits distributed simulation but 
increases the cost of communication between the nodes. 
Also, Parallel Sequential Simulator by Himmelspach, 
Ewald, Leye and Uhrmacher (2007) uses this 1-N-N 
strategy. 

The Conservative CD++ (Jafer and Wainer 2010) 
is an N-N-N strategy. In order to reduce communication 
costs between the nodes the simulator was flattened. 
The flattening involves a reduction in the number of 
nodes on the simulation tree. Some other works that 
uses the N-N-N strategy include DEVS-Ada/TW 
(Christensen and Zeigler 1990), DOHS scheme by Kim, 
Seong, Kim and Park (1996) and Optimistic Parallel 
CD++ (Qi and Wainer 2007). 

Also, we observed that having an implementation 
which involves the use of N-1-1 strategy or N-1-N 
strategy is not realistic. The reason for this is execution 
of each tree is asynchronous and can be done 
simultaneously using many processes instead. 

 
6. CONCLUSION 
This paper is part of a more general research direction 
in that we investigate various approaches commonly 
used in PADS with DEVS to build simulators. We 
presented the Simulation Graph concept to help ease the 
process of building DEVS simulators and provide a 
common platform for different implementation 
strategies. This was achieved through the identification 
of the fundamental elements used in DEVS simulators 
and the relationship between them. Thus, with this we 
were able to provide definitions for a formal framework 
as opposed to the traditional intuitive way of 
constructing a DEVS simulator. Also, we presented a 
possible path in the application of the Simulation Graph 
and revisited works by identifying their Simulation 
Graph approach. Further works include automating this 
process by implementing the methodology in SimStudio 
package (Traoré 2008). 
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