
FORMAL FRAMEWORK FOR THE DEVS-DRIVEN MODELING LANGUAGE

Ufuoma Bright Ighoroje

 (a)
, Oumar Maïga

(b)
, Mamadou Kaba Traoré

(c)

(a)

African University of Science and Technology, Abuja, Nigeria
(b)

University of Bamako, Mali
(c)

Blaise Pascal University, Clermont-Ferrand 2, France

(a)

uighoroje@aust.edu.ng,
(b)

maigabababa78@yahoo.fr,
(c)

traore@isima.fr

ABSTRACT

The DEVS-Driven Modeling Language (DDML) is a

graphical modeling language that is based on Discrete

Event System Specification (DEVS). Models built with

DDML are highly expressive and communicable and

validation of model properties can be done by

simulating these models following the DEVS simulator

protocol. We can take advantage of the usefulness of

formal methods and apply symbolic manipulation and

reasoning to deduce properties of models that cannot be

derived from simulation. Since DDML focuses on three

levels of abstraction in the hierarchy of system

specification, we propose to do formal reasoning at each

level of abstraction by applying a semantic mapping

function to formal methods that can capture the

properties of the model at each level. We do this

because we can gain more insight about a model by

observing different perspectives. This formal

framework for DDML is the focus of this paper.

Keywords: DEVS, Formal Methods, DDML

1. INTRODUCTION

Modeling is a way of thinking about systems by

developing abstract models, usually at multiple levels of

abstractions with each level revealing a perspective of

the system that cannot be observed at other levels.

Simulation and testing have been employed to verify

and validate the properties of abstract models against

the system under study by exploring some of the

possible behaviors and scenarios. On the other hand,

formal analysis provides a very attractive and

increasingly appealing compliment to simulation by

conducting exhaustive exploration of all possible

behaviors through symbolic reasoning exercises. The

advantage here is that we can combine formal analysis

and simulation to derive properties of models and

compare them with system properties. We can also take

benefit of the advances in formal analysis and the

existing tools that are available to ensure that the

models built accurately represent the desired properties

of the system. Since DEVS (Zeigler, Praehofer, and

Kim 2000) is a “universal” and powerful simulation

modeling formalism, integrating methods for formal

analysis with DEVS would bring the desired results.

We say DEVS is universal because other

formalisms have been proven to have an equivalent (or

approximate) DEVS representation. DEVS supports full

range of dynamic system representation. A Differential

Equation System Specification (DESS) can have an

approximate Discrete Time System Specification

(DTSS) by discretization (selection of a sufficiently

small constant time interval). A DTSS model, in turn

has an equivalent DEVS representation. Quantization of

events in a DESS system can result in an approximate

DEVS model. As such DEVS approach can be used to

model discrete systems and provide approximate

representations of continuous and hybrid systems.

DEVS also promotes separation of concerns by

separating the model, simulator, and experimental

frame. Although DEVS is powerful, it is a semi-formal

specification. It is up to the modeler to express the

system structure, behavior, and traces in ways that are

most appealing. This “freedom” has led to the

development of several DEVS based modeling

formalisms. To fill these voids, we propose the DDML

(DEVS-Driven Modeling Language). DDML combines

DEVS, visual modeling, and formal analysis. In

addition, DDML provides an approach to unify the two

variants of DEVS (Classic DEVS and Parallel DEVS).

This paper is structured as follows. In section 2, we

review some related works. In section 3, we present the

concrete syntax of DDML. In section 4, we present the

formal framework for DDML and show the different

levels of abstractions in DDML specification and the

properties that can be derived.

2. RELATED WORKS

Related works have addressed formal analysis of

DEVS models. These proposals range from formal

model-checking of sub-classes of DEVS, or

transformation of DEVS into formal methods for

verification purposes, generation of traces from DEVS

models for testing

Saadawi and Wainer (2010) proposed a subclass of

classic DEVS by mapping the time advance to a rational

number which they call Rational Time-Advance (RTA)

DEVS thus imposing restrictions on the elapsed time to

transform RTA-DEVS to Timed Automata (TA) to

enable reachability algorithms to be implemented in

UPPAL. Earlier, (Saadawi and Wainer 2009) had

proposed a technique for verification of DEVS models

based on Model-checking. The technique is to specify

graphically DEVS models using E-CD + + and

transforming these models into TA in UPPAAL.

Hong, Song, Kim, and Park (1997) proposed the

Real-Time DEVS formalism (RT-DEVS) which

introduces a time advance function that maps each state

to a range with maximum and minimum time values.

Further work on verifying RT-DEVS has been done by

669

mailto:uighoroje@aust.edu.ng
mailto:maigabababa78@yahoo.fr
mailto:traore@isima.fr

using timed automata and UPPAAL with

transformation from RT-DEVS to UPPAAL. (Hong and

Kim 2005) proposed a method of verification of DEVS

models in the environment DEVSim++. The approach

is to specify the model in DEVS (operational

formalism) and use the temporal logic (TL) formalism

assertions to specify the properties and time constraints

of the system. They use a projection technique (external

TLA) to reduce the state space

Ernesto (2008) worked on the development of an

alternative theoretical foundation for DEVS by defining

DEVS models as labeled transition systems (LTS).

With this, we can use existing tools for LTS to reason

with DEVS and compare DEVS with other formalisms

defined as LTS.

Hwang and Zeigler (2009) defined a class of

DEVS, called finite and deterministic DEVS (FD-

DEVS) by introducing assumptions that enable us to

define a reachability graph.

Weisel, Petty and Mielke (2005) discussed a

formal theory for semantic composability that examines

simulation composability using formal definitions and

reasoning.

Cristia (2007) proposed a transformation method

of DEVS models in TLA +. The main conclusion here

is that DEVS models describing discrete event systems

can be easily translated into TLA+ specifications. This

would be beneficial for DEVS since it lays the basis for

a formal semantics of this powerful modeling language.

Hernandez and Giambiasi (2005) showed that

verification of general DEVS models through

reachability analysis is not decidable. They based their

deduction on building a DEVS simulation Turing

machine. They argue that reachability analysis maybe

possible only for restricted classes of DEVS. This result

however was based on introducing state variables into

DEVS formalism with infinite number of values.

These works mentioned above have focused on

only one aspect in the Zeigler‟s hierarchy of system

specification by transforming DEVS into a formal

method that can capture the properties of the model at

that level. Then formal reasoning can be done with the

formal structure. We argue that more insights about a

model can be derived by studying other levels. We

realize that one formal method might not be suitable to

fully capture all aspects of a system. Hence, we propose

a framework that would provide logical semantics for

reasoning at different levels of abstraction. Furthermore,

we make use of different formal methods at different

levels, depending on the expressive power of the

method chosen.

This framework that we propose is based on a

graphical modeling formalism – the DEVS-Driven

Modeling Language (DDML). DDML is inspired by

DEVS that combines graphical modeling and formal

analysis. It adopts the DEVS simulation protocol in its

operational semantics. It is also a unifying framework

for the two variants of DEVS (CDEVS and PDEVS).

3. THE DEVS DRIVEN MODELING

LANGUAGE (DDML)

Fig. 1 is the concrete syntax of DDML showing its

elements and the relationships between elements.

A DDML model interacts with its environment via

IOFrames (input and output events) which are realized

with input and output ports (represented graphically as

arrows). There are two types of models – atomic

(describes a system that cannot be decomposed into

sub-systems) and coupled (composed of sub-models

with couplings between the models. Couplings are

partitioned into External Input Coupling (EIC), Internal

Coupling (IC), and External Output Coupling (EOC).

The select flags within the coupled model are used to

resolve synchronization issues between child-models.

This corresponds to the select function in CDEVS.

Some situations can lead to a voting/Condorcet‟s

paradox. Several flags can be added to indicate

paradoxes. Atomic model is drawn as a box with input

and output arrows. A coupled model is drawn in a

similar shape containing its child-models, their

couplings (with lines as shown) and select flags.

State variables are used to partition states in an

atomic model. A DDML state is defined by a

configuration on a set of finite state variables. Each

state has properties based on this configuration. The

Initial state is used to define all the state variables and

to define the subroutines that are used in other states.

An atomic model usually starts from an initial state, and

then by external (in response to an external input event),

internal (automatically at end of a lifespan), confluent

(when there‟s a conflict in transition), or conditional

transitions. It changes its state to passive (lifespan is

infinite time), finite (lifespan between 0 and + ∞) or

transient (lifespan is 0) states. When in a state, the

system might undergo some activities. States are shown

in boxes with 4 compartments for name, properties,

activities and time advance. The transitions are drawn

with arrows with the exception of the conditional

transition drawn in a diamond box. Note the labels on

the transitions. For internal (lamda is an output function

and assignments refer to the reconfiguration of state

variables before entering the next state), external (input

is the trigger input event that causes the transition).

Condition shows the criteria for particular transitions.

The sub-diagram “illustrating transitions” shows the

graphical origin of the transitions in DDML notation.

Note the following constraints not shown in the

diagram. For EIC, source = self, target  self; IC: source

 self, target  self; EIC: source  self, target = self. For

Transient state: ta = 0; Passive state: ta = +∞; Finite

state: 0 < ta < + ∞. “Illustrating Transitions” shows

external transition must appear before the edge of the

box (top or bottom) and directed towards the lateral

sides. Internal transition must originate at the right edge

of the box and confluent transition originates from the

top right corner and is directed towards the back.

670

«abstract»
Model

 Label: Template

{M1, M2}

{M1, M3}

m1:M1

m3:M3

m2:M2

Coupled_Model

 m1:M1

Atomic_Model

*

*

«abstract»
IOFrame

«abstract»
Abstract_Event

Input_Port

«abstract»
Event Bag

IOFrames*

Coupling

*

source

target

EOC

IC

Output_Port

EIC

 Assignments Lamda

Internal

Transition

Condition

Conditional

Assignments

Inputs

External

Assignments

Conditions

Confluent

 Label

Properties

Activities

DEVS_ZERO

Transient
 Label

Properties

Activities

DEVS_INFINITY

Passive
 Label

Properties

Activities

Time_Advance

Finite

 Initial State

State variables

Procedures

Intial

«abstract»
State

*

*

reference

belonging

domain

*

Activity

Subset

Set

Property

State_Variable
defined_by

*

End18*

 Label

Properties

Activities

DEVS_ZERO

Internal

Confluent

External

Illustrating
Transitions

Figure 1: DDML Concrete Syntax showing notations for Coupled Model, Atomic Model, Input and Output Ports,

Couplings (EIC, IC, and EOC), States (Initial, Finite, Passive, and Transient), and Transitions (External, Internal,

Confluent, and Conditional). Others that do not have graphical notations are components of other graphical elements.

4. FORMAL FRAMEWORK FOR DDML

The DDML paradigm focuses on three levels of

abstraction of the hierarchy of system specification

(Zeigler, Praehofer, and Kim 2000):

 Coupled Network (CN) concerned with

structural properties and functional couplings.

 Input Output System (IOS) concerned with

system dynamics characterized by states and

state transitions.

 Input Output Relation Observation (IORO)

concerned with traces and trajectories of the

system.

The formal semantics of DDML shall be expressed

at these levels by using different formal methods to

represent the corresponding properties that can be get.

This is done so that we can derive different insights

about the model. We can also take advantage of

exisiting tools for formal an analysis to derive

properties of the model. Fig. 2 summarizes the formal

framework for DDML.

At the CN level, a semantic mapping function maps

DDML processes onto concurrent processes defined in

CSP (communicating sequential processes) (Hoare

1985). At the IOS level, a semantic function maps the

state transition diagram onto an LTS (labeled transition

system). At the IORO level, the system traces (which

are expressed as footprints of the state transition

system) are mapped onto CTL (computational tree

logic). Due to space limitations, we shall show only the

semantic mapping at the IOS level and give a taste of

the properties that can be derived at other levels.

Figure 2: Formal framework for DDML

4.1. DDML at the IOS Level

The IOS level of DDML can be mapped to a labeled

transition system (LTS). An LTS is a tuple (S, Λ, →)

where S is a set (of states), Λ is a set (of labels) and →

⊆ S × Λ × S is a ternary relation (of labeled transitions).

If p, q ∈ S and α ∈ Λ, then (p, α ,q) ∈ → is written as

Semantic Mapping
CN CSP

Semantic Mapping
IOS LTS

Semantic Mapping
IOFO CTL

671

p
 α
 q. This represents a transition from state p to

state q with label α. Labels can represent different

things (typically input expected or triggering actions).

 An atomic DDML model is a tuple of the form:
B = <XB, YB, SB, S0B, ψ, C (VB), Tint, Text, C(e), OP, φ, Act >

Where

𝑋𝐵 = 𝑝, 𝑋𝑝 |𝑝 ∈ IPorts and dom p = 𝑋𝑝

Such that #𝑋𝐵 < +∞ is the set of input ports;

𝑌𝐵 = q, Yq |q ∈ OPorts and dom q = Yq

Such that #𝑌𝐵 < +∞ is the set of output ports;

𝑉𝐵 = v, Sv |v ∈ StateVar and dom v = Sv
#𝑉𝐵 < +∞ is the set of state variables;

𝑆𝐵 is a finite set of state clusters;

𝑆0𝐵 ∈ 𝑆𝐵 is the initial state of B ;

OP is the set of operations defined on the state

variables;

Given that „ops‟ is an operation and „a‟ is a state, the

notation a.ops indicates that „a‟ is operated by „ops‟ to

change the state of „a‟.

𝐶(𝑉𝐵) is a set of constraints on state variables. A

constraint is of the form

c ≔ v ∈ D|v ∈ D ∧ v′ ∈ D′|v ∈ D ∨ v′ ∈ D′

Where 𝑣 = 𝑣1 , … , 𝑣𝑛 𝑎𝑛𝑑 𝐷 ⊆ 𝑑𝑜𝑚 𝑣1 × … ×
𝑑𝑜𝑚(𝑣𝑛),

 v′ = v′
1 , … , v′

m and D′ ⊆ dom v′1 × … ×
dom(v′m) .

𝜓: 𝑆𝐵 → ℙ𝐶(𝑉𝐵) is a mapping between each element of

𝑆𝐵 and a finite set of conditions on the variables in VB.

Given s ∈ SB,

We denote 𝑠 = 𝑠′ ∈ 𝑑𝑜𝑚 𝑆𝑣 𝑣∈𝑆𝑡𝑎𝑡𝑒𝑉𝑎𝑟 |𝑠′ ⊨ 𝜓(𝑠)
The function 𝜓 is defined by the following:

𝜓 𝑆0𝐵
 is verified by the initial state of the system

 s s∈SB
= dom Sv v∈StateVar and ∀s, s′ ∈ SB , s ∩

s′ = ∅ for 𝑠 ≠ 𝑠′
𝐴𝑐𝑡 is the set of activities;

𝜑: 𝑆𝐵 → ℙ 𝐴𝑐𝑡 is the mapping from states to the set of

activities ;

Tint ⊆ (SB × ℝ+) × C(VB) × Y × ℙ OP × (SB × ℝ+) is

the set of internal transitions satisfying:

The internal transition s, d , c, l, ops, (s′, d′) ∈ Tint

will be denoted by s, d
 <c,l,ops >
 iB s′, d′ or

 s, d
 <c,l,ops >
 s′, d′ to avoid confusion.

𝐶(𝑒) is the set of conditions 𝛼 of the elapsed time e of

the for

𝛼 ≔ 𝑒~𝑡|𝑒 − 𝑡~𝑡′|𝑒 + 𝑡~𝑡′|𝑒 ∗ 𝑡~𝑡′|𝛼1 ∧ 𝛼2|𝛼1 ∨ 𝛼2

Where~ ∈ =, ≤, <, ≥, > , 𝑒, 𝑡, 𝑡′ are positive real

numbers and 𝛼1 et 𝛼2 are conditions (denoted by ⊨ 𝛼 if

e satisfies the condition 𝛼);

Text ⊆ (SB × ℝ+) × C(VB) × X × C(e) × ℙ OP × (SB ×
ℝ+) is the set of external transition.

The internal transition s, d , c, x, c e , ops, (s′, d′) ∈

Text will be noted s, d
 <x,c(e),ops >
 eB s′, d′

or s, d
 <x,c(e),ops >
 s′, d′ . In particular, if there is

no branching condition, the transition

 s, d , ∅, x, c(e), ops, (s′, d′) ∈ Text will be

denoted s, d
 <x,c e ,ops >
 eB s′, d′ .

 At a given instance of time, the system is in a

cluster state 𝑠 ∈ 𝑆𝐵 with a life span 𝑑 that is to say the

variables satisfy ψ s . If the lifespan of the current

atomic state 𝑠1 ∈ 𝑠 elapses before an external event

occurs then the model output 𝑙 is sent just before

transiting to another cluster state 𝑠′ such that

 𝑠, 𝑑 , 𝑙, 𝑜𝑝𝑠, (𝑠′, 𝑑′) ∈ 𝑇𝑖𝑛𝑡 (internal transition,

𝑣. 𝑜𝑝𝑠 ⊨ 𝜓(s‟)). When an external event 𝑥 occurs

before the end of the lifespan of the state, the model

transits to the cluster state 𝑠′ such that

 𝑠, 𝑑 , 𝑥, 𝑐 𝑒 , 𝑜𝑝𝑠, (𝑠′, 𝑑′) (external transition,

𝑣. 𝑜𝑝𝑠 ⊨ 𝜓(𝑠′) with a life time of d‟.

 Given an atomic DDML model
B = <XB, YB, SB, S0B, 𝜓, C(VB), Tint, Text, C(e), OP, 𝜑, Act >

It can be shown that B is equivalent to LTS

𝐿 𝐴 =< 𝑆𝐿 , 𝑖𝑛𝑖𝑡, Σ, 𝐷, 𝑇 >

Where,

𝑆𝐿 = 𝑄 = (𝑠, 𝑒 , 𝑑)|𝑠 ∈ 𝑆𝐵 𝑎𝑛𝑑 0 ≤ 𝑒 ≤ 𝑑 ;
𝑖𝑛𝑡 = (𝑆0𝐵 , 0 , 𝑑) is the initial state ;

Σ = 𝑋𝑝𝑝∈𝐼𝑃𝑜𝑟𝑡𝑠 ∪ (𝑌𝑞𝑞∈𝑂𝑝𝑜𝑟𝑡𝑠) ∪ (ℝ+ ∪ 0, +∞)

is the set of events (alphabet) ;

𝐷 = 𝑠, 𝑒 , 𝑑
 𝑦
 (𝑠 ′, 0 , 𝑑′)|∃𝑜𝑝𝑠 ∈ ℙ𝑂𝑃, 𝑒 =

𝑑 𝑎𝑛𝑑 𝑠, 𝑑 , 𝑦, 𝑜𝑝𝑠, (𝑠 ′, 𝑑′) ∈ 𝑇𝑖𝑛𝑡 ∪

 𝑠, 𝑒 , 𝑑
 𝑥
 (𝑠′, 0 , 𝑑′)|∃𝑜𝑝𝑠 ∈ ℙ𝑂𝑃, 0 ≤ 𝑒 <

𝑑 𝑎𝑛𝑑 𝑠, 𝑑 , 𝑥, 𝑐 𝑒 , 𝑜𝑝𝑠, (𝑠′, 𝑑′) ∈ 𝑇𝑒𝑥𝑡

𝑇 = 𝑠, 𝑒 , 𝑑
 𝑡
 (𝑠, 𝑒 ′ , 𝑑)|𝑒 ′ = 𝑒 + 𝑡 < 𝑑

 To illustrate the how DDML can express properties

at this level graphically, we shall consider a DDML IOS

model of a traffic light. The functional diagram of the

TrafficLight is shown in Fig. 3.

Figure 3: Simplified Traffic Light Atomic Model

 The output evens in the TrafficLight system are the

displays of colors (red, yellow, green, or black). This

controls the flow of cars in a road network. Hence, we

have an output port (trafficColors). The TrafficLight

can be controlled by a Control (with ON and OFF as

possible inputs).

 The DDML IOS model of the TrafficLight is

shown in Fig. 4. The state of the system is determined

by the value of the color attribute. Hence we have the

states: STOP, READY_TO_GO, READY_TO_STOP,

GO, and OFF. The value of the color attribute is the

indicated in the state diagrams. OFF is a passive state

(time advance is INFINITY, and it does not undergo

any internal transition).

TrafficColor ∈{red, yellow, green, black} Control ∈{ON, OFF} TrafficLight

672

 Ready_To_Go

Color = Yellow

Do {…….}

5.00

 STOP

Color =Red

Do {…….}

20.00

 GO

Color = Green

Do {…….}

60.00

 Ready_To_STOP

Color = Yellow

Do {…….}

5.00

 OFF

Color = Black

Do {…….}

DEVS_INFINITY

Color {yellow, red, green, black}

Initial State

Control.OFF

Control.ON

trafficColor^Red

trafficColor^Yellow

trafficColor^Green

trafficColor^Yellow

Figure 4: DDML IOS model of TrafficLight

 From OFF, when the system receives an ON signal

through its Control port (Control.ON), it undergoes an

external transition to STOP state. The system remains in

STOP for 20 seconds before an internal transition to

READY_TO_GO. It outputs Yellow through the

trafficColor port (trafficColor^Yellow). From any state,

if Control.OFF occurs, the system transitions to OFF

state (external transition).

 We can do formal analysis on this system by

transforming it into a labeled transition system and

leveraging formal analysis tools like LTSA (Labeled

Transition System Analyzer) (Magee and Kramer

2006). LTSA is a model checking tool that uses

algorithms to check for desirable and undesirable

properties for all possible sequences of events and

actions and to see that it conforms to specification.

LTSA uses FSP (Finite State Processes) as a concise

way to represent an LTS and the properties of the

system can be animated and visualized. Fig. 5 is a

snapshot of LTSA with our TrafficLight model. Labels

are triggers for transition. We can trace all the possible

sequences of events and perform checks for safety,

deadlocks, and completeness.

 For example, we can ask questions like “how would

the system react when it is in READY_TO_GO state

(State 2) and it receives Control.ON?” Analysis shows

that the model does not take care of this possibility.

This would make us to refine the model to ensure that it

is complete.

State Key
0 – OFF
1 – STOP
2 – READY_TO_GO
3 – GO
4 – READY_TO_STOP

Figure 5: Analysis of TrafficLight in LTSA

4.2. DDML at the CN Level

The focus at the CN level is the structure and functional

couplings of the system. To illustrate, we shall consider

a model of a road-network (RN). Fig. 6 shows a

schematic road network. A more advanced system

would contain the road network, traffic lights, and

authorization and synchronization channels. The CN

model is shown in fig. 7.

R6 R5

P5 P4

P2P1

R4

R3

R7

R8

R2R1

Figure 6: Road Network (RN)

673

Road: R8

Traffic:T4

Traffic: T3

Traffic: T2

Traffic: T3

{Traffic, Platform, Road}

RoadNetwork

Road: R6

Road: R4

Road: R2

Platform:
P1

Platform:
P3

Platform:
P4

Platform:
P2

Road: R1

Road: R7

Road: R5

Road: R3

Figure 7: DDML CN model of the RoadNetwork

The coupled model (RN) consists of atomic

models: TrafficLights (T1-4), Roads (R1-8) and

Platforms (P1-4). The TrafficLights are for flow control

of cars. A platform is used for interchange of cars

within the road network. There are 4 EIC couplings

between RN and R8, R6, R4, and R2. These correspond

to the events whereby cars enter the road network.

These cars are interchanged between roads and

platforms (as shown by the ICs). EOCs (between RN

and R1, R7, R5, and R3) include events whereby cars

leave the road network. The select flag indicates the

priorities when components are imminent.

 The formal semantics of DDML CN models can

be given in terms of CSP or other process algebras. We

can use the FDR (Failures-Divergence Refinement)

model checker to check the models for desirable and

undesirable properties.

4.3. DDML at the IORO Level

At the IORO level, we can derive properties about the

trajectories of the system. These trajectories are

footprints of the DDML IOS and they can be mapped to

CTL. We can get several footprints depending on the

starting state and the sequence of activities that occur.

Fig. 8 shows the footprint of the traffic from when it is

in an OFF state. It receives an ON signal from its

Control port and transitions to the Stop state where it

remains for 20 seconds and displays Yellow signal

before moving to the READY_TO_GO state where it

remains for 5 seconds, and so on.

 STOP

Color =Red

Do {…….}

20.00

 OFF

Color = Black

Do {…….}

DEVS_INFINITY

 Ready_To_Go

Color = Yellow

Do {…….}

5.00

 GO

Color = Green

Do {…….}

60.00

 Ready_To_STOP

Color = Yellow

Do {…….}

5.00

Control.ON

Display^Yellow

Display^Green

Display^Yellow

Control.OFF

 OFF

Color = Black

Do {…….}

DEVS_INFINITY

Figure 8: DDML IORO Model of Traffic Light

 As explained earlier, this DDML IORO model can

be easily mapped to CTL for formal analysis.

5. CONCLUSION

We presented a framework for formal reasoning of

DDML models at three levels of abstraction using

different formal methods that allow us to draw different

insights about the model. We presented the formal

semantics of DDML IOS by semantic mapping to LTS.

By leveraging model-checking tools like LTSA we

could do some analysis to check for desirable and

undesirable properties, safety, progress, and safety

properties. Future work would investigate how this can

be done at the CN and IORO levels.

ACKNOWLEDGMENTS

The work in this paper is partly funded by grants from

RAMSES (Réseau Africain pour la Mutualisation et le

Soutien des pôles d'Excellence Scientifique).

REFERENCES

Cristia, M. 2007. A TLA+ encoding of DEVS models.

International Modeling and Simulation

Multiconference, Buenos Aires (Argentina), pp.

17–22.

Ernesto, P. 2008. Modeling and simulation of dynamic

structure discrete-event systems. Thesis (Ph.D).

MCGill University.

Hernandez, A., and Giambiasi, N. 2005. State

Reachability for DEVS Models. Proceedings of

Argentine Symposium on Software Engineering.

Hoare, C.A.R. 1985. Communicating Sequential

Processes. Prentice Hall International Series in

Computer Science. Prentice Hall.

Hong, J., Song, H., Kim, T., and Park, K. 1997. A Real-

time discrete-event system specification formalism

for seamless real-time software development.

Discrete Event Systems: Theory and Applications,

vol. 7, pp. 355–375.

Hong, K.J., and Kim, T. G. 2005. Timed I/O Test

Sequences for Discrete Event Model Verification.

AIS 2004, LNAI 3397, pp. 275–284.

Hwang, M.H., and Zeigler, B. P. 2009. Reachability

Graph of Finite and Deterministic DEVS

Networks. IEEE Transactions on Automation

Science And Engineering, 6 (3).

Magee J., Kramer J. 2006. “Concurrency: State Models

and Java Programs”. 2
nd

 Edition.

Saadawi, H., Wainer, G. 2010. From DEVS to RTA-

DEVS. IEEE/ACM 14th International Symposium

on Distributed Simulation and Real Time

Applications, 2010 pp.207-210.

Saadawi, H., Wainer, G. 2009. Verification of Real-

Time DEVS Models, Proceedings of SpringSim

Multi Simulation Conference, San Diego, CA

March 2009.

Weisel, E.W., Petty, M.D., Mielke, R.R. 2005. A

Comparison DEVS Semantic Composability

Theory. Proceedings of the Spring 2005

Simulation Interoperability Workshop

Zeigler, B., Praehofer, H., Kim, T. 2000. Theory of

Modeling and Simulation. 2nd Edition. Academic

Press.

674

