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ABSTRACT 

The DEVS-Driven Modeling Language (DDML) is a 

graphical modeling language that is based on Discrete 

Event System Specification (DEVS). Models built with 

DDML are highly expressive and communicable and 

validation of model properties can be done by 

simulating these models following the DEVS simulator 

protocol. We can take advantage of the usefulness of 

formal methods and apply symbolic manipulation and 

reasoning to deduce properties of models that cannot be 

derived from simulation. Since DDML focuses on three 

levels of abstraction in the hierarchy of system 

specification, we propose to do formal reasoning at each 

level of abstraction by applying a semantic mapping 

function to formal methods that can capture the 

properties of the model at each level. We do this 

because we can gain more insight about a model by 

observing different perspectives. This formal 

framework for DDML is the focus of this paper.  
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1. INTRODUCTION 

Modeling is a way of thinking about systems by 

developing abstract models, usually at multiple levels of 

abstractions with each level revealing a perspective of 

the system that cannot be observed at other levels. 

Simulation and testing have been employed to verify 

and validate the properties of abstract models against 

the system under study by exploring some of the 

possible behaviors and scenarios. On the other hand, 

formal analysis provides a very attractive and 

increasingly appealing compliment to simulation by 

conducting exhaustive exploration of all possible 

behaviors through symbolic reasoning exercises. The 

advantage here is that we can combine formal analysis 

and simulation to derive properties of models and 

compare them with system properties. We can also take 

benefit of the advances in formal analysis and the 

existing tools that are available to ensure that the 

models built accurately represent the desired properties 

of the system. Since DEVS (Zeigler, Praehofer, and 

Kim 2000) is a “universal” and powerful simulation 

modeling formalism, integrating methods for formal 

analysis with DEVS would bring the desired results. 

We say DEVS is universal because other 

formalisms have been proven to have an equivalent (or 

approximate) DEVS representation. DEVS supports full 

range of dynamic system representation. A Differential 

Equation System Specification (DESS) can have an 

approximate Discrete Time System Specification 

(DTSS) by discretization (selection of a sufficiently 

small constant time interval). A DTSS model, in turn 

has an equivalent DEVS representation. Quantization of 

events in a DESS system can result in an approximate 

DEVS model. As such DEVS approach can be used to 

model discrete systems and provide approximate 

representations of continuous and hybrid systems.  

DEVS also promotes separation of concerns by 

separating the model, simulator, and experimental 

frame. Although DEVS is powerful, it is a semi-formal 

specification. It is up to the modeler to express the 

system structure, behavior, and traces in ways that are 

most appealing. This “freedom” has led to the 

development of several DEVS based modeling 

formalisms. To fill these voids, we propose the DDML 

(DEVS-Driven Modeling Language). DDML combines 

DEVS, visual modeling, and formal analysis. In 

addition, DDML provides an approach to unify the two 

variants of DEVS (Classic DEVS and Parallel DEVS). 

This paper is structured as follows. In section 2, we 

review some related works. In section 3, we present the 

concrete syntax of DDML. In section 4, we present the 

formal framework for DDML and show the different 

levels of abstractions in DDML specification and the 

properties that can be derived. 

 

2. RELATED WORKS 

Related works have addressed formal analysis of 

DEVS models. These proposals range from formal 

model-checking of sub-classes of DEVS, or 

transformation of DEVS into formal methods for 

verification purposes, generation of traces from DEVS 

models for testing  

Saadawi and Wainer (2010) proposed a subclass of 

classic DEVS by mapping the time advance to a rational 

number which they call Rational Time-Advance (RTA) 

DEVS thus imposing restrictions on the elapsed time to 

transform RTA-DEVS to Timed Automata (TA) to 

enable reachability algorithms to be implemented in 

UPPAL. Earlier, (Saadawi and Wainer 2009) had 

proposed a technique for verification of DEVS models 

based on Model-checking. The technique is to specify 

graphically DEVS models using E-CD + + and 

transforming these models into TA in UPPAAL. 

Hong, Song, Kim, and Park (1997) proposed the 

Real-Time DEVS formalism (RT-DEVS) which 

introduces a time advance function that maps each state 

to a range with maximum and minimum time values. 

Further work on verifying RT-DEVS has been done by 
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using timed automata and UPPAAL with 

transformation from RT-DEVS to UPPAAL. (Hong and 

Kim 2005) proposed a method of verification of DEVS 

models in the environment DEVSim++. The approach 

is to specify the model in DEVS (operational 

formalism) and use the temporal logic (TL) formalism 

assertions to specify the properties and time constraints 

of the system. They use a projection technique (external 

TLA) to reduce the state space 

Ernesto (2008) worked on the development of an 

alternative theoretical foundation for DEVS by defining 

DEVS models as labeled transition systems (LTS). 

With this, we can use existing tools for LTS to reason 

with DEVS and compare DEVS with other formalisms 

defined as LTS.  

Hwang and Zeigler (2009) defined a class of 

DEVS, called finite and deterministic DEVS (FD-

DEVS) by introducing assumptions that enable us to 

define a reachability graph.  

Weisel, Petty and Mielke (2005) discussed a 

formal theory for semantic composability that examines 

simulation composability using formal definitions and 

reasoning.  

Cristia (2007) proposed a transformation method 

of DEVS models in TLA +. The main conclusion here 

is that DEVS models describing discrete event systems 

can be easily translated into TLA+ specifications. This 

would be beneficial for DEVS since it lays the basis for 

a formal semantics of this powerful modeling language.  

Hernandez and Giambiasi (2005) showed that 

verification of general DEVS models through 

reachability analysis is not decidable. They based their 

deduction on building a DEVS simulation Turing 

machine. They argue that reachability analysis maybe 

possible only for restricted classes of DEVS. This result 

however was based on introducing state variables into 

DEVS formalism with infinite number of values. 

These works mentioned above have focused on 

only one aspect in the Zeigler‟s hierarchy of system 

specification by transforming DEVS into a formal 

method that can capture the properties of the model at 

that level. Then formal reasoning can be done with the 

formal structure. We argue that more insights about a 

model can be derived by studying other levels.   We 

realize that one formal method might not be suitable to 

fully capture all aspects of a system. Hence, we propose 

a framework that would provide logical semantics for 

reasoning at different levels of abstraction. Furthermore, 

we make use of different formal methods at different 

levels, depending on the expressive power of the 

method chosen.  

This framework that we propose is based on a 

graphical modeling formalism – the DEVS-Driven 

Modeling Language (DDML). DDML is inspired by 

DEVS that combines graphical modeling and formal 

analysis. It adopts the DEVS simulation protocol in its 

operational semantics. It is also a unifying framework 

for the two variants of DEVS (CDEVS and PDEVS).  

 

3. THE DEVS DRIVEN MODELING 

LANGUAGE (DDML) 

Fig. 1 is the concrete syntax of DDML showing its 

elements and the relationships between elements.  

A DDML model interacts with its environment via 

IOFrames (input and output events) which are realized 

with input and output ports (represented graphically as 

arrows). There are two types of models – atomic 

(describes a system that cannot be decomposed into 

sub-systems) and coupled (composed of sub-models 

with couplings between the models. Couplings are 

partitioned into External Input Coupling (EIC), Internal 

Coupling (IC), and External Output Coupling (EOC). 

The select flags within the coupled model are used to 

resolve synchronization issues between child-models. 

This corresponds to the select function in CDEVS. 

Some situations can lead to a voting/Condorcet‟s 

paradox. Several flags can be added to indicate 

paradoxes. Atomic model is drawn as a box with input 

and output arrows. A coupled model is drawn in a 

similar shape containing its child-models, their 

couplings (with lines as shown) and select flags. 

State variables are used to partition states in an 

atomic model. A DDML state is defined by a 

configuration on a set of finite state variables. Each 

state has properties based on this configuration. The 

Initial state is used to define all the state variables and 

to define the subroutines that are used in other states. 

An atomic model usually starts from an initial state, and 

then by external (in response to an external input event), 

internal (automatically at end of a lifespan), confluent 

(when there‟s a conflict in transition), or conditional 

transitions. It changes its state to passive (lifespan is 

infinite time), finite (lifespan between 0 and + ∞) or 

transient (lifespan is 0) states. When in a state, the 

system might undergo some activities. States are shown 

in boxes with 4 compartments for name, properties, 

activities and time advance. The transitions are drawn 

with arrows with the exception of the conditional 

transition drawn in a diamond box. Note the labels on 

the transitions. For internal (lamda is an output function 

and assignments refer to the reconfiguration of state 

variables before entering the next state), external (input 

is the trigger input event that causes the transition).  

Condition shows the criteria for particular transitions. 

The sub-diagram “illustrating transitions” shows the 

graphical origin of the transitions in DDML notation.  

Note the following constraints not shown in the 

diagram. For EIC, source = self, target  self; IC: source 

 self, target  self; EIC: source  self, target = self. For 

Transient state: ta = 0; Passive state: ta = +∞; Finite 

state: 0 < ta < + ∞. “Illustrating Transitions” shows 

external transition must appear before the edge of the 

box (top or bottom) and directed towards the lateral 

sides. Internal transition must originate at the right edge 

of the box and confluent transition originates from the 

top right corner and is directed towards the back. 
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«abstract»
Model

 Label: Template 

{M1, M2}       

{M1, M3} 

 

 

m1:M1 

m3:M3 

m2:M2 

Coupled_Model

 m1:M1 

Atomic_Model

*

*

«abstract»
IOFrame

«abstract»
Abstract_Event

Input_Port
 

«abstract»
Event Bag

IOFrames*

Coupling

*

source

target

 
EOC

 
IC

 
Output_Port

EIC
 

 Assignments Lamda 

Internal

Transition

 
Condition 

Conditional
 

Assignments 

Inputs 

External
 

Assignments 

Conditions 

Confluent

 Label 

Properties 

Activities 

DEVS_ZERO 

Transient
 Label 

Properties 

Activities 

DEVS_INFINITY 

Passive
 Label 

Properties 

Activities 

Time_Advance 

Finite

 Initial State 

State variables 

Procedures 

Intial

«abstract»
State

*

*

reference

belonging

domain

*

Activity

Subset

Set

Property

State_Variable
defined_by

*

End18*

 Label 

Properties 

Activities 

DEVS_ZERO 

Internal

Confluent

External

Illustrating 
Transitions

 

Figure 1: DDML Concrete Syntax showing notations for Coupled Model, Atomic Model, Input and Output Ports, 

Couplings (EIC, IC, and EOC), States (Initial, Finite, Passive, and Transient), and Transitions (External, Internal, 

Confluent, and Conditional). Others that do not have graphical notations are components of other graphical elements.  

 

4. FORMAL FRAMEWORK FOR DDML 

The DDML paradigm focuses on three levels of 

abstraction of the hierarchy of system specification 

(Zeigler, Praehofer, and Kim 2000):  

 Coupled Network (CN) concerned with 

structural properties and functional couplings. 

 Input Output System (IOS) concerned with 

system dynamics characterized by states and 

state transitions. 

 Input Output Relation Observation (IORO) 

concerned with traces and trajectories of the 

system. 

The formal semantics of DDML shall be expressed 

at these levels by using different formal methods to 

represent the corresponding properties that can be get. 

This is done so that we can derive different insights 

about the model. We can also take advantage of 

exisiting tools for formal an analysis to derive 

properties of the model. Fig. 2 summarizes the formal 

framework for DDML. 

At the CN level, a semantic mapping function maps 

DDML processes onto concurrent processes defined in 

CSP (communicating sequential processes) (Hoare 

1985). At the IOS level, a semantic function maps the 

state transition diagram onto an LTS (labeled transition 

system). At the IORO level, the system traces (which 

are expressed as footprints of the state transition 

system) are mapped onto CTL (computational tree 

logic). Due to space limitations, we shall show only the 

semantic mapping at the IOS level and give a taste of 

the properties that can be derived at other levels. 

 

Figure 2: Formal framework for DDML 

 

4.1. DDML at the IOS Level 

The IOS level of DDML can be mapped to a labeled 

transition system (LTS). An  LTS is a tuple (S, Λ, →) 

where S is a set (of states), Λ is a set (of labels) and → 

⊆ S × Λ × S is a ternary relation (of labeled transitions). 

If p, q ∈ S and α ∈ Λ, then (p, α ,q) ∈ → is written as 

Semantic Mapping 
CN CSP 

Semantic Mapping 
IOS LTS 

Semantic Mapping 
IOFO CTL 

671



p 
    α  
   q. This represents a transition from state p to 

state q with label α. Labels can represent different 

things (typically input expected or triggering actions).  

 An atomic DDML model is a tuple of the form: 
B = <XB, YB, SB, S0B, ψ, C (VB), Tint, Text, C(e), OP, φ, Act > 

Where 

𝑋𝐵 =   𝑝, 𝑋𝑝 |𝑝 ∈ IPorts and dom p = 𝑋𝑝   

Such that #𝑋𝐵 < +∞  is the set of input ports; 

𝑌𝐵 =   q, Yq |q ∈ OPorts and dom q = Yq   

Such that #𝑌𝐵 < +∞  is the set of output ports; 

𝑉𝐵 =   v, Sv |v ∈ StateVar and dom v = Sv  
#𝑉𝐵 < +∞  is the set of state variables; 

𝑆𝐵  is a finite set of state clusters; 

𝑆0𝐵 ∈ 𝑆𝐵  is the initial state of B ; 

OP is the set of operations defined on the state 

variables; 

Given that „ops‟ is an operation and „a‟ is a state, the 

notation a.ops indicates that „a‟ is operated by „ops‟ to 

change the state of „a‟.  

𝐶(𝑉𝐵) is a set of constraints on state variables. A 

constraint is of the form 

c ≔ v ∈ D|v ∈ D ∧ v′ ∈ D′|v ∈ D ∨ v′ ∈ D′   

Where 𝑣 =  𝑣1 , … , 𝑣𝑛  𝑎𝑛𝑑 𝐷 ⊆ 𝑑𝑜𝑚 𝑣1 × … ×
𝑑𝑜𝑚(𝑣𝑛), 

 v′ =  v′
1 , … , v′

m  and D′ ⊆ dom v′1 × … ×
dom(v′m ) . 

𝜓: 𝑆𝐵 → ℙ𝐶(𝑉𝐵) is a mapping between each element of  

𝑆𝐵  and a finite set of conditions on the variables in VB. 

Given s ∈ SB,  

We denote 𝑠 =  𝑠′ ∈  𝑑𝑜𝑚 𝑆𝑣 𝑣∈𝑆𝑡𝑎𝑡𝑒𝑉𝑎𝑟 |𝑠′ ⊨ 𝜓(𝑠)  
The function 𝜓 is defined by the following: 

𝜓 𝑆0𝐵
  is verified by the initial state of the system 

 s s∈SB
=  dom Sv v∈StateVar  and ∀s, s′ ∈ SB , s ∩

s′ = ∅  for 𝑠 ≠ 𝑠′ 
𝐴𝑐𝑡 is the set of activities; 

𝜑: 𝑆𝐵  →  ℙ 𝐴𝑐𝑡  is the mapping from states to the set of 

activities ; 

Tint ⊆ (SB × ℝ+) × C(VB) × Y × ℙ OP × (SB × ℝ+)  is 

the set of internal transitions satisfying:  

The internal transition   s, d , c, l, ops, (s′, d′) ∈ Tint   

will be denoted by   s, d 
    <c,l,ops >    
          iB  s′, d′  or 

 s, d 
    <c,l,ops >    
           s′, d′  to avoid confusion. 

𝐶(𝑒) is the set of conditions 𝛼 of the elapsed time e of 

the for 

𝛼 ≔ 𝑒~𝑡|𝑒 − 𝑡~𝑡′|𝑒 + 𝑡~𝑡′|𝑒 ∗ 𝑡~𝑡′|𝛼1 ∧ 𝛼2|𝛼1 ∨ 𝛼2 

Where~ ∈  =, ≤, <, ≥, > , 𝑒, 𝑡, 𝑡′ are positive real 

numbers and 𝛼1 et 𝛼2 are conditions (denoted by ⊨ 𝛼 if 

e satisfies the condition 𝛼); 

Text ⊆ (SB × ℝ+) × C(VB) × X × C(e) × ℙ OP × (SB ×
ℝ+)  is the set of external transition. 

The internal transition    s, d , c, x, c e , ops, (s′, d′) ∈

Text   will be noted  s, d 
    <x,c(e),ops >    
            eB  s′, d′   

or  s, d 
    <x,c(e),ops >    
             s′, d′ . In particular, if there is 

no branching condition, the transition 

  s, d , ∅, x, c(e), ops, (s′, d′) ∈ Text   will be 

denoted  s, d 
    <x,c e ,ops >    
            eB  s′, d′ . 

 At a given instance of time, the system is in a 

cluster state 𝑠 ∈ 𝑆𝐵  with a life span 𝑑 that is to say the 

variables satisfy ψ s . If the lifespan of the current 

atomic state 𝑠1 ∈ 𝑠  elapses before an external event 

occurs then the model output 𝑙 is sent just before 

transiting to another cluster state 𝑠′ such that 

  𝑠, 𝑑 , 𝑙, 𝑜𝑝𝑠, (𝑠′, 𝑑′) ∈ 𝑇𝑖𝑛𝑡  (internal transition, 

𝑣. 𝑜𝑝𝑠 ⊨ 𝜓(s‟)). When an external event 𝑥 occurs 

before the end of the lifespan of the state, the model 

transits to the cluster state 𝑠′ such that 

  𝑠, 𝑑 , 𝑥, 𝑐 𝑒 , 𝑜𝑝𝑠, (𝑠′, 𝑑′)  (external transition, 

𝑣. 𝑜𝑝𝑠 ⊨ 𝜓(𝑠′) with a life time of d‟. 

 Given an atomic DDML model 
B = <XB, YB, SB, S0B, 𝜓, C(VB), Tint, Text, C(e), OP, 𝜑, Act > 

It can be shown that B is equivalent to LTS  

𝐿 𝐴 =< 𝑆𝐿 , 𝑖𝑛𝑖𝑡, Σ, 𝐷, 𝑇 >   

Where, 

𝑆𝐿 = 𝑄 =  ( 𝑠, 𝑒 , 𝑑)|𝑠 ∈ 𝑆𝐵  𝑎𝑛𝑑 0 ≤ 𝑒 ≤ 𝑑  ; 
𝑖𝑛𝑡 = ( 𝑆0𝐵 , 0 , 𝑑) is the initial state ; 

Σ =   𝑋𝑝𝑝∈𝐼𝑃𝑜𝑟𝑡𝑠  ∪ ( 𝑌𝑞𝑞∈𝑂𝑝𝑜𝑟𝑡𝑠 ) ∪ (ℝ+ ∪  0, +∞ ) 

is the set of events (alphabet) ; 

𝐷 =    𝑠, 𝑒 , 𝑑 
   𝑦    
   ( 𝑠 ′, 0 , 𝑑′)|∃𝑜𝑝𝑠 ∈ ℙ𝑂𝑃, 𝑒 =

𝑑 𝑎𝑛𝑑   𝑠, 𝑑 , 𝑦, 𝑜𝑝𝑠, (𝑠 ′, 𝑑′) ∈ 𝑇𝑖𝑛𝑡  ∪                

   𝑠, 𝑒 , 𝑑 
   𝑥   
   ( 𝑠′, 0 , 𝑑′)|∃𝑜𝑝𝑠 ∈ ℙ𝑂𝑃, 0 ≤ 𝑒 <

𝑑 𝑎𝑛𝑑   𝑠, 𝑑 , 𝑥, 𝑐 𝑒 , 𝑜𝑝𝑠, (𝑠′, 𝑑′) ∈ 𝑇𝑒𝑥𝑡   

𝑇 =    𝑠, 𝑒 , 𝑑 
   𝑡   
  ( 𝑠, 𝑒 ′ , 𝑑)|𝑒 ′ = 𝑒 + 𝑡 < 𝑑   

  

 To illustrate the how DDML can express properties 

at this level graphically, we shall consider a DDML IOS 

model of a traffic light. The functional diagram of the 

TrafficLight is shown in Fig. 3.   

 

 

Figure 3: Simplified Traffic Light Atomic Model 

 

 The output evens in the TrafficLight system are the 

displays of colors (red, yellow, green, or black). This 

controls the flow of cars in a road network. Hence, we 

have an output port (trafficColors). The TrafficLight 

can be controlled by a Control (with ON and OFF as 

possible inputs).  

 The DDML IOS model of the TrafficLight is 

shown in Fig. 4. The state of the system is determined 

by the value of the color attribute. Hence we have the 

states: STOP, READY_TO_GO, READY_TO_STOP, 

GO, and OFF. The value of the color attribute is the 

indicated in the state diagrams. OFF is a passive state 

(time advance is INFINITY, and it does not undergo 

any internal transition). 

 

TrafficColor ∈{red, yellow, green, black} Control ∈{ON, OFF} TrafficLight 
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 Ready_To_Go 

Color = Yellow 

Do {…….} 

5.00 

 STOP 

Color =Red 

Do {…….} 

20.00 

 GO 

Color = Green 

Do {…….} 

60.00 

 Ready_To_STOP 

Color = Yellow 

Do {…….} 

5.00 

 OFF 

Color = Black 

Do {…….} 

DEVS_INFINITY 

 

Color {yellow, red, green, black} 

Initial State 

Control.OFF

Control.ON

trafficColor^Red

trafficColor^Yellow

trafficColor^Green

trafficColor^Yellow

 

Figure 4: DDML IOS model of TrafficLight 

 

 From OFF, when the system receives an ON signal 

through its Control port (Control.ON), it undergoes an 

external transition to STOP state. The system remains in 

STOP for 20 seconds before an internal transition to 

READY_TO_GO. It outputs Yellow through the 

trafficColor port (trafficColor^Yellow). From any state, 

if Control.OFF occurs, the system transitions to OFF 

state (external transition). 

 We can do formal analysis on this system by 

transforming it into a labeled transition system and 

leveraging formal analysis tools like LTSA (Labeled 

Transition System Analyzer) (Magee and Kramer 

2006). LTSA is a model checking tool that uses 

algorithms to check for desirable and undesirable 

properties for all possible sequences of events and 

actions and to see that it conforms to specification. 

LTSA uses FSP (Finite State Processes) as a concise 

way to represent an LTS and the properties of the 

system can be animated and visualized. Fig. 5 is a 

snapshot of LTSA with our TrafficLight model. Labels 

are triggers for transition. We can trace all the possible 

sequences of events and perform checks for safety, 

deadlocks, and completeness.  

 For example, we can ask questions like “how would 

the system react when it is in READY_TO_GO state 

(State 2) and it receives Control.ON?” Analysis shows 

that the model does not take care of this possibility. 

This would make us to refine the model to ensure that it 

is complete. 

 

 

 

State Key
0 – OFF
1 – STOP
2 – READY_TO_GO
3 – GO
4 – READY_TO_STOP

 
Figure 5: Analysis of TrafficLight in LTSA 

 

4.2. DDML at the CN Level 

The focus at the CN level is the structure and functional 

couplings of the system. To illustrate, we shall consider 

a model of a road-network (RN). Fig. 6 shows a 

schematic road network. A more advanced system 

would contain the road network, traffic lights, and 

authorization and synchronization channels. The CN 

model is shown in fig. 7.  

 

R6 R5

P5 P4

P2P1

R4

R3

R7

R8

R2R1

  
Figure 6: Road Network (RN) 
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Road: R8 

 

 

 

 

 

 

 

 
 

Traffic:T4

Traffic: T3

Traffic: T2

Traffic: T3

{Traffic, Platform, Road}

RoadNetwork

Road: R6

Road: R4

Road: R2

Platform: 
P1

Platform: 
P3

Platform: 
P4

Platform: 
P2

Road: R1

Road: R7

Road: R5

Road: R3

 

Figure 7: DDML CN model of the RoadNetwork 

 

The coupled model (RN) consists of atomic 

models: TrafficLights (T1-4), Roads (R1-8) and 

Platforms (P1-4). The TrafficLights are for flow control 

of cars. A platform is used for interchange of cars 

within the road network. There are 4 EIC couplings 

between RN and R8, R6, R4, and R2. These correspond 

to the events whereby cars enter the road network. 

These cars are interchanged between roads and 

platforms (as shown by the ICs). EOCs (between RN 

and R1, R7, R5, and R3) include events whereby cars 

leave the road network. The select flag indicates the 

priorities when components are imminent. 

 The formal semantics of DDML CN models can 

be given in terms of CSP or other process algebras. We 

can use the FDR (Failures-Divergence Refinement) 

model checker to check the models for desirable and 

undesirable properties.  

 

4.3. DDML at the IORO Level 

At the IORO level, we can derive properties about the 

trajectories of the system. These trajectories are 

footprints of the DDML IOS and they can be mapped to 

CTL. We can get several footprints depending on the 

starting state and the sequence of activities that occur. 

Fig. 8 shows the footprint of the traffic from when it is 

in an OFF state. It receives an ON signal from its 

Control port and transitions to the Stop state where it 

remains for 20 seconds and displays Yellow signal 

before moving to the READY_TO_GO state where it 

remains for 5 seconds, and so on.  

 STOP 

Color =Red 

Do {…….} 

20.00 

 OFF 

Color = Black 

Do {…….} 

DEVS_INFINITY 

 Ready_To_Go 

Color = Yellow 

Do {…….} 

5.00 

 GO 

Color = Green 

Do {…….} 

60.00 

 Ready_To_STOP 

Color = Yellow 

Do {…….} 

5.00 

Control.ON

Display^Yellow

Display^Green

Display^Yellow

Control.OFF

 OFF 

Color = Black 

Do {…….} 

DEVS_INFINITY 

Figure 8: DDML IORO Model of Traffic Light 

 As explained earlier, this DDML IORO model can 

be easily mapped to CTL for formal analysis.  

5. CONCLUSION 

We presented a framework for formal reasoning of 

DDML models at three levels of abstraction using 

different formal methods that allow us to draw different 

insights about the model. We presented the formal 

semantics of DDML IOS by semantic mapping to LTS. 

By leveraging model-checking tools like LTSA we 

could do some analysis to check for desirable and 

undesirable properties, safety, progress, and safety 

properties. Future work would investigate how this can 

be done at the CN and IORO levels. 
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