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ABSTRACT 
Petri net is a modelling paradigm used for 
discrete event systems (David and Alla 2005), 
(Cassandras et al. 2008). Their transformations 
are a powerful tool for the validation and 
verification of Petri nets as models of discrete 
event systems. If a simplified Petri net verifies a 
certain set of properties, the original Petri net 
will verify them if the applied net 
transformation preserves these properties. On 
the other hand, the control of Petri nets may also 
improve with the application of Petri net 
transformations. If the unobservable transitions 
are removed by the application of 
transformation rules, then the state of the 
simplified net evolves under the firing of the 
observable transitions. 
In this paper, the transformation of nets will be 
applied to modify the formalism that represents 
a disjunctive constraint of a decision problem 
stated on a Petri net model. Some formalisms 
may be more suitable for the modelling process 
than others (alternative Petri nets), while others 
are more compact and suitable for the 
development of optimization processes in an 
efficient way (compound Petri nets, alternatives 
aggregation Petri nets or disjunctive coloured 
Petri nets). 
A set of transformation rules that preserve the 
structure of the associated graph or reachable 
markings are provided in this paper, as well as 
an example of application in a net 
transformation between two formalisms. As a 
consequence of the application of these rules, 
both the original and resulting formalisms will 
show an equivalent behaviour. Hence, any of 
them can be used to state a decision problem but 
the efficiency of the algorithm to solve the 
problem may be different when considering the 
required computer resources and the quality of 
the obtained solution. 
 

Keywords: equivalence operations, Petri net 
transformations, decision support system, 
compound Petri nets, alternative Petri nets. 
 
1. INTRODUCTION 
One of the stages that can be considered in the 
modeling process of a discrete event system is 
the validation and verification (Peterson 1981), 
(Jimenez et al. 2005). According to (Silva, 
1993), it is possible to reduce the cost and the 
duration of the design process of a SED by 
checking if certain properties are verified by the 
model. One of the techniques of qualitative 
analysis is based in the transformation of the 
Petri net structure. Some important issues of 
these techniques are described in (Berthelot 
1987), (Silva 1993) and (Haddad and Pradat-
Peyre 2006). 
 
These early developments in the theory of the 
Petri nets have led to other transformation 
techniques in the static structure and to new 
formalisms based on PN that are aimed to 
simplify the modeling of DES whose structure 
varies with time. For example (Van der Aalst 
1997) provides with eight transformation rules, 
based in the previously mentioned techniques, 
applied to systems that experience the frequent 
changes in their structure. 
 
An undefined Petri net can be interpreted as a 
model of a discrete event system that includes 
freedom degrees in its structural characteristics 
(Latorre et al., 2009b). The undefined Petri net 
is an abstraction that can be particularized in a 
specific formalism. A classical approach to 
obtain a model of an undefined discrete event 
system is a set of alternative Petri nets (Latorre 
et al., 2007). This type of nets verifies the 
property of mutually exclusive evolutions, 
hence in the same Petri net alternative structural 
configurations of an original discrete event 
system can be included (Latorre et al. 2011). 
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In this paper the concept of equivalence class is 
applied to every alternative Petri net. This 
concept allows substituting any Petri net 
belonging to a set of alternative Petri nets by 
another one whose behaviour and properties are 
the same than the original one. Hence, the 
resulting set of alternative Petri nets will verify 
the same properties and show equivalent 
behaviour. Every equivalence class will be 
composed by Petri nets with the same behaviour 
and all of them will be said to be equivalent. 
 
Given an alternative Petri net, the methodology 
to obtain equivalent Petri nets to the first one 
will be based in matrix-based operations, 
applied to the incidence matrix of the net. These 
matrix-based operations will lead to new Petri 
nets but the graphs of reachable markings will 
be isomorphous in the original and the resulting 
net. This fact ensures that the properties and the 
behaviour of both Petri nets is the same and, 
hence, that they can be considered as equivalent 
ones. 
 
The matrix based operations can be applied with 
the aim of transforming the set of alternative 
Petri nets into a compound Petri net (Latorre et 
al. 2010). This process requires the merging of 
the sets of parameters of all the nets belonging 
to the set of alternative Petri nets. In particular, 
it is necessary to merge the structural 
parameters that are the elements of the 
incidence matrices. In order to obtain a 
compound Petri net with the smallest set of 
undefined structural parameters and hence to 
obtain a compact model that requires a reduced 
computation resources to simulate the evolution 
of the original DES, it is convenient to apply the 
matrix-based operations to the set of alternative 
Petri nets. 
 
These operations might lead to alternative Petri 
nets whose incidence matrices have more 
similarities in the same positions (common 
elements). This fact imply that when the 
element of all the incidence matrices in a given 
position is the same, there is not an associated 
undefined parameter and when most of the 
elements are the same in a certain position, then 
the set of feasible values for the undefined 
structural parameter that appears is reduced. 
 
2. TRANSFORMATION OPERATIONS 
 
Once the objectives of the transformations are 
clear, the matrix-based operations will be 
presented and some examples will be given. 
 
Definition 1. Operation of swapping two rows 
of a matrix. 

The operation of swapping two rows of a matrix 
is defined as the following function: 
 
swapr: Mmn{1,2, …,m}{1,2, …,m}  Mmn  
 (A, i, j)    B  Mmn 
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

 
In other words, definition 1, describes the 
swapping of the ith and jth rows in a matrix A. 
This operation is denoted by swapr(A, i, j) 
 
Remark 1. When applying this operation to the 
incidence matrix of a Petri net it has to be taken 
into consideration that the ith row represents the 
input and output arcs of a place of the PN. Let 
us call this place pi. For this reason, swapping 
two rows, the ith and the jth, implies that the 
arcs associated to pi are no longer present in the 
ith row of the incidence matrix but in the jth. As 
a natural consequence, if this new incidence 
matrix is to be included in the characteristic 
equation of the Petri net it has to be considered 
that the ith element of m, the marking of the 
Petri net, does not represent m(pi) the marking 
of the place pi anymore. The same 
considerations can be made for pj, the jth row of 
the incidence matrix and m(pj). Therefore, the 
swapr(A,i,j) operation implies the swapping of 
the ith and jth elements in the marking vector m 
of the Petri net. This statement is also true for 
the particular case of m0. It is clear then that it is 
necessary to apply the same swapping operation 
that is applied to the incidence matrix, to the 
marking of the Petri net. In a subsequent 
section, it will be mentioned the reference name 
and the alias of any place of a Petri net. With 
these concepts it will be generalized the 
previous considerations on the swapping of 
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rows of an incidence matrix and the application 
of the same operation in the marking of the 
associated Petri net. 
 
Definition 2 . Operation of swapping two 
columns of a matrix. 
The operation of swapping two columns of a 
matrix is defined as the following function: 
 
swapc: Mmn{1,2, …, n}{1,2, …, n}  Mmn  
 (A, i, j)   B  Mmn 
 
where,  
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In other words, definition 2, describes the 
swapping of the columns i and j in matrix A, 
which is denoted by swapc(A, i, j) 
 
Remark 2. The state equation of a Petri net 
requires representing the characteristic vector 
that summarizes the information contained in 
the sequence of transitions fired. The 
characteristic vector (also called firing count 
vector) contains elements that are different to 
zero in the positions that correspond to the 
transitions fired. If an operation swapc is 
applied to an incidence matrix and the state 
equation is represented, the characteristic vector 
should be modified according to this same 
swapc operation. 
 
Definition 3. Operation of adding a row of 
zeros to a matrix. 
The operation of adding a row of zeros to a 
matrix is defined as the following function: 
 
addr: Mmn  M(m+1)n  
 A  B, such that 
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The operation described in the definition 3 is 
denoted by addr(A) and adds a row of zeros to 
the matrix A. 
 
Remark 3. The operation addr applied to the 
incidence matrix of a Petri net implies the 
addition of a new place with a particular 
property: every input and output arc has weight 
zero. In other words, this new place is an 
isolated node of the Petri net. 
 
The marking of the Petri net that results from 
the application of this operation should include 
the marking of the new place, which will 
occupy the last position of the vector. However, 
being isolated, the place cannot experience any 
variation of its initial marking in the evolution 
of the Petri net. Furthermore, the marking of 
other places will not be influenced by the added 
place, hence the marking of the new Petri net, 
excluding the added place, will be the same to 
the original one. If the new place is considered 
in this comparison it is possible to say that the 
significant marking (the one that varies in at 
least an evolution of the PN) is the same in both 
Petri nets, hence the graphs of reachable 
markings are isomorphous. 
 
Definition 4. Operation of removing a row of 
zeros of a matrix. 
The operation of removing a row of zeros of a 
matrix is defined as the following function: 
 
removr: S  M(m-1)n  
 A  B, such that 
 
S = {A  Mmn | am* = (0 0 … 0) }, in other 
words, S is the set of matrices whose mth (last) 
row is a row of zeros.  
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The operation described in the definition 4 is 
denoted by removr(A) and removes the last row 
of a matrix A, which should contain only zeros. 
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Remark 4. The operation removr applied to the 
incidence matrix of a Petri net implies the 
removal of a place with a particular property: 
every input and output arc has weight zero. In 
other words, this new place is an isolated node 
of the Petri net. Moreover, the place should be 
associated to the last row of the incidence 
matrix (if this last condition is not verified it is 
always possible to apply an operation swapr to 
guarantee this fact). 
 
The marking of the Petri net that results from 
the application of this operation should not 
include the marking of the removed place 
(which occupied the last position of the vector 
before the operation). However, being isolated, 
the place could not experience any variation of 
its initial marking in the evolution of the Petri 
net. Furthermore, the marking of other places 
will not be influenced by the removed place, 
hence the marking of the new Petri net, will be 
the same to the original one (excluding the 
added place). If the removed place is included in 
this comparison it is possible to say, as it was 
mentioned in the remark 4, that the reachable 
significant markings are the same in both Petri 
nets, hence the graphs of reachable markings 
(including the non-significant markings) are 
isomorphous. 
 
The swapping of rows and columns of the 
incidence matrices simply locates in a different 
place of the matrices the information (weights) 
related to the arcs that link a certain place with 
the transitions of the PN or a certain transition 
with the places of the Petri net. Furthermore, if 
the parameters associated to a place or a 
transition that changes its position in the 
incidence matrices do not remain attached to the 
position in the matrix but move with the place 
or transition, the behaviour of the net, and its 
structure, will be the same. For this reason, to 
apply such a transformation as the swapping of 
rows and columns of the incidence matrices, it 
is necessary to ensure that the appropriate 
amount of parameters are associated to the 
moving places and transitions. In order to 
facilitate this operation it is convenient to define 
a reference name for every place and transition, 
to which its parameters will be also referred. 
This reference name will be attached to the 
information (weights of arcs) of the rows and 
columns of the incidence matrices (that can 
change its position). On the other hand, it is also 
convenient to define an alias for every place and 
transition. The alias will be attached to the 
position in the incidence matrices, in the way 
that the first row of the incidence matrix will 
always be associated to the alias p1, the second 

to the alias p2 and so on. The same may happen 
with the transitions: the first column will always 
be associated to t1, the second with t2 and so on. 
 
3. APPLICATION OF THE 

TRANSFORMATIONS 
 
Example 1. 
Let A  Mmn be the incidence matrix of a Petri 
net R. 
 
The names of places and transitions of the Petri 
net can be shown in the following representation 
of A: 
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Let us now apply two operations to the 
incidence matrix A: 
 
B = swapr(A, i, j); C = swapc(B, u, v) 
 
In other words: C = swapc(swapr(A, i, j), u, v) 
 
The resulting incidence matrix, with the new 
alias for the places and transitions is presented 
below: 
 
 
 
 
 
 
 
C =  
 
 
 
 
 
In 
this representation of the incidence matrix C, it 
can be seen that the reference names of the 
swapped rows and columns have changed the 
position according to these swaps. This change 
is a consequence of the fact that the reference 
names are related to structural and marking 
parameters (among others) such as the elements 
of the incidence matrices and not to positions in 
the matrix. If the Petri net is the model of a real 
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system, the reference names are likely to be 
associated to a physical meaning as well. 
 
However, in certain applications it is very useful 
to define an alias for every place and transition. 
This alias is associated to the position that the 
elements of the incidence matrix occupy. The 
aliases do not bear the superindex “r”. For 
example, in the matrix C = swapr(A, i, j), the 
alias of the place whose input and output arcs 
are stated in the jth row is pj, whereas its 
reference name is r

ip . 
 
Example 2. 
Let us consider the simple alternative Petri nets 
presented in the figure 1 and their incidence 
matrices shown in the figure 2. Some 
equivalence operations will be applied to 
transform the simple alternative Petri nets into 
matching ones able to be merged. The result of 
this merging is obtaining an equivalent 
compound Petri net with the smallest size of the 
set of undefined structural parameters and the 
smallest size of the feasible combination of 
values of these parameters. In this example it is 
not intended to obtain the optimal compound 
Petri net, just to illustrate the application of 
some equivalence operations. 

 

 
The first equivalence operation consists of 
increasing the size of the incidence matrix to 
reach the dimensions 43. This process require 
the addition of isolated places and transitios as it 
can be seen in the figure 3. 
 
 
The operations that have been applied are the 
following: 

W( mR1 )=addc(addc(addr(W( 1
~R )))  

W( mR2 )=addc(addc(addr(W( 2
~R )))  

The new incidence matrices are shown in the 
figure 4. 

 
The second set of equivalence operations will be 
the swapping of one row and one column in 
W( mR1 ). The purpose of this operation may be 
to make the largest number of elements placed 
in the same position of both incidence matrices 
to coincide in order to reduce the number of 
undefined structural parameters of the resulting 
Petri net. 

 
The process may be seen in the figure 5 and 
correspond to the operations: 

t1 t2 t3  
-1 0 1 p1 
0 0 0 p2 
0 0 0 p3 
2 0 -2 p4 

W( '1
mR ) = 

Fig. 5. Incidence matrix of '1
mR  

after the swapping operations. 

swapc 

swapr 

p2 p3 

p1 

t1 

t2 

p2
p3

p1

t1

t2

2

2

Fig. 3. Addition of isolated places and transitions 
to increase the size of the incidence matrices. 

mR1  
mR2  

p4 p4

t3 t3 

t1 t2 t3  
-1 1 0 p1 
1 -1 0 p2 
1 -1 0 p3 
0 0 0 p4 

W( mR2 ) = 

t1 t2 t3  
-1 1 0 p1 
2 -2 0 p2 
0 0 0 p3 
0 0 0 p4 

W( mR1 ) = 

Fig. 4. Incidence matrices of the alternative 
Petri nets after increasing their size. 

Fig. 2. Incidence matrices of the 
simple alternative Petri nets. 

t1 t2  
-1 1 p1 
2 -2 p2 

W( 1
~R ) = 

t1 t2  
-1 1 p1 
1 -1 p2 
1 -1 p3 

W( 2
~R ) = 

p2 p3 

p1 

t1 

t2 

p1 

t1 

t2 

Fig. 1. Simple alternative Petri nets.

p2 

2 

2 

2
~R  1

~R  
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W( '1

mR )=swapr(swapc(addr(W( 1
~R ),2,3),2,4)  

 
 
After this last operation it is possible to merge 
the incidence matrices of both alternative Petri 
nets to obtain a single compound Petri net. 
 
4. CONCLUSIONS AND FURTHER 

RESEARCH 
In this paper it has been shown how it is 
possible to apply matrix-based operations to the 
incidence matrices of a Petri net that preserve 
the structure of the graph of reachable markings. 
As a consequence, the properties and behaviour 
of the original and resulting Petri nets are 
equivalent. This idea constitutes a powerful tool 
that allows, in the application described in this 
document, to transform a set of alternative Petri 
nets into a compound Petri net with a set of 
undefined parameters is expected to be reduced, 
comparing with a case where the matrix-based 
operations are not applied. 
As future research it is expected to extend the 
application of these ideas to other fields in the 
modeling of discrete event systems, as well as to 
develop new matrix-based operations that allow 
obtaining equivalent Petri nets. 
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