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ABSTRACT

Object-oriented modeling approach brought efficient
model reuse and thus possibility to create rich model li-
braries which enable rapid development of large hetero-
geneous models. However, verification and debugging
of large complex models is becoming and increasingly
challenging task.Furthermore, model should not be more
complicated as needed for a given purpose. A suitable
component describing a subsystem in sufficient detail
should be selected from a library which might contain
several components describing the same system but with
different level of detail.

Benefits of model simplification techniques for object-
oriented model development are discussed in this pa-
per. A modeler may help himself with them in a deci-
sion making process of how detailed components should
be used (e.g., how complicated model should be) and
also as an assistance for verifying model by some in-
formal verification methods. Simplified model should
be represented in the same way as original, therefore,
two simplification techniques are discussed, simplifica-
tion of object-diagrams and simplification of equations,
which are the usual representation of models in Model-
ica, one of the commonly used object-oriented modeling
language today.

Keywords: nonlinear model simplification, model ver-
ification, Modelica

1. INTRODUCTION

Dynamic models are an important part of many engineer-
ing applications. Various purposes which models have
in engineering applications include assistance for system
and control design, explaining complex-system behavior
and help in operators training.

The purpose of the model also determines a desirable
complexity of the model. Modeling is an iterative process
and the complexity of the model usually increases during
the process as well as the model purpose tends to change.
In the early stages of model development relatively sim-
ple conceptual models are used which help examine some

general design situations. The error bounds on model
prediction are relatively large and validation with exper-
imental data is usually not possible due to the lack of
measurements. Therefore, the model is only verified with
general design experience and comparison with earlier
models of systems with similar characteristics (Murray-
Smith, 2009).

Later in the model building process, as more data be-
comes available, more complex description of the system
are integrated into the model. However, more thorough
validation may even indicate that some parts of the model
are unnecessarily detailed and model is consequentially
simplified.

The model building process may be also carried out in
reverse: all known details about the systems are included
into a model and in the further modeling phases the un-
necessarily parts of the model are identified and removed
(Murray-Smith, 2009).

The emergence of the object-oriented modeling ex-
acerbated the difficulty of assuring proper model com-
plexity and model-verification in some respects. Object-
oriented models are built of inter-connected components
(models of subsystems). Large collections of various pre-
prepared components are available in designated model
libraries (Tummescheit, 2002; Andres et al., 2009; Cel-
lier, 1991). Therefore, a very complex model can be
built easily. However, this kind of modeling paradigm
has some pitfalls, for example, when the modeler is not
familiar with the assumptions made at formulation of the
components, they can be used incorrectly, e.g., resulting
model is invalid due to incompatible components (es-
pecially when they come from different libraries). Fur-
thermore, at different modeling stages, different level of
model complexity is required and hence a set of compo-
nents describing the same subsystem but with different
level of detail must be present. Another option is to in-
clude switches into the components which enables to turn
off unnecessary level of details (Casella et al., 2006).

When a model consists of many components (as it is
the case with large models) it can be quite intricate to
determine how complex each component should be. The
complexity of the components with low impact on overall
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model behavior should be of course kept low to bound
overall model complexity.

2. MODEL SIMPLIFICATION TECHNIQUES

Engineers use experience and intuition to determine im-
portant parts of the model which have the highest im-
pact on system’s dominant dynamics or on the model’s
simulation response in specific scenario. In an attempt
to diminish reliance on subjective factors such as experi-
ence, numerous model simplification and order-reduction
methods have been developed (Schwarz et al., 2007;
Sommer et al., 2008; Lall et al., 2003; Louca, 1998;
Chang et al., 2001). Model simplification techniques
consist of running a series of simulations, ranking the in-
dividual coordinates or elements by the appropriate met-
ric and removing those that fall below a certain threshold
(Chang et al., 2001). The choice of the ranking metric
and simplification steps depends on modeling formalism
used and may be limited by modeling domains. A special
class of model simplification methods are those that pro-
duce proper models, i.e., simplified models have physi-
cally meaningful variables and parameters.

It is obvious how model simplification tools can help
us determine if the model is too complicated: if model
could be simplified a lot without loosing too much accu-
racy, it is clearly too complicated.

Model simplification methods can also facilitate model
verification when less formal approaches such as desk-
checking are used (Sodja and Zupančič, 2010). Even
rather small models and their simulation results can be
to large to be human interpretable and understandable.
Hence, physically interpretable simplified models could
be used instead to provide a deeper insight into the sys-
tem’s behavior needed for model verification. In some
cases when only a part of the model (a submodel) is un-
der consideration, it is desired that only this submodel
could be simplified.

3. SIMPLIFICATION OF MODELICA MODELS

Modelica modeling language was designed for efficient
modeling of large, complex and heterogeneous physical
systems (Modelica Association). Model is usually de-
composed into several hierarchical levels. On the bottom
of the hierarchy there are submodels of basic physical
phenomena which are most commonly stated as a set of
(acausal) differential-algebraic equations. It is thus most
conveniently that these equations can be entered directly
(e.g., without a need for any kind of manipulation or even
transformation to some other description formalism). On
higher hierarchical levels, the model is described graph-
ically by schematics (i.e., object diagrams) and the ob-
tained scheme efficiently reflects the topology of the sys-
tem. Such model representation in Modelica is thus un-
derstandable also to domain specialists who do not have
a profound knowledge about computer simulation.

Prior to simulation, model must be translated. First,
model is flattened (i.e., hierarchical structure of a model
is mapped into a set of differential, algebraic and discrete
equations together with the corresponding variable decla-
rations (Modelica Association)), then some further mod-
ifications (e.g., tearing of algebraic loops and DAE index
reduction) are performed so that model can be brought
into the form required by numerical solvers.

There are no tools known to the authors which support
simplification of Modelica models directly. Model must
be thus exported to external tools using either Functional
Mockup Interface (Blochwitz et al., 2011) or by repars-
ing flattened model (if this feature is supported by mod-
eling environment). This kind of an approach have many
downsides, because model is flattened or even other
translation steps are performed (algebraic-loop tearing
and index reduction) before the export. Therefore much
information about the organization of the model (for ex-
ample, hierarchical structure) is lost and the simplified
models may not be convenient for verification purposes.
Furthermore, it may be very intricate and laborious to
simplify only certain submodel and evaluate it together
with whole model.

We believe that model simplification tool should be
closely integrated into modeling environment and rep-
resentation of a simplified model should represented in
the same way as original model. Models are in Modelica
generally represented graphically (i.e., object diagrams)
on a higher levels and textually (i.e., equations) on the
lowest. Therefore, there are needed two classes of sim-
plification techniques, simplification of object-diagrams
and simplification of equation sets. In many cases only
rankings of elements might be sufficient and simplifica-
tion of the model could be done manually if needed. Sim-
plification of submodels should be supported as only sub-
set of model might be under consideration.

4. SIMPLIFICATION OF MODELICA OBJECT-
DIAGRAMS

Object diagrams consist of connected components (sub-
models). A connection defines interactions which are de-
termined by types of connectors (i.e., ports) which are
used in components. Connector are rather loosely de-
fined in Modelica. In general, a list of variables with
some qualifications (e.g., causality, type of variable: in-
tensive – extensive, etc.) is defined, but it can also have a
hierarchical structure (Modelica Association).

4.1. Choice of ranking metric

Although different domains are modeled with rather dif-
ferent schemes and connections, acausal connections for
modeling physical interactions are of special interest.
Each (dynamic) interaction between physical systems re-
sults in an energy exchange between the systems. So it
is very intuitive to chose the energy-based metrics for the
simplification of a physical systems models.
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Metric we chose Louca (1998) is defined by Eq. 1. It
is the integral of absolute net energy flow that element
exchanges with environment in time interval [t1,t2].

Activity =
∫ t2

t1
|∑

i
pi(t)| ·dt (1)

In Eq. 1, pi(t) designates an energy flow through the
boundary of the element (in Modelica usually modeled
with connection).

4.2. Determination of energy-flows in object dia-
grams

Modelica object diagrams, when modeling physical sys-
tems, share many similarities with bond graphs, which
can be efficiently used for object-oriented acausal model-
ing. Therefore it is possible to adapt most of bond-graph
simplification techniques to Modelica’s object diagrams.
Of course the energy concept in bond graphs is much
more unified in comparison with different Modelica li-
braries. So we analyzed the energy interactions between
components in different Modelica libraries at the begin-
ning.

Connectors usually contain a pair of effort and flow
variables. However, their product is not necessarily an
energy flow like in bond graph formalisms. This can
be seen by inspecting Modelica Standard Library (Mod,
2010) where elementary connector definitions for almost
all physical domains are gathered:

• Interaction between components in analog circuits
(Modelica.electric) is determined by voltage v and
current i, the latter is a flow variable, and the power
of the interaction is the product of both variables:
p = v · i.

• Similar features has also the connector in Model-
ica.Magnetic, which is composed of variables for
magnetic potential difference Vm and magnetic flux
Φ, an effort and flow variables respectively. The
power of the connection is the product of both vari-
ables: p = Vm ·Φ.

• Connectors used for modeling of 1-D translational
and rotational mechanics consist of position s and
angle φ respectively, and force f and torque τ re-
spectively. However the product of connector’s ef-
fort and flow variables is no longer the power. For
determination of the power of the connection, dis-
placement variable has to be differentiated: p =
d
dt s · f and p = d

dt φ ·τ for translational and rotational
mechanics respectively.

• In Modelica Multibody library, which deals with 3-
D mechanics, effort and flow variables are no longer
scalars, they are 6-dimensional vectors, so a state
of a free-body (having 6 degree-of-freedom) can be
determined. Furthermore, due to computational re-
strictions, implementation of connector takes into

account also a suitable selection of a frame of refer-
ence (forces, torques and orientation are expressed
in local, while position is in global frame of refer-
ence). A definition of the connector is the follow-
ing:

c o n n e c t o r Frame
SI . P o s i t i o n r_0 [ 3 ] ;
Frames . O r i e n t a t i o n R ;
f low SI . Force f [ 3 ] ;
f low SI . Torque t [ 3 ] ;
end Frame ;

The position is determined with the variable r_0,
while the orientation R is a structure containing the
transformation matrix T from global to local frame
of the reference and the vector of angular veloci-
ties ω in the local frame of reference. Forces and
torques are given by vectors f and t respectively.
The power of the connection can be calculated by
the expression: p = d

dt (T ·ro) · f +ω ·t, where again,
there is a need to differentiate the position after
transformation to local frame.

• Connector for modeling the heat transfer in 1-D
consists of the effort variable temperature T and
the flow variable for heat-flow rate Q f low. The en-
ergy transfer is in this case equal to flow variable
p = Q f low.

• Library Modelica.Fluid deals with modeling of heat
and mass transfer. The connector used in library’s
components which covers also mass transfer is im-
plemented as following:

c o n n e c t o r F l u i d P o r t
r e p l a c e a b l e package Medium =
Model ica . Media . I n t e r f a c e s . P a r t i a l M e d i u m ;

f low Medium . MassFlowRate m_flow ;
Medium . A b s o l u t e P r e s s u r e p ;
s t r e a m Medium . S p e c i f i c E n t h a l p y

h _ o u t f l o w ;
s t r e a m Medium . M a s s F r a c t i o n

X i _ o u t f l o w [ Medium . nXi ] ;
end F l u i d P o r t ;

Besides effort and flow variables, pressure p and
mass-flow rate m f low respectively, the connector in-
cludes also additional information about properties
of the substance which is being exchanged in the
interaction modeled by a connection of type Fluid-
Port: specific enthalpy h and composition of sub-
stance (vector of mass fractions Xi if substance is a
mixture). The thermodynamic state of the substance
is uniquely determined by the variables of connec-
tor and all the other (thermodynamic) properties can
be calculated by using functions provided by pack-
age Medium which is a parameter of the connector.
However, thermal diffusion is not covered by this
connector (it is neglected).

Energy flow associated with the connector is com-
posed of thermal, hydraulic and chemical term and
could be calculated as following (in Modelica By
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Figure 1: Scheme of a car suspension system.

Element Activity [J] Relative [%] Accumulated [%]
gravityForce_s 2,270.06 37.06 37.06
spring_s 1,763.33 28.79 65.85
ground 795.02 12.98 78.82
mass_s 787.65 12.86 91.68
damper_s 198.82 3.25 94.93
spring_t 192.57 3.14 98.07
gravityForce_t 92.98 1.52 99.59
mass_t 24.53 0.40 99.99
damper_t 0.53 0.01 100.00
displacement_s 0.00 0.00 100.00
displacement_t 0.00 0.00 100.00

Table 1: Ranking of components when model from Fg. 2
is fed by input shown in Fg. 3.

Use of Chemo-bonds, 2009): p = ṁ · s · T + ṁ ·
p/ρ + ∑ µi · Ṅi. Quantities specific entropy s, tem-
perature T , density ρ , chemical potential µi and mo-
lar flow Ṅi can be calculated from thermodynamical
state equations provided by package Medium.

4.3. Ranking of elements

Although it is possible to calculate energy flow of the
connector from the variables of the connector, this is not
always possible to do from simulation results, because
some variables can not be available. For example, the
derivative of a position or an angle in the connector of
the library for 1-D mechanics may not be available if this
variable is not chosen as a state variable. This implies in-
strumentation of the model, i.e., additional auxiliary vari-
ables and equations are inserted into the model.

Ranking is done as post-processing of simulation re-
sults. Activity of each element required for ranking is
calculated with Eq. 1. Each hierarchical level is consid-
ered separately.

After the ranking of the elements is available, model
can be simplified by removing all the elements that fall
below certain threshold (value of activity in our case).
However, our current implementation provides only re-
sults of ranking in a printed form (a table). The ranking
table can be then used to simplify the model manually.
Automatic simplification is the matter of future investi-
gations.

Figure 2: Car suspension system: model represented by
a Modelica object diagram.

4.4. Example

The model from Fg. 2 is excited by signal depicted in
Fg. 3. Components of the model are ranked with activ-
ity metrics (Fg. 1) and results are shown in table 1. The
second column of table 1 consists of activities of all com-
ponents calculated with Eq. 1. The third column contains
relative activities components (the sum equals 100%) and
the last column shows the accumulated relative activities.
This column very illustratively shows how many compo-
nents has to be taken into account for a reasonable accu-
racy.

The aim of the ranking tables is to simplify the model
in Fg. 2 by removing components from the bottom of the
tables 1. However, a high accumulated relative activity
of the remaining components (e.g., components not re-
moved) do not necessary imply high similarity of original
and simplified model responses. It is necessary to vali-
date the simplification comparing the original and sim-
plified responses.

5. SIMPLIFICATION OF MODEL’S EQUATIONS

From a mathematical point of view, models in Model-
ica are systems of hybrid differential-algebraic equations
(DAE). Therefore, it some cases we might want to inves-
tigate these equations directly. In all modeling environ-
ments supporting Modelica, models can be printed in flat
form (i.e., as a system of equations). However, this can
yield complex expression even for relatively small mod-
els, so symbolic model reduction techniques are applica-
ble to achieve favorable representation.
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Figure 3: A car hits a smooth curb: low-frequency ex-
citation signal is given as an input to the model in Fg.2.
Also responses – displacement of an unsprung (mass_t)
and sprung mass (mass_s) are depicted.

5.1. Simplification strategies

There are many mature simplification methods available
for linear systems (Eitelberg, 1981; Fodor, 2002; Innis
and Rexstad, 1983), while there is a lack of more general
simplification methods that could be applied effectively
on multi-domain models described as a set of nonlinear
DAE.

Most commonly employed simplification strategies for
nonlinear DAE combine model order reduction tech-
niques (i.e., deletion of variables and variables’ time
derivatives or substitution of variables with constant val-
ues) and an approximation of single terms, for example,
linearization, deletion or substitution of the term with
constant value, etc. (Sommer et al., 2008; Wichmann
et al., 1999).

The order of the applied simplification steps is deter-
mined by ranking. The most apparent ranking metric is
estimation of reduced-model error for selected variables
(variables of interest). One possible approach is to repeat
simulation after for each possible simulation step which
would yield a perfect ranking. However, this method is
too time consuming to have any practical meaning.

Another option is to use energy-based ranking metric
as in case of object-diagram simplification. In method
suggested by (Chang et al., 2001) it is required that Lya-
punov function of the system is known which is a rather
harsh restriction.

The metric (Wichmann et al., 1999) suggest for sim-
plification of nonlinear DAE systems obtained in analog
circuit design estimates the error caused by simplification
step (e.g., term deletion, substitution of the term with a
constant value, term linearization) and it is done in two
parts: the DC analysis and AC analysis. The former re-
quires calculation of several design points, i.e. steady-
states of the system at different inputs.

F(x,0,y,u, t) = 0 (2)

A set of nonlinear algebraic equations (3) is obtained for
each design point by solving original equation system (2)
with ẋ = 0 and given u.

F(x, ẋ,y,u) = 0 (3)

Values of variables at steady-state of the modified system
F̃(x, ẋ,y,u, t) (where a single term in one of equations
is changed) are estimated by performing single Newton-
Ralphson iteration (4) and the solution of the original sys-
tem is used as a guess value.[

x(1)

y(1)

]
=
[

x∗
y∗

]
−J−1

F̃ (x∗, ẋ∗,y∗) · F̃(x∗, ẋ∗,y∗) (4)

The error estimation εi is then calculated by equation (5).

εi = || [x∗,y∗]T − [x(1),y(1)]T ||
= || J−1

F̃ (x∗, ẋ∗,y∗) · F̃(x∗, ẋ∗,y∗) ||
(5)

To further reduced computational costs, inverse Jacobian
matrix is computed only once for original system at each
design point and inverse Jacobians of the modified sys-
tem are obtained by Sherman-Morisson formula (6).

J−1
F̃ = J−1

F − (1+ vT J−1
F el)−1J−1

F elvT J−1
F (6)

Finally, error estimations εi are combined in equation (7).

ε = || [ε1, . . . ,εn]T || (7)

The latter part of the metric, the AC analysis, requires
linearization of the DAE system at selected design points
and then transfer functions are computed. The resulting
transfer functions are then simplified using methods for
linear-systems simplification.

However, the simplification method of (Wichmann
et al., 1999) is limited on DAE systems representing ana-
log electrical circuits and analogue systems. The most
impractical limitation preventing its use for more general
multi-domain models in Modelica is that it requires cal-
culation of design points, i.e. solving usually large non-
linear system of equations.

Could be this method extended to handle simplify tran-
sients of nonlinear DAE system directly (i.e., without lin-
earization at selected design points)? Influence of a sim-
plification on the equations’ transient solution could be
predicted by performing single Newton-Ralphson itera-
tion of equation system (2) at different time instants of
the transients and then combine the obtained error esti-
mates as suggested by the (Wichmann, 2003). However,
this kind of error estimation is much more difficult as
in case of purely algebraic nonlinear system (system at
steady-state), because only local integration error is esti-
mated and the elimination of low-ranked terms often re-
sults in an unstable system. (Wichmann, 2003) does not
report how this problem was solved.
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6. CONCLUSION

As the complexity of the models continuously increases,
it is important than contemporary modeling environ-
ments include tools which help understand and cope with
these models effectively. One class of those tools are also
model simplification techniques.

Models which can be built in Modelica can be very
heterogeneous and include submodels from different
physical domains. On contrary, most model simplifica-
tion techniques require strict modeling formalism and are
limited on certain physical domains. They are thus not
easily applicable on most models in Modelica. As it was
shown in the paper, simplification methods developed for
bond-graphs can be easily adapted for simplification of
Modelica’s object-diagrams. However, the simplification
of the model on equation level is much more difficult and
there are no publicly published simplification methods
known to the author which could be efficiently used for a
simplification of wide variety of Modelica models.
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