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ABSTRACT
Motivation and problem-domain preferences of scientists can
affect aggregate level emergence and growth of problem do-
mains in science. In this study, we introduce an agent-based
model that is based on information foraging and expectancy
theory to examine the impact of rationality and openness
on the growth and evolution of scientific domains. We
simulate a virtual socio-technical system, in which scientists
with different preferences search for problem domains to
contribute knowledge, while considering their motivational
gains. Problem domains become mature and knowledge
spills occur over time to facilitate creation of new problem
domains. We conduct experiments to examine emergence and
growth of clusters of domains based on local interactions and
preferences of scientists and present preliminary qualitative
observations.

Keywords: information foraging, agent based modeling,
science of science, open innovation, knowledge spillover

1. INTRODUCTION
Knowledge spillovers are studied widely in literature and

linked to innovation measures and outputs (Jaffe, 2008; Feld-
man and Audretsch, 1996). Spillovers are defined as the mi-
gration of knowledge beyond the domain borders (Fallah and
Ibrahim, 2004). In our study we express spillovers not only
in terms of knowledge transfer but also mobility of scien-
tists. Hence, spillovers result in formation of new domains
as a consequence of knowledge and skill transfer.

A research question of interest is to find out connection be-
tween individual rationality and aggregate efficiency. Axtell
and Epstein (1999) discuss empirical data, which demonstrate
that all individuals should not necessarily be rational to pro-
duce efficiency in macro level outcomes of a system. Given
that individual rationality is bounded, they explore how much
rationality should exist in a system to generate macro-level
patterns. In this work, we do not propose to discern minimum
level of rationality, but rather aim to address how rationality
affects the spread of knowledge spillovers as well as growth
and development of domains.

Scientists join or leave a problem domain on the basis of
problems to be solved and tasks to be accomplished, and
their position in the scientific landscape depends upon their
knowledge, levels of interest, personal learning objectives, re-
sources, and commitments (Hollingshead et al., 2002). Moti-

vation of scientists as a personal interest is one of the main
indicators for willingness of contribution. We take individual
motivation as a main force driving the commitment of a sci-
entist to a problem domain.

Metaphorically, scientists can be viewed as predators.
Predators are expected to abandon their current patch (e.g.,
domain) when local capture rate (e.g., problem solving suc-
cess) is lower than estimated capture rate in the overall en-
vironment (Bernstein et al., 1988). Information foraging the-
ory, which is derived from this evolutionary phenomenon de-
veloped by Pirolli and Card (1999) assumes that people, if
they have an opportunity, would adjust their strategies or the
topology of their environment to maximize their rate of infor-
mation gain. In our study, scientists join or abandon problem
domains based on perceived cues about their performance in
attaining the desired outcome. The cues are represented by
the “instrumentality” component of an individual’s motiva-
tion, which is described in detail in section 3. Also, in our
model, motivated and successful scientists recruit new sci-
entists just as genetically more adapted predators are more
likely to have a offspring in their natural environment.

Interaction surface between scientists and information
repositories in real life determines the time costs, resource
costs, and opportunity costs of different information foraging
strategies (Pirolli and Card, 1999). It is also suggested that
people are selfish and lazy in applying their cost-benefit anal-
yses (Nielsen, 2003). In accordance with these observations,
we define three different characteristic of the scientists in re-
lation to their cost- benefit decisions.

David (1998) defines the force of Open Science’s univer-
salist pattern as providing entry into scientific artifacts and
open discussion by all participants, while promoting “open-
ness” in regard to new findings. Carayol and Dalle (2007)
explain open-science phenomenon as significant freedom of
scientists to choose what they want to do and how they want
to do.

In light of these observations, we present an agent based
model, called “KnowledgeSpill” to create a virtual environ-
ment where scientists have limited omniscience. In the model,
opportunities in a particular problem domain deplete over
time. We visualized the impacts of individual rationality and
openness on the growth of scientific domains. In section 2,
we present the conceptual basis for our model. In sections 3
and 4, we describe the model structure and mechanisms in
detail along with the initial parameter values and description
of the visualizations. Section 5 discusses preliminary results
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and the qualitative observations derived from them. In sec-
tion 6 we conclude by summarizing our findings in relation
to reviewed literature and suggest potential avenues of future
work.

2. BACKGROUND AND RELATED WORK
It is demonstrated that user innovation communities are

self-organizing complex adaptive systems (Yilmaz, 2008).
However, not all complex systems are self-organizing
(Monge and Contractor, 2003). A system is self organizing
when the network is self-generative (e.g., spawning agents),
there is mutual causality between parameters, imports energy
into system (e.g., creating new problem-domains and oppor-
tunities) and is not in an equilibrium state.

Agent based modeling is widely used to study such com-
plex systems, and it is especially helpful to understand, ex-
plore, and parameterize those systems (Bonabeau, 2002).
Monge and Contractor (2003) describe the main elements
of complex systems in terms of the network of agents, their
attributes or traits, the rules of interaction, and the struc-
tures that emerge from these micro-level interactions. Typical
classes of agent traits are location, capabilities, and memory.

Simulation is used to study scientific domains by different
scholars. For instance, Nigel (1997) introduces a model to de-
termine whether it is possible to reproduce observed regular-
ities in science using a small number of simple assumptions.
His model generates knowledge structures consistent with ob-
served Zipf distributions involving scientific articles and their
authorship. Naveh and Sun (2006) explore the effects of cog-
nitive preferences on the aggregate number of scientific arti-
cles produced and argue that simulations with credible cogni-
tion mechanisms may lead to creativity in academia.

In scientific knowledge generation, resources may include
knowledge, people with skills and abilities, financial support
and/or access to tools and raw materials (Mohrman and Wag-
ner, 2008; Powell et al., 1996). The following assertion is
stated by Carayol and Dalle (2007): “When the discipline
grows, the relative rewarding of problems located in already
developed fields increases: because their audience becomes
larger, contributions to such domains are more likely to be
cited.” Another point expressed in Carayol and Dalle (2007)
is that more specialized disciplines are more likely to get
more specialized through time, and this phenomenon is more
striking when the scientists are more focused on rewarding ar-
eas. We describe this phenomenon as imitation behavior. Fur-
thermore, scientists make their decisions according to their
perceptions and anticipations of their own performance. It is
suggested that, intrinsic task motivation plays a critical role
in creativity and innovations (Amabile, 1996; Kanter, 1988).
Expectancy theory (Vroom, 1964) is a widely known popular
model of motivation based on intrinsic motivation. The ratio-
nality perspective explored in this study can be defined as the
behavior towards the maximum motivational outcome based
on this theory.

3. CONCEPTUAL MODEL
The location of a scientist in our simulation context is a

metaphor for disciplines. Scientists can not migrate between
domains or become actively involved within the problem-
domains in different disciplines without proper orientation
and enculturation. So, the location can be perceived as a dis-
cipline and scientists can move in a limited environment at a
given time during simulation. There are two basic agent types
in the model:

• Scientists quest for knowledge in different problem do-
mains. Scientists are members of different disciplines
and are more likely to be aware of the problems within
their area of expertise. Transferring to other disciplines
or areas is difficult because of entrance threshold and the
need for enculturation prior to making acceptable con-
tributions. In our model, enculturation is interpreted as
the process of searching environment to find a problem-
domain to contribute. Our simplifying assumption is that
scientists initially move randomly and have an omni-
science of 1 cell around, known as Von Neumann neigh-
borhood. A change in the area of awareness and shift
to a more open environment with a lower entry thresh-
old facilitates browsing a wider scope in the knowledge
space.

• Problem Domains are different areas in disciplines (e.g.,
database management in computer science). Their ma-
turity reflects the knowledge level. As maturity grows,
the receptivity of the domain decreases due to higher
levels of inertia in mature domains. Increased inertia re-
sults in knowledge spillover. Scientists migrate to new
problem-domains formed as a result of these spillovers.
(e.g., data-mining emerges via transfer of scientists from
database management and machine learning fields)

3.1. Maturity and Receptivity
Maturity of a problem-domain is the knowledge level of

that particular domain and increases with each contribution.
This is represented in the model initially by assigning to a
domain a randomly selected maturity value between (0, 0.5].
At every time tick, maturity level of domain i at time t +1 is
defined as follows:

Mi, t+1 = Min(Mi, t +
Ci

∑
j=0

γi,1) (1)

where Ci is the number of accepted contributions at time t
in domain i and γi is the incremental increase on knowledge
repository in the domain caused by each contribution which is
drawn between 0 and maximum increment value. Receptivity
R at time t +1 of domain i is defined as:

Ri, t+1 = 1−Mi, t (2)

3.2. Traits of Scientists
The area of perception (openness) and memory of past suc-

cesses can be thought of as elements of scientist’s traits. The
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choice of the new domain in the area of awareness (scope)
of a scientist is based on their preference. We assume that a
scientist belongs to a character group with certain probability.
There are three different groups:

• Rationals look for the least mature problem domain to
contribute in their scope. Our interpretation is that less
mature domains are more likely to accept contributions,
so scientists are more likely to gather experience, early
reputation, and motivation by working in those domains.

• Imitators have the characteristic of being influenced by
the trend or crowd. They look around for a domain to
contribute, but are more likely to choose crowded ones.
Preferential attachment (Barabasi and Albert, 1999) is
used as the guiding principle.

• Random scientists randomly choose their problem do-
mains.

Scientists can be in two basic states. They can be “free” not
working on a domain or can be “active” by contributing to a
domain. Free scientists are searching their scope and when
they find one or more domains, they make the decision based
on the aforementioned traits above. Scientists, who are not
free, contribute to the particular domain they reside on. At
every time interval, they have fixed 10% chance of contribu-
tion, and once they contribute, the domain decides to accept it
or not based on its receptivity level. Scientists also stop prac-
ticing when they reach to their maximum age.

As the simulation unfolds, experienced and highly mo-
tivated scientists spawn new scientists who are in an ini-
tial state. A highly motivated scientist inspires a new scien-
tist with a fixed probability of 0.1. Also, each scientist has
a susceptibility level. The larger the tenure of the scientist,
the lower its susceptibility level. Susceptibility starts from a
higher level and decreases exponentially over time but not be-
low a certain threshold, which is different for each scientist.
Susceptibility is defined as the following:

Si, t+1 = β0 +
1
2

e−β1xAi (3)

where Si, t+1 is the susceptibility level of scientist i at time
t + 1, β0 is the lowest susceptibility level of a scientist, β1 is
the function parameter and Ai is the current age of the scien-
tist i. Susceptibility is used to determine experience increment
after every successful contribution. According to this defini-
tion experience of scientist i at time t +1 is:

Ei, t+1 = Ei, t +Si, t ×λs (4)

where λs is the success increment determined initially and
fixed. Success increment can be described as the gain of ex-
perience after a successful contribution.

3.3. Motivation Theory and Memory
In expectancy theory, motivation is defined as a product of

three factors: how much one desires a reward (valence), one’

s estimate of the probability that effort will result in success-
ful performance (expectancy), and one’s estimate that perfor-
mance will result in receiving the reward (instrumentality). It
is given with the formula below:

Motivation = Expectancy× Instrumentality×Valence (5)

We assume valence as a fixed value and is different for
each scientist, while expectancy can be perceived as the ex-
perience of an individual. The experience is described as the
attained level of skill through successful contributions. That
is, the more experienced the scientists are, the more likely to
be motivated they are. Instrumentality is a dynamic parame-
ter which is updated over time, as it denotes the estimate of
the award for successful performance. Scientists have a time
window of θ which is used to calculate success rate below:

Sri, t+1 =
Ni, t+1

θ
(6)

while N is the number of successful contribution of scientist i
during the time-window and θ is the pre-defined time-window
length.

Also there is a memory factor α, which is different for each
scientist. It denotes the impact of success rate on instrumen-
tality and indicates the significance and weight of the current
observation with respect to prior experience. A small value of
α results in a conservative behavior by avoiding overriding of
the past experience. The relative weight of past and present
capture rate which is controlled by a parameter denominated
the ’memory factor’ is seen as a common approach in psy-
chological models of simple learning (Bernstein et al., 1988).
Following is the formula for instrumentality of scientist i at
time t +1

Ii, t+1 = Min(1,(αi×Sri, t+1 +(1−αi)× Ii, t)) (7)

4. IMPLEMENTATION AND VISUALIZA-
TION

Our model is coded in the RePast (Recursive Porous Agent
Simulation Toolkit) environment, which is a free and open-
source agent based modeling toolkit. Illustration of the afore-
mentioned concepts are analyzed by simulating the spillovers
over time. In the figures below, we illustrate that a mature do-
main spills over to the location on its north-east creating a
new problem domain while also transferring 10% of its sci-
entists. The brightness of the color represents maturity. The
brighter the color of a domain is, the more is the maturity of
that particular domain.

(a) Before (b) After

Figure 1. Creation of a new domain
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Table 1. Initial settings of the model

Parameter Name Initial Value
Rational rate 0.75
θ (Time window) 1
Imitator rate 0.2
Maximum Age 3000
Random rate 0.1
Minimum Age 1500
λs (Success) 0.01
Run time 3000
Contribution rate 0.1
Initial number of Scientists 500
Maturity threshold 0.8
Initial number of Domains 10
Spillover rate 0.1
World Height 50
World Width 50
Transfer rate 0.1
Motivation threshold(for spawning) 0.95
Initial Age 0
Spawning rate 0.1
Initial Experience (0,0.5]
Motivation threshold(for leaving) 0.05
Initial Valence (0.5,1]
Initial Maturity (0,0.1]
β0 (0,0.3]
β1 -0.001
Initial Instrumentality (0,1]
α (Memory) (0,1]
Increment of Maturity (0,0.002]

In order to understand the illustration better, snapshots of
the model over time are shown in Figure 2. Also, Table 1 lists
the initial values of the parameters of the model.

(a) Time 100 (b) Time 500

(c) Time 1500 (d) Time 3000

Figure 2. Emergent patterns over time

5. PRELIMINARY EXPERIMENTS AND
OBSERVATIONS

We simulate the creation of knowledge (spillovers) under
various scenarios observing the spread of domain structures,
proportion of mature domains, proportion of the population
with regard to motivation levels and the spillovers occurred
over time. We examine the implications of the model under
9 basic scenarios, which are created by 3 dimensions of ra-
tionality and 3 dimensions of the openness as shown in Table
2.

Table 2. Main Scenarios

Rationality Low Medium High
Rational 25% 50% 75%
Imitator 65% 40% 15%
Random 10% 10% 10%
Scope 1 cell 5 cells 10 cells

Emergent patterns represented in figures 3, 4 and 5 are
recorded at time tick 3000. 3000 time ticks can be interpreted
as a scientist’s maximum work-life, which we approximate
as 60 years. Each time tick denotes 1 week. The first inter-
esting observation is that the growth direction of the clusters
changes with the ratio of the rationals. Another expected re-
sult is that new domains (less mature problem venues) are
grouped at the edge of the main clusters.

(a) 25% Rationals
(22% Occupation,
Avg. Maturity - 0.67)

(b) 50% Rationals
(40% Occupation,
Avg. Maturity - 0.76)

(c) 75% Rationals
(56% Occupation,
Avg. Maturity - 0.78)

Figure 3. The visualization of the domain clusters for each
rationality level after 3000 time ticks. Occupation rate indi-
cates how many percent of the grid is occupied by domains
and Avg. maturity is the average maturity level of all domains.
This Scenario is with Scope of 1 cell.

When the proportion of rationals increases from 50% to
75%, the increase of the average maturity slows down. More
interestingly, when agents can browse wider scope for op-
portunities (e.g., open-science cases) the occupation rate in-
creases, but 5-cell scope results in higher rates of active do-

58



(a) 25% Rationals
(24% Occupa-
tion,,Avg. Maturity -
0.70)

(b) 50% Rationals
(74% Occupation,
Avg. Maturity - 0.81)

(c) 75% Rationals
(88% Occupation,
Avg. Maturity - 0.84)

Figure 4. Scenario with Scope of 5 cells.

(a) 25% Rationals
(20% Occupation,
Avg. Maturity - 0.72)

(b) 50% Rationals
(52% Occupation,
Avg. Maturity - 0.78)

(c) 75% Rationals
(85% Occupation,
Avg. Maturity - 0.81)

Figure 5. Scenario with Scope of 10 cells.

main occupation in comparison to the 10-cell scope. This
phenomenon needs further examination. The degree of open-
ness matters and there seems to be diminishing return be-
tween openness and the develeopment of the domains. When
the scope increases to 10-cells, increased levels of rational
scientists does not yield higher levels of domain growth as
compared to 5-cell scope.

In Figure 6, we examine the distribution of maturity levels
across domains. The plots for different population character-
istics suggests that there are more mature domains in the case
of populations with higher rationals, while there are almost
same amount of less mature domains in all scenarios. The
graph shifts up with more omniscience scientists. The 5-cell

(a) Scope of 1 cell (b) Scope of 5 cells

(c) Scope of 10 cells

Figure 6. Number of domains vs. the range of the maturity
levels for each rationality level

(e.g., moderate openness) case outperforms all other cases re-
garding knowledge creation.

Figure 7. Average population per domain with different ra-
tional rates and different scopes

Although our expectation is to observe highly populated
domains when the rationality is lower, increased levels of ra-
tional agents resulted in more spillovers, and spawning, and
hence more number of scientists start practicing in the con-
text. However, as shown in Figure 7, there is a level of dimin-
ishing returns. At moderate levels of openness, more scien-
tists are practicing due to increasing spawning rates when the
rationality is set at 50%. Beyond this point, average popula-
tion per domain starts decreasing. To better understand this
observation, we examine distribution of motivational levels
among the members of the scientific community.

It is expected that increased rationality within a community
yields higher levels of motivation throughout the population.
In Figure 8, we can observe that the 5-cell case has the most
motivated scientist population at 50% rational rate. Our in-
terpretation is that when the scope gets larger, it diminishes
the effect of rationality and at around level of 50% rationals,
moderate level of openness results in higher levels of motiva-
tion. Furthermore, when we examine the distribution of sci-
entists across domains, we observe that 20% of the domains
host around 80% of the scientists under each scenario. Fi-
nally, as shown in Figure 9, to determine whether power law
distribution over spillovers exists, we generate log-log plot of
spillovers and their frequency. The results are indicative of
existence of a power-law; that is, the frequency of spillovers
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(a) Scope of 1 cell (b) Scope of 5 cells

(c) Scope of 10 cells (d) Average Motivation

Figure 8. (a), (b) and (c) illustrate the fraction of the popula-
tion in different range of motivation levels for each rationality
level (d) Average motivation of a scientist for each rationality
level and scope

is inversely proportional to its size.

(a) 75% Rationals and 1-cell scope (b) 75% Rationals and 5-cell
scope

(c) 75% Rationals and 10-cell
scope

Figure 9. Logarithm of the number of spillovers vs. loga-
rithm of the frequency of that number

6. CONCLUSION
In this study, our main objective is to adopt and analyze

the implications of computational mechanisms of well known
theories such as information foraging and of behaviors such
as motivation, susceptibility, and maturity on the growth and
development of scientific domains. Preliminary observations
indicate that with more rational populations, the allocation
of efforts are distributed more efficiently, resulting in faster
growth of domains and a community climate indicative of
high motivation. These implications are consistent with our
definition of rationality and expectations from information

foraging theory. But when we increased the degree of open-
ness, the growth was not significantly fostered with higher
rational population size. Considering population dynamics,
with less rational population (e.g., more imitators), our ex-
pectation is to observe dense domains; however, as a result of
increasing motivation and spawning, increased rates of activ-
ity occurred rather in high rationality populations. The future
work will explore if there is a diminishing return of open-
ness in terms of motivation and number of mature domains.
Potential extensions of the model include ecological aspects
that relate to allocation of funds and resources across emer-
gent domains. As feedback mechanisms, funding policies and
their effects on the growth of clusters would be an interesting
avenue of future research.
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