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ABSTRACT 

There has been a lot of research on time-varying failure 

rates, which deems constant failure rates as inadequate 

to model failures accurately. However, besides time, 

failure rates can also be affected by the state of the 

system (or its history, in terms of sequences of states 

and events that it has been through). In our paper we 

define several classes of state-varying failure rates and 

extend the formalism of Petri nets to model them. We 

further use the flexibility of the proxel-based method to 

accurately analyze behavior of systems that incorporate 

these kinds of failures. To illustrate our approach and 

study the effect of such dependencies, we compare 

simulation results for two models: one that exhibits 

state-varying failure rates, and another that only 

contains predefined failure rate functions. 

 

Keywords: state-varying failure rates, reliability, 

proxels, Petri nets 

 

1. INTRODUCTION 

There has been an intensive research on time-varying 

failure rates, including their significant impact on 

reliability (Hassett, Dietrich et al. 1995; Retterath, 

Venkata et al. 2005; Zhang, Cutright et al. 2010), which 

have been defined as such almost two decades ago 

(Billinton and Allan 1992).  Recently, Xie developed an 

analytical model of unavailability due to aging failures 

too (Xie and Li 2009). Since long time ago it has been 

shown that constant failure rates are inadequate for 

describing systems‟ failures (Proschan 1963). 

Nevertheless, they are still widely used due to the fact 

that the methodology for their analysis is less complex 

and more accurate. The popular MTTF (meantime to 

failure) measure is still a widely used one (Coskun, 

Strong et al. 2009; Sharma, Kahlon et al. 2010), even 

though it has been deemed many times as inadequate 

(Schroeder and Gibson 2007). We go one step further as 

to claim that even time-varying failure rates are not 

sufficient, as in many cases the rates completely change 

their functions based on the occurrence of some events 

or based on the complete state of the system (e.g. a part 

has been replaced by a new one that is based on a new 

technology, or if a mechanical part has been physically 

broken, then it is logical that the failure rate would 

increase with each time it breaks). This is what we term 

as a state-varying failure. 

 According to a study of medical equipment (Baker 

2001) it was shown that there was a decreasing hazard 

of (first) failure after repair for some types of 

equipment. The interpretation was that it is a 

consequence of imperfect or hazardous repair, and also, 

because of differing failure rates among a population of 

machines. 

 Likewise, in (Liberopoulos and Tsarouhas 2005) a 

pizza production line is studied and it was found that 

most of the failures have a decreasing failure rate 

because proactive maintenance improves the operating 

conditions at different parts in the line, and a few 

failures have an almost constant failure rate. It was also 

concluded that the longer the time between two failures, 

the more problems accumulate, and therefore, it takes 

longer time to fix the latter failure. It also suggests that 

the more time the technicians spend fixing a failure, the 

more careful job they do, and therefore, the time period 

until the next failure is longer. This is a very interesting 

observation that calls for state-varying failure rates and 

it can be addressed using our approach. 

 These are some examples that show that failures 

need to be described more realistically to obtain 

accurate and useful simulation results. Unfortunately, 

this has very rarely been the case. 

 Our goal is to provide a deterministic approach to 

analyze systems that exhibit not only time-, but more 

importantly, state-varying failure rates. For this we use 

method of proxel-based simulation, which based on our 

previous experience, is highly adjustable to treat these 

complex activities. In (Lazarova-Molnar 2008) we have 

analyzed and described state-dependent transitions and 

used proxel-based simulation for their analysis. These 

are the types of transitions that correspond and can be 

used to describe state-varying failure rates. Thus, in 

addition to the simulation approach, this paper provides 

a concept of how to model this type of failure rates and 

what changes need to be undertaken in the standard 

stochastic Petri net (SPN) models to introduce them.  

 The paper is organized as follows. In the 

subsequent section we describe the state-varying failure 

rates, along with an introduction to the proxel-based 

simulation method. Further, we provide a concept for 

modeling state-varying failures using SPN. Next, we 
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present an example model which we use to demonstrate 

our approach and we run experiments based on it. 

Finally, we present the results of the experiments with a 

discussion and conclusions. 

 

2.  PRELIMINARIES 

2.1. State-varying Failures 

It is a common observation that a failure rate cannot 

simply be described by one function during its entire 

lifetime. Even more, failure rates in reality can change 

not solely based on time (Retterath, Venkata et al. 

2005), but also based on the occurrence of certain 

events in the system (e.g. replacing the service person 

by another one which fixes them in a different manner, 

i.e. more thoroughly would influence the failure rate 

function). We refer to these types of failures as state-

varying failure rates. 

 Description of failure rate functions of state-

varying failure rates is a complex process and would 

require an algorithmic description to supplement the 

graphical model. To illustrate it, one such description 

may be: 

 

If machine is repaired by repairman A 

 Then the failure rate function ~ Normal(a, b) 

Else if machine is repaired by repairman B 

 Then the failure rate function ~ Normal(c, d)  

 

If we add another factor to this, i.e. the age of the 

machine, and then the description would change to: 

 

If machine is repaired by repairman A 

 Then the failure rate function ~ Normal(f(t), b) 

Else if machine is repaired by repairman B 

 Then the failure rate function ~ Normal(g(t), d)  

 

where t is the age of the machine (which can easily be 

exchanged to represent the number of failures or any 

other relevant quantity). This observation is more 

general than the one that uses fixed failure rate 

functions, and as such, more realistically models the 

phenomenon of a machine that exhibits failures. 

 Obviously, these models would need more 

advanced (or extended) modeling formalisms to be 

described. Thus, we extend stochastic Petri nets to 

account for the state-varying rates.  

 Finally, to show the difference and compare the 

effects of such (even very small) dependencies, we 

compare the simulation results for two models: one that 

exhibits state-varying failure rates, and another, similar 

and over-simplified one, that only contains predefined 

failure rate functions with fixed parameter values. 

 

2.2. Proxel-based Simulation 

The proxel-based method (Horton 2002; Lazarova-

Molnar 2005) is a relatively novel simulation method, 

whose underlying stochastic process is a discrete-time 

Markov chain (Stewart 1994)and implements the 

method of supplementary variables (Cox 1955). The 

method, however, is not limited to Markovian models. 

On the opposite, it allows for a general class of 

stochastic models to be analyzed regardless of the 

involved probability distribution functions. In other 

words, the proxel-based method combines the accuracy 

of numerical methods with the modeling power of 

discrete-event simulation. 

 The proxel-based method is based on expanding the 

definition of a state by including additional parameters 

which trace the relevant quantities in one model through 

a previously chosen time step. Typically this includes, 

but is not limited to, age intensities of the relevant 

transitions. The expansion implies that all parameters 

pertinent for calculating probabilities for the future 

development of a model are identified and included in 

the state definition of the model.  

 Proxels (stands for probability elements), as basic 

computational units of the algorithm, follow 

dynamically all possible expansions of one model. The 

state-space of the model is built on-the-fly, as illustrated 

in Figure 1, by observing every possible transiting state 

and assigning a probability value to it (Pr in the figure 

stands for the probability value of the proxel). Basically, 

the state space is built by observing all possible options 

of what can happen at the next time step. The first 

option is for the model to transit to another discrete 

state in the next time step, according to the associated 

transitions. The second option is that the model stays in 

the same discrete state, which results in a new proxel 

too. Zero-probability states are not stored and, as a 

result, no further investigated. This implies that only the 

truly reachable (i.e. tangible) states of the model are 

stored and consequently expanded. At the end of a 

proxel-based simulation run, a transient solution is 

obtained which outlines the probability of every state at 

every point in time, as discretized through the chosen 

size of the time step. It is important to notice that one 

source of error of the proxel-based method comes from 

the assumption that the model makes at most one state 

change within one time step. This error is elaborated in 

(Lazarova-Molnar 2005). 

 Each proxel carries the probability of the state that 

it describes. Probabilities are calculated using the 

instantaneous rate function (IRF), also known as hazard 

rate function. The IRF approximates the probability that 

an event will happen within a predetermined elementary 

time step, given that it has been pending for a certain 

amount of time  (indicated as „age intensity‟). It is 

calculated from the probability density function (f) and 

the cumulative distribution function (F) using the 

following formula: 

 

 () = 
)(1

)(





F

f


 

(1)

 

 

 As all state-space based methods, this method also 

suffers from the state-space explosion problem (Lin, 

Chu et al. 1987), but it can be predicted and controlled 

by calculating the lifetimes of discrete states in the 

model. In addition, its efficiency and accuracy can be 
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further improved by employing discrete phases and 

extrapolation of solutions (Isensee and Horton 2005). 

More on the proxel-based method can be found in 

(Lazarova-Molnar 2005). 
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Figure 1: Illustration of the development of the proxel-

based simulation algorithm  

 

 

3. MODELING STATE-VARYING FAILURES 

According to the performed observation, studies and 

research, we identify several classes of state-varying 

failure rates, i.e. failure rates that depend on: 

a) the number of failure occurrences up to the 

observed point in time, 

b) the age of the machine up to the observed point 

in time, 

c) the duration of the last repair, 

d) the time between the last two failures, 

e) the properties of the repair facilities, 

introduced as additional parameters, and 

f) the types of failures that have occurred. 

We allow a combination of a number of these factors to 

occur in our sample model to illustrate their effects 

through the proxel-based simulation analysis. Proxel-

based simulation can easily be applied to analyze a 

model that exhibits any combination of them, as well as 

other types of dependencies on quantities that are part 

of the model. In the following, we will provide the 

details of the formal classification of the state-varying 

failures and our simulation approach. This will be 

further demonstrated using an example model. 

 

3.1. Formal Model of State-Varying Failure Rates 

The underlying discrete stochastic model that exhibits 

state-varying failure rates is described using a stochastic 

Petri net (SPN) (Bause and Kritzinger 2002). 

Nevertheless, we further extend the basic description of 

SPN to allow the tracking of the relevant rewards. 

Those are the quantities that are in fact parameters of 

the distribution functions of the timed transitions, 

besides the age intensities of the relevant transitions. 

Typically, they are introduced by extending the basic 

SPN with additional places and transitions that enable 

the tracking, as shown in Figure 2. However, to record 

quantities, such as the duration of the last repair (type 

(c)), we introduce a novel element which we term as 

tracking variable (TV), and it is represented by a 

hexagon in the SPN graphical model. TVs are 

connected by diamond-shape-ended arrows to the 

transitions for which they record the last firing time.  

 To summarize, the extension is at both the level of 

the SPN formalism, and at the Petri net model itself, 

which is enriched by a number of extra places and 

transitions to ensure the tracking of relevant rewards. 

As for the SPN formalism: we extend it by the new 

element TV, and, in order to account for the state-

varying transitions, we allow distributions to have 

discrete states, i.e. markings, as parameters of the 

distribution functions that control firing of transitions. 

In the following, we show by example how a SPN can 

be extended to allow the tracking of the various relevant 

quantities. 

 

 

OK
FAILED

Technician A

Technician B

fail

repair

change shift

change shift

#FAILURES

Last A

Last B

Who

Basic SPN

Extension SPN for tracking 
the relevant quantities

TV1

TV2

 
Figure 2: Illustration of the extended SPN model 

 

 

3.2. Petri Net Specifications 

In the following we provide the formal definition of the 

extension of the SPN to account for the state-varying 

failure rates. Each Petri net SPN is defined as: 

 

SPN = (P, T, A, G, TV, m0) 

where: 
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 P = {P1, P2, …, Pn}, the set of places, drawn as 

circles 

 T = { T1, T2, …, Tm }, the set of transitions 

along with their distribution functions or probability 

values, drawn as bars 

 A = A
I
  A

O 
 A

H
 A

T
, the set of arcs, where 

A
O
 is the set of output arcs, A

I
 is the set of input arcs,  

A
H
 is the set of inhibitor arcs, and A

T 
 is the set of 

tracking arcs (connect transition to a tracking variable 

and are ended by a diamond-shape at the tracking 

variable end); each arc has a multiplicity assigned to it,  

 G = {g1, g2, …, gr}, the set of guard functions 

which are associated with different transitions, 

 TV = { TV1, TV2, …, TVm }, the set of tracking 

variables that store the last duration of the enabling time 

of a transition (drawn as hexagons), 

 m0 – the initial marking of the Petri net. 

 

Each transition is defined as Ti = (F, type), where type  

{enabling, age, immediate} is the type of memory 

policy if it is a timed transition or “immediate” if the 

corresponding transition is an immediate one. F is a 

cumulative distribution function if the corresponding 

transition is a timed one. Immediate transitions have a 

constant value instead of a distribution function 

assigned to them, which is used for computing the 

probability of firing of an immediate transition if more 

than one are enabled at once. The sets of arcs are 

defined such that 

 

A
O  

= {a
o

1, a
o
2,…, a

o
k},  A

I
 
 
= {a

i
1, a

i
2,…, a

i
j}, A

H
 
 
= {a

h
1, 

a
h
2,…, a

h
i}, and A

T
 
 
= {a

t
1, a

t
2,…, a

t
l}, 

 

where 

A
H
, A

I
  P  T  ℕ, A

O
  T  P  ℕ, A

T
  T  P  ℝ. 

 

The multiplicity of the tracking arcs can be a real 

number, unlike the others, where it is a non-negative 

integer number. We denote by M = {m0, m1, m2, … } the 

set of all reachable markings of the Petri net. Each 

marking is a vector made up of the number of tokens in 

each place in the Petri net along with the values of the 

tracking variables, mi = (#P1, #P2,…, #Pn, val(TV1), 

val(TV2),…, val(TVm)). The set of all reachable 

markings is the discrete state space of the Petri net. The 

changes from one marking to another are consequences 

of the firing of enabled transitions which move (destroy 

and create) tokens; thus creating the dynamics in the 

Petri net. This makes the firing of a transition analogous 

to an event in a discrete-event system. The markings of 

a Petri net, viewed as nodes, and the possibilities of 

movement from one to another, viewed as arcs, form 

the reachability graph of the Petri net. 

 

3.3. Adaptation of the Proxel-based method to 

Accommodate State-varying Failure Rates 

The main adjustment of the proxel-based method to 

accommodate state-varying failure rates is the extension 

of the definition of the proxel to introduce the notion of 

relevant rewards. They incorporate in the state 

definition all quantities, which in addition to age 

intensities; can be parameters of probability distribution 

functions of events in the model. This yields the 

following definition of a state: 

 

State = (Discrete state, Relevant Rewards, State 

Relevant Age Intensities) 

 

Thus, all parameters required for computing transition 

distribution functions are contained in the state vector 

(making the model implicitly a non-homogeneous 

Markov chain). The discrete state typically corresponds 

to a marking in the SPN model. The relevant rewards 

are determined by the nature of the events in the model, 

i.e. what kind of dependencies the failure rates in the 

model exhibit. In Table 1 we provide the relevant 

rewards for the six classes of state-varying failures that 

we have identified. 

 

Table 1: Relevant rewards for the six state-varying 

failure classes 

State-varying failure 

class 
Relevant reward 

a) the number of failure 

occurrences up to the 

observed point in 

time, 

Number of failures 

b) the age of the 

machine up to the 

observed point in 

time, 

Age of machine 

c) the duration of the 

last repair, 

Duration of last repair 

d) the time between the 

last two failures, 

Duration of operation of 

machine between two 

consecutive failures 

e) the properties of the 

repair facilities, 

introduced as 

additional 

parameters, 

Parameters of repair 

facilities (e.g. 

quantification of 

experience of 

repairman) 

f) the types of failures 

that have occurred. 

Types of failures that 

have occurred so far 

 

 

4. EXPERIMENTS AND RESULTS 

In this section we present an example model which we 

will use to illustrate the simulation of state-varying 

failure rates. We will describe the proxel-based 

simulation of this model and run it using various time 

steps. 

 

4.1. The Model 

The model that we use to demonstrate our approach is a 

simple model that describes a machine that incorporates 

both time- and state- varying failure rates, similar to the 

scenarios described in Section 2.1. 
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 Using a Petri net, the model can be described as 

shown in Figure 2. It represents a machine that exhibits 

one of two possible states: OK and FAILED. When the 

machine has failed, one of the two repairmen arrives 

and repairs it, after what the machine‟s state becomes 

OK. Changing shifts during repair is not allowed. The 

two repairmen have different lengths of working 

experience. Thus, when the machine is fixed by the 

Repairman A, the time to the next failure is on average 

longer, than when it is repaired by Repairman B. This 

implies that the proxels will need to record the 

information of who performed the last repair as well.  

 

OK
FAILED

Technician A

Technician B

fail

repair

change shift

change shift

 
Figure 3: Basic Petri net model of the example 

 

 In addition to the afore-described scenario, the 

distribution of the time to next failure of the machine is 

also a function of the number of failures and the age of 

the machine. For instance, in our example model we use 

the following formula to describe the distribution of the 

repair time: 

 

       (        )  

 

{
 (                             )    

 (                               )    
 

 

(2) 

 

where: 

 age is the age of the machine, i.e. the global 

simulation time, 

    is the number of failures that have 

occurred, i.e. #FAILURES in the SPN, 

   is the repairman that did the serviced the 

last failure, i.e. can be obtained from the SPN 

by checking the token is in place Last A or 

Last B, and 

   stands for the normal distribution 

parameters, with the standard parameters: 

mean and variance, correspondingly. 

 

In other words, repairs are normally distributed, where 

the mean and the variance are functions of the 

Repairman that completed the last repair, the total 

number of failures, and the age of the machine. This 

implies that we observe the dependences (a), (b), and 

(e), as pointed out in Section 3. This directly implies 

that, as described in Table 1, we need to add the 

following relevant rewards:  

 Number of failures, 

 Age of machine, and 

 Parameters of repair facilities. 

 

 In order to illustrate the enhancements that the 

state-varying failures would require, we include the 

required information in the basic Petri net model, whose 

extended version is shown in Figure 4.  

 

 

OK
FAILED

Technician A

Technician B

fail

repair

change shift

change shift

#FAILURES

Last A

Last B

Who

TV1

TV2

 
Figure 4: Extended Petri net model of the example 

 

 In Figure 5, the state-transition diagram of the Petri 

net model from Figure 4, is shown. Note that the model 

is an unbounded Petri net, i.e. it is practically 

impossible to accurately analyze it using numerical 

approaches. This, however, is not a limitation of the 

proxel-based method, as it dynamically builds the state 

space on-the-fly. 

 Besides the repair duration probability distribution 

function, as shown by the Equation (2), the remaining 

distribution functions that we used in our experiments 

are as follows: 
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      (      )   

  (                   ) 

                          

 

where E() stands for the exponential distribution 

function, with the mean as its only parameter, and D() is 

the deterministic probability distribution function. 

 As described in the following subsection, for this 

example we slightly modify the discrete state 

description to better explain our approach. In general, 

the proxel-based simulation can be directly performed 

on the enhanced Petri net model.  

 

4.2. Insight in the Proxel-based Simulation 

In the following we provide insight in the proxel-based 

simulation for the example model. The goal is show 

what exactly happens at lower level when simulating 

the state-varying failures. We begin by defining the 

state of the systems in the concrete example as: 

 

                             
                            

                        
 

which implies that the discrete state of the system is 

described by the state of the machine (             ) 

and the repairman on shift (         ). The relevant 

rewards are the number of failures of the machine 

(         ) and the repairman that completed the last 

repair of the machine (              ). Finally, the 

last element of the state of the system is the 

                     that keeps track of the time that 

the machine has spent in the specified state, as well as 

the time during which the repairman has been on shift. 

This yields the initial proxel as: 

 

                    . 

 

which shows that initially the machine is in state OK, 

and Repairman A is on shift. The number of failures up 

to simulation time t = 0 is zero, and the age intensities 

of both machine state OK and duration of Repairman A 

on shift are zero as well. Note that initially we assume 

that the last repair was completed by the more 

experienced repairman, i.e. Repairman A. The 

subsequent proxels which originate from the initial one 

at time     , along with the three potential events, are 

the following: 

 

  

a) Machine fails -                     , 

b) Repairman shift change -                    , 

c) No events -                       . 

 

where F stands for the machine‟s state FAILED. The 

age of the machine is implicitly recorded by the global 

simulation time variable. Note that we assume that the 

repairman on shift that has started to work on the repair 

also has to complete it, and thus, extend his shift. 

Further, for illustration purposes, we will develop the 

proxel for the case (a), i.e. when the machine has failed, 

which yields the following subsequent events and 

proxels: 

 

a-1) Machine is repaired -                       , 

a-2) No events -                      . 

 

The model description yields that the “change shift” 

transition is of race age policy, i.e. it needs to record the 

time spent on shift and not be restarted it when a failure 

occurs. During this processing, the required statistics 

that yield the simulation results are collected. 

 

4.3. Experiments and Results 

In the following we present the results of our simulation 

experiments, i.e. the statistics that were collected during 

the proxel-based simulation of the example model. The 

qustions that our simulation model provides answers to 

are the following: 

 

a) What is the probability of having the machine 

running?, and 

b) What is the probability that the machine has 5 

or more failures? 

 

The question (a) is a classical reliability analysis case, 

and the most typical question for a model like this one. 

In Figure 6 and Figure 7 we present the answers to the 

questions (a) and (b), correspondingly. The simulation 

parameters that we used were: a maximum simulation 

time t = 300, and a time step Dt = 0.5. Apparently, in 

Figure 6, we can observe that the model has not reached 

a steady-state during the simulation time of 300 time 

units, thus it needs to be simulated for a longer period 

of time. We did this, i.e. we ran the simulation up to 

time t =10000 using the same time step, and the 

obtained solution for the steady state reliability of the 

system is periodically oscillating, as shown in Figure 8. 
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Figure 7: The probability of the machine having 5 or 

more failures 

 

 

Figure 8: Steady-state solution of the discrete stochastic 

model 
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Figure 5: State-transition diagram of the unbounded Petri net model from Figure 4 

 
 

Figure 6: Transient solution for the 2 discrete states,  neglecting the fact of what repairman is on shift 
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The simulation results were obtained in 0.5 seconds on 

an Intel Core i5 2.53GHz workstation with a 4GB of 

RAM. The extended computation for the steady-state 

solution took longer, i.e. 3.5 minutes, which is still an 

acceptable running time. 

 

 
 

Figure 10: Steady-state solution of the simplified 

discrete stochastic model 

 

 For comparison, in Figure 9 and Figure 10, we 

provide the transient and steady state solutions of the 

same model, where the state-varying distributions are 

substituted with state-independent ones, i.e. with 

distributions with fixed parameters. Apparently, the 

results and their nature are quite different as the 

oscillating steady-state pattern is not present in the 

simplified model. 

More specifically, the distribution functions that 

we used for the state-independent failure rates were the 

following:  

 

                       , 

                  

 

5. SUMMARY AND OUTLOOK 

We presented an approach to more realistically model 

and simulate failures that exhibit a wide range of 

dependencies which are typically neglected. Their 

neglecting, however, can provide highly misleading 

results, and thus, it is imperative to avoid their 

oversimplification. The proxel-based method has shown 

to be very accurate and highly flexible in describing the 

complex types of dependencies that typically occur in 

stochastic models. We anticipate extending of the 

presented work to provide a tool that would facilitate 

reliability modeling considering state-varying failure 

rate functions. 

 

REFERENCES 

Baker, R. D. (2001). "Data-based modeling of the 

failure rate of repairable equipment." Lifetime 

Data Analysis 7(1): 65-83. 

Bause, F. and P. S. Kritzinger (2002). Stochastic Petri 

Nets, Vieweg. 

Billinton, R. and R. N. Allan (1992). Reliability 

evaluation of engineering systems, Plenum Press 

New York. 

Coskun, A. K., R. Strong, et al. (2009). Evaluating the 

impact of job scheduling and power management 

on processor lifetime for chip multiprocessors, 

ACM. 

Cox, D. R. (1955). "The analysis of non-Markovian 

stochastic processes by the inclusion of 

supplementary variables." Proceedings of the 

Cambridge Philosophical Society 51(3): 433-4  

Hassett, T. F., D. L. Dietrich, et al. (1995). "Time-

varying failure rates in the availability and 

0.00

0.20

0.40

0.60

0.80

1.00

P
ro

b
ab

ili
ty

 

Simulation time 

OK FAILED
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