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ABSTRACT 

For vehicle drivetrain design, there is a serious conflict 

of objectives between the oscillation phenomena shuffle 

and cyclic irregularities. The purpose of this paper is to 

illustrate a methodology to analyse and visualise the 

sensitivities of drivetrain eigenfrequencies in order to 

solve this conflict of objectives for the drivetrain design 

process for selected vehicle drivetrain concepts. Starting 

with a complex and detailed non-linear model, different 

simplifications are performed to finally visualise the 

sensitivities of relevant eigenfrequencies. This provides 

a profound understanding of the dynamic behaviour of 

the vehicle and enables engineers to identify parameter 

combinations that solve or palliate this conflict of 

objectives. Two exemplary measures are derived and 

the palliation effect is examined with the complex 

simulation models. 

 

Keywords: sensitivity, vehicle transient behaviour, 

eigenfrequency, oscillations 

 

1. INTRODUCTION 

Due to the increasing CO2 requirements of the vehicle 

fleet consumption, there is a considerable trend of 

vehicle manufacturers to optimize the vehicle fuel 

economy.  Nevertheless, there is a serious conflict of 

objectives for the design of vehicle drivetrains due to 

the fact that vehicle dynamics and comfort aspects also 

have to be taken into account. Therefore, the vehicle 

performance needs to meet the requirements and 

perturbing oscillations must not exceed an admissible 

threshold. 

In order to predict the behaviour of a future 

vehicle, complex non-linear models are used for the 

simulation of different components and settings. The 

pure implementation of a complex model however is 

not sufficient to gain a parameter setup that meets the 

requirements. The mere amount of parameters often 

prevents a straight-forward approach by simply 

adjusting one parameter after the other to approximate a 

good setup. 

Understanding and visualising the relevant 

sensitivities can seriously improve the design process 

since it helps identifying parameters that approximate 

good vehicle setups, gives profound understanding of 

the dynamics of the system and facilitates solutions for 

the described conflicts of objectives. Furthermore, no 

optimisation algorithms are needed, which usually 

require distinct optimisation criteria and boundaries that 

often do not exist explicitly, and will not necessarily 

lead to an improved understanding of the dynamics of 

the system. A methodology is presented in this paper 

performing different simplifications, analysing 

eigenfrequency sensitivities based on (Dresig and 

Holzweißig 2010) and deriving measures to palliate the 

conflict of objectives for shuffle and cyclic irregularity 

for low frequencies for the vehicle drivetrain design 

process. 

Numerous works are concerned with the discussed 

oscillation phenomena of a vehicle drivetrain. A 

complete overview would go beyond the scope of this 

paper. Therefore only selected works are presented 

here. In (Bencker 1998), experimental and simulative 

studies on shuffle are performed to identify palliative 

measures for the drivetrain. An analysis of a different 

engine torque excitation for shuffle follows in 

(Hülsmann 2007). Various works are concerned with 

active control of shuffle, e.g. (Best 1998), (Lefebvre, 

Chevrel, and Richard 2003), (Richard, Chevrel, and 

Maillard 1999). A holistic analysis of driveline 

oscillations due to cyclic irregularity is presented in 

(Gosdin 1985). Here, a parameter optimisation is 

achieved for the vehicle driveline for predefined 

boundaries. Various works are concerned with 

mechanical, semi-active or active components reducing 

cyclic irregularity, e.g. (Reik, Fidlin, and Seebacher 

2009). New components for palliation as well as active 

control algorithm for shuffle control can both profit 

from the presented methodology. For the former, the 

discussed conflict of objectives is still present and any 

palliation helps the effectiveness of an additional 
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drivetrain component. For the latter, improved shuffle 

behaviour reduces the control requirements. 

Starting point is a detailed model based on the 

physical behaviour of the different elements of the 

drivetrain. This model including measurement 

comparisons is presented in Section 2. The desired 

vehicle behaviour and existing conflicts of objectives 

are described in Section 3. In Section 4, different model 

simplifications are derived and the eigenfrequency 

sensitivity analysis is performed. The results of the 

presented methodology are then used to identify 

palliative measures for the behaviour of a three cylinder 

drivetrain, which is derived from the six cylinder 

drivetrain from Section 2. Finally, the results are 

summarised in Section 5.  

 

2. DRIVETRAIN MODELLING 

The examined prototype vehicle is a vehicle fitted with 

a six cylinder turbocharged engine. First, the engine 

model is presented, followed by the mechanical 

drivetrain model. Finally a measurement comparison is 

illustrated in this section. 

 

2.1. Thermodynamic Engine Implementation 

The cylinder volume is the core element of the engine 

model. Here, the combustion takes place and the 

mechanical work is transferred to the crank drive. It is 

basically a homogeneous volume following the first law 

of thermodynamics applied to open systems (Müller and 

Müller 2005): 

 

WEQU 
   (1) 

 

 Here, U  represents the first derivate of the internal 

energy with respect to time, Q  the heat flow and W   

the mechanical power done on the system. E  
represents the inner energy flow of matter entering and 

leaving the system. 

The conservation of mass and the caloric theory 

corresponding to the cylinder gases must also be taken 

into account for the model. Additional components as 

valves, a combustion model, heat transfer elements or 

the crank drive are also required to model the physical 

behaviour of the engine. A possible implementation of 

these elements is described in (Krieg, Förg, and Ulbrich 

2011). 

Deviant from the filling and emptying approach 

presented in (Krieg, Förg, and Ulbrich 2011), the fluid 

oscillations of the intake and exhaust manifold are also 

considered here. Intake and exhaust manifold are 

modelled as sequence of pipes, which are discretised 

homogenous volumes. Incorporating detailed intake and 

exhaust manifold models can increase the quality of the 

simulation results for certain operating conditions but 

leads to more complex models and longer simulation 

duration. The implementation of these pipes follows the 

conservation of mass and energy and, in addition to the 

filling and emptying approach, also the conservation of 

linear momentum: 
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Here, ρ represents fluid density, A the pipe cross 

section area, ω the fluid velocity and p the fluid 

pressure. Furthermore, t represents time, x position and 

kf is a coefficient for friction. A solution for the partial 

differential equation requires a discretisation method, 

e.g. the finite volume method (Dick 2009). A possible 

implementation of the pipes is presented in (Miersch 

2003). Components implemented as characteristic maps 

and not physically are the turbine and the compressor of 

the turbocharger. Here, the mass flow is estimated 

according to the turbocharger shaft speed and the fluid 

pressure of the incoming and outgoing pipes of these 

components, as derived from measured data. The 

implementation of turbochargers is described e.g. in 

(Baines and Fredriksson 2007). 

 

2.2. Mechanical Drivetrain Implementation 

For the engine crank drive model, an analytical and a 

multibody approach are possible implementations. A 

deduction of an analytical implementation according to 

the projective Newton-Euler equations and an 

evaluation of both implementation approaches is 

presented in (Krieg, Förg, and Ulbrich 2011). 

All shafts of the drivetrain are modelled as 

rotational inertias and springs with small damping. The 

mechanical model of the drivetrain follows from 

Figure 1. Here, ji represents the inertias of the drivetrain, 

ci the stiffnesses and φi the degrees of freedom. The 

parameters u3 and u6 represent the gear ratio and the 

final drive ratio. Teng represents the engine torque, 

which is applied to the crankshaft j2. 
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Figure 1: Mechanical Drivetrain System 

 

Tires are implemented as elements that calculate 

the force between wheel and street according to the 

differential speed of both. Data for tires are usually 

measured with a dedicated tire rig and implemented via 

a curve fitting algorithm. The longitudinal tire force 

follows according to (Pacejka and Bakker 1992): 
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Here, rtire represents the tire radius, wtire the tire 

rotational speed and vvehicle the vehicle speed. The tire 

load 
tire

loadF  of the rear tire is calculated according to the 

balance of momentum of the accelerated vehicle, as 

illustrated in Figure 2. The variable Fgravity represents 

the mass force due to gravity, h represents the height of 

the centre of mass of the vehicle and lf and lr the 

horizontal distance between front and rear wheel 

contact point to the centre of mass of the vehicle. The 

balance of momentum at the front wheel contact point 

calculates the rear axle load 
rear

loadF  and thus the tire load 

according to: 
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Figure 2: Vehicle Balance of Momentum 

 

Tire force is a quantity proportional to differential 

speed s, so it can also be seen as non-linear damper with 

high damping coefficient. The function  represents 

the curve fitting algorithm, as shown in (Pacejka and 

Bakker 1992). The tire models illustrated in Figure 1 

also contain an inertia that represents the rims. 

The equations for the differential follow according 

to: 
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Here, inT  represents the torque of the input shaft 

and 
right

outT  and 
left

outT  of the right and left output shaft. 

Furthermore, inw  represents the rotational speed of the 

input shaft and 
right

outw  and 
left

outw  of the right and left 

output shaft of the differential. The parameters for all 

shafts and additional compliant elements are measured 

on component rigs. All inertias are corrected according 

to the gear ratio for the equivalent degree of freedom. 

 

2.3. Measurement Comparison 

In order to verify the correctness of the drivetrain 

model, an accurate measurement comparison is 

required. Therefore, a Tip-In manoeuvre was measured, 

i.e. the acceleration pedal of a prototype vehicle with 

constant speed is quickly acted from a defined part load 

throttle to full throttle. The first gear is engaged here. 

 The measurement results and the corresponding 

simulations for the vehicle are illustrated in the 

following figures. Figure 3 illustrates the intake 

manifold pressure, which is derived from a dedicated 

pressure sensor. For the simulated and measured 

manoeuvre, the acceleration pedal is acted at s5.0t . 

The figure shows that there is good consistence for the 

intake manifold pressure between measurement and 

simulation. 

 

 
Figure 3: Measurement Comparison of the Intake 

Manifold Pressure 

 

Figure 4 illustrates the engine torque. The 

measured engine torque is actually derived from an 

engine model on the engine control unit (ECU), which 

estimates the current torque according to diverse 

measured data, e.g. crankshaft speed or the intake 

manifold pressure. Apparently, there is also good 

consistence between measured and simulated engine 

torque. The first rise of the engine torque is very steep 

and results in an excitation that is similar to a torque 

step function. This occurs because of the rapid filling of 

the intake manifold and the cylinders after increasing 

the throttle diameter and the subsequent conversion into 

mechanical work by combusting a larger mass of air 
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and fuel. The following rise of the engine torque is a 

consequence of the turbocharger, which has a certain 

time delay because of its inertia. 

 

 
Figure 4: Measurement Comparison of the Engine 

Torque 

  

 A measure comparison for the mechanical 

drivetrain is also required, as follows in Figure 5. Here, 

the drivetrain model is acted by the measured engine 

torque. The longitudinal acceleration of the vehicle is 

illustrated. The drivetrain model shows good 

consistence between measurements and simulation. 

Note that several control algorithms for the damping of 

oscillations within the ECU are not considered here and 

were switched off for the measurements to avoid 

masking the drivetrain behaviour with interference of 

these algorithm interactions for examined frequencies. 

 

 
Figure 5: Measurement Comparison of the Vehicle 

Acceleration 

 

3. DESIRED VEHICLE BEHAVIOUR 

Figure 5 illustrates the vehicle longitudinal acceleration 

for a Tip-In manoeuvre. The excitation of the drivetrain 

via the engine similar to a step function results in a 

dominant stimulus of the first eigenfrequency with 

approximately 2.5 Hz for the vehicle longitudinal 

acceleration. 

In fact, also higher eigenfrequencies of the 

drivetrain are stimulated by the step excitation. 

Nevertheless, for higher frequencies less energy is 

brought into the system for a step function excitation, 

higher frequencies oscillate with smaller magnitudes 

and they are quickly damped due to their higher 

rotational velocity. These effects explain the dominance 

of the first eigenfrequency for the vehicle longitudinal 

acceleration. 

The desired vehicle behaviour is described from a 

driver perspective. For the discussed Tip-In manoeuvre, 

a driver experiences oscillation of the longitudinal 

vehicle acceleration, also referred to as shuffle, 

buckling or Bonanza effect, as perturbing. Particularly 

the height of the oscillation amplitudes is considerable 

to the driver. The frequency of this oscillation on the 

other hand is of less importance. Shuffle oscillations are 

usually between 2-5 Hz and in fact it is difficult for the 

driver to resolve a difference between these low 

frequencies. A quick decline of the oscillation is of 

higher importance. Additionally, the driver appreciates 

a steep rise in the vehicle acceleration curve. 

For a higher frequency of the first drivetrain 

eigenfrequency, the oscillation amplitude is lower, the 

damping effect is stronger and the acceleration curve is 

steeper. As a result, a driver prefers higher frequencies 

for the first eigenfrequency of the vehicle drivetrain. 

From this point of view, a consequence for the 

vehicle drivetrain design could be to choose e.g. shafts 

with high stiffness in order to move the first 

eigenfrequency to higher frequencies. This perspective 

however is too narrow for a drivetrain design. Driving a 

vehicle in other use cases also results in exciting higher 

drivetrain frequencies. In particular for drivetrains with 

three or even less cylinder engines, the second 

eigenfrequency is excited by the cyclic irregularity of 

the engine during stationary operation for low engine 

speeds n < 1,500 rpm in 5
th

 or 6
th

 gear. For higher 

engine speed or engines with more cylinders, the cyclic 

irregularity of the engine is also a problem, but the 

oscillations are transferred to the driver with smaller 

amplitudes. For these oscillation phenomena, other 

effects than the eigenfrequency affect the comfort 

perception of the driver as well. These aspects are not 

examined here. The focus of this paper is shuffle and 

cyclic irregularity due to excitation of drivetrain 

eigenfrequencies. 

Even though shuffle and cyclic irregularity are 

examined with different gears, they illustrate a serious 

conflict of objectives for the vehicle drivetrain design. 

A simple optimization of shuffle, e.g. choosing stiffer 

shafts, would result in a higher frequency of the first 

and second eigenfrequency of the drivetrain. A higher 
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second eigenfrequency however is then closer or 

identical to the cyclic irregularity of the engine for 

certain vehicle speeds. Vice versa, a simple 

optimization of the cyclic irregularity behaviour could 

worsen shuffle. An efficient drivetrain design therefore 

must take both effects into account and resolve this 

conflict of objectives.  

 

4. SENSITIVITY ANALYSIS 

The eigenfrequency methodology is presented in this 

section. First, simplifications of the drivetrain model are 

performed, followed by the application of the sensitivity 

analysis based on (Dresig and Holzweißig 2010). 

Subsequently, palliative measures are derived and 

examined with the detailed model. 

 

4.1. Simplifications 

In order to examine the eigenfrequencies, 

simplifications are performed here. The thermodynamic 

engine model is of less interest since it essentially 

defines the excitation, the interaction is negligible. The 

crank drive is simplified as part of the crankshaft 

inertia. An additional simplification is concerned with 

the tire inertia and the vehicle mass. In relation to the 

drivetrain inertia, the vehicle mass is very high. 

Therefore the error caused by attaching the vehicle mass 

to the inertial frame is small. Furthermore, the tires are 

neglected and the rims are also fixed to the inertial 

frame. Due to the fact that there is generally only low 

damping for the drivetrain, damping effects are 

neglected for the sensitivity analysis. These 

simplifications actually influence the eigenfrequencies 

of the drivetrain and therefore a final comparison of the 

simplified model with the detailed drivetrain model is 

required.  

The simplified drivetrain model is a one 

dimensional chain of inertias and springs: 

 

0xx CM 
  

(8) 

 

Here, x represents the vector for the rotational 

positions and x  the vector for the rotational 

accelerations of the inertias. The matrix of stiffness C 

follows according to: 
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(9) 

 

The matrix of inertia M is diagonal according to: 

 

),,,,,,,diag( 87654321 jjjjjjjjM  (10) 

 

There are only small deviations between the two 

models of first and fifth gear, e.g. gearing stiffness c3 or 

gearing ratio u3. The simplified model is illustrated in 

Figure 6. 

 

c1 c2 c3 c4 c5 c6

c7

c8

Diff

φ1 φ2 φ3 φ4 φ5 φ6 φ7

φ8

u3 u6

j1 j2 j3 j4 j5 j6

j7

j8

Figure 6: Reduced Mechanical Drivetrain Model 

 

4.2. Sensitivity Algorithm 

The presented sensitivity algorithm is based on (Dresig 

and Holzweißig 2010). A modal decomposition of the 

differential equation system of Equation (8) returns the 

modal inertia i  and stiffness i  as follows  

(Ulbrich 1996): 

 

i
T
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T
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 Here, iv  represents the eigenvector of the 

eigenfrequency i . The eigenfrequency i  
is then 

calculated according to: 
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 Small variations of the inertias M  or the 

stiffnesses C  lead to small variations of the 

eigenfrequency i , and the change of the eigenvector 

is negligible 0iv : 
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 Assuming that variations of the inertias are much 

smaller than the inertias themselves MM , and 

i  
can be estimated after some transposition 

according to (Dresig and Holzweißig 2010): 
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 The variation matrices for stiffness C  and 

inertias M  are a sum of the variations of all inertias 

lj  and stiffnesses kc : 

 

l l

l
l
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(17) 

 

 The matrices 0kC  and 0lM  represent the 

introduced matrices for stiffness and inertias with all 

elements equal to zero, except element k  or l  

respectively, e.g. for the inertias: 

 

)0,,0,,0,,0diag(0  ll jM
 

(18) 

 

 This finally leads to the following sensitivity 

coefficients for stiffness ki  and inertia li  
for 

eigenfrequency i  of element k  or l  respectively: 
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 These coefficients describe the variation of the 

eigenfrequency for a small relative parameter variation. 

Thus they are regarded as sensitivity coefficients for 

that eigenfrequency.  

 

4.3. Drivetrain Eigenfrequency Analysis 

For the presented drivetrain models for the first 

eigenfrequency of the first gear and the second 

eigenfrequency of the fifth gear, the sensitivity 

coefficients are illustrated in the following figures. 

In order to solve the discussed conflict of 

objectives, the task now is to move the first 

eigenfrequency of the first gear to higher frequencies 

and vice versa move the second eigenfrequency of the 

fifth gear to lower frequencies. For a spring and mass 

system, an eigenfrequency is moved to higher 

frequencies by decreasing inertias or increasing 

stiffnesses, compare Equation (19). Figure 7 illustrates 

the sensitivity coefficients of the inertias and Figure 8 

those of the stiffnesses for shuffle. The shuffle 

eigenfrequency is Hz5.21
. 

 

 
Figure 7: Sensitivity of Inertias for Shuffle 

 

 

 
Figure 8: Sensitivity of Stiffnesses for Shuffle 

 

For the shuffle eigenfrequency, there is a high 

sensitivity for the crankshaft inertia and the inertia of 

the dual-mass flywheel j2 and j3. Furthermore, there is a 

high sensitivity for the rubber joint and the sideshaft 

stiffness c4, c7 and c8. 

The same sensitivity analysis was performed for 

the relevant eigenfrequency for cyclic irregularity 

Hz1.172 , as illustrated in Figure 9 for the inertias and 

Figure 10 for the stiffnesses. 
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Figure 9: Sensitivity of Inertias for Cyclic Irregularity 

 

 
Figure 10: Sensitivity of Stiffnesses for Cyclic 

Irregularity 

 

Figure 9 illustrates that there is a high sensitivity of 

the eigenfrequency for cyclic irregularity for the 

secondary mass of the dual-mass flywheel j3. 

Furthermore, the stiffness of the dual-mass flywheel c2 

also shows high sensitivity for that eigenfrequency. 

With the presented diagrams, it is now possible to 

identify combinations that raise the first eigenfrequency 

and decrease the second eigenfrequency as well. In 

order to derive a parameter combination as palliation 

measure, a first parameter is selected from the 

illustrations, which has a high sensitivity for shuffle and 

a low sensitivity for cyclic irregularity. Additionally, a 

second parameter is chosen with low sensitivity for 

shuffle and high sensitivity for cyclic irregularity.  

 

4.4. Modifications of the Mechanical Drivetrain 

Two different combinations will be discussed in the 

following section in order to illustrate the methodology 

principle. From Figure 8 and Figure 10 it is apparent 

that the stiffness c7, i.e. the stiffness of the right 

sideshaft, has a major influence on the shuffle 

eigenfrequency and a minor influence on the 

eigenfrequency of cyclic irregularity. On the other hand, 

stiffness c2, i.e. the stiffness of the dual-mass flywheel, 

has a minor influence on the shuffle eigenfrequency and 

a major influence on the eigenfrequency of cyclic 

irregularity. A promising combination to solve the 

conflict of objectives could now be to increase stiffness 

c7 and decrease stiffness c2. In order to contain the 

symmetry of the drivetrain, stiffness c8, i.e. the stiffness 

of the left sideshaft, also needs to be modified according 

to stiffness c7. Here, the stiffnesses of the driveshafts 

are doubled and the stiffness of the dual-mass flywheel 

decreased to half of the original value. This results in 

modification 1: 
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 Additionally, another modification is examined to 

ensure that modification 1 is not a coincidence. The new 

parameter setup is referred to as modification 2: 

 

4
2mod

4 2cc

 
 

(23a) 

7

2mod

7 8.0 cc
  

(23b) 

2mod

7

2mod

8 cc
  

(23c) 

 

 
Figure 11: Campbell Diagram 
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The values for the parameter variation are derived 

so that the effect of one measure does not 

overcompensate the effect of the other. The Campbell 

diagram in Figure 11 shows the result of the drivetrain 

eigenfrequencies (EF) for both modifications.  

The shuffle eigenfrequency of modification 1 is 

Hz8.21mod

1
, the eigenfrequency for cyclic 

irregularity is Hz5.151mod

2
. Furthermore, the shuffle 

eigenfrequency of modification 2 is Hz6.22mod

1
, the 

eigenfrequency for cyclic irregularity is Hz9.162mod

2
. 

Obviously, the aimed task to move both 

eigenfrequencies in the desired directions worked for 

both modifications. A weakness of the described 

methodology is the difficulty in predicting the precise 

frequency of the eigenfrequency of the new setup. 

Hence, the methodology helps to identify, which 

parameters should be modified in which direction, but 

not how high the parameter variation should be. 

 

4.5. Simulative Measure Verification 

Due to the performed simplifications it is finally 

required that the results also persist for the detailed 

model. The eigenfrequency of cyclic irregularity as 

examined here for low frequencies is a problem for the 

vehicle drivetrain because it is close to the excitation of 

the engine. For a three cylinder engine, it is particularly 

difficult since it excites the drivetrain with the 1.5 order. 

The excitation of a three cylinder engine is also 

illustrated in Figure 11. A detailed three cylinder model 

is derived in this work from the presented six cylinder 

model of section 2. Therefore, three cylinders are 

removed and additional modifications for the exhaust 

and the intake manifold are performed to generate the 

three cylinder model. In particular, parts of the exhaust 

and intake manifold system with two parallel paths of 

the six cylinder model are removed. Those parts with 

one common path are physically divided in half, e.g. the 

throttle cross section or the intake manifold volume. 

This model is used to obtain a realistic engine 

excitation. 

Figure 12 illustrates the engine torque of the model 

for a Tip-In manoeuvre. This diagram shows that the 

three cylinder engine has a comparable steepness of the 

first torque raise which is followed by an engine torque 

which is approximately half as high as the six cylinder 

engine. 

In Figure 13 the acceleration of the vehicle model 

is illustrated. Here, the original drivetrain model is 

excited with the three cylinder torque of Figure 12. 

Furthermore, the drivetrain model modification 1 is also 

excited by this engine torque. First remark is that due to 

the lower torque the absolute values of the acceleration 

and its oscillations are lower than those of the drivetrain 

of Section 2. Nevertheless, since the oscillations are 

observed in relation to the mean acceleration, the 

oscillations are still a problem. 

 
Figure 12: Engine Torque for Original and 3 Cylinder 

Engine 

 

 Additionally, Figure 13 shows that the aimed 

increase of the shuffle eigenfrequency worked for 

modification 1. Consequently, also the amplitude of the 

oscillations is reduced and the suggested measure 

worked for the simulation of shuffle as expected.  

 

 
Figure 13: Vehicle Acceleration with Modification 1 

 

Next step is the simulation of cyclic irregularity. 

Here, the three cylinder engine is again used to generate 

the excitation. For cyclic irregularity, a constant 

excitation for a dedicated engine speed is required. 

According to Figure 11, a low engine speed results in an 

excitation close to the eigenfrequency. For that reason 

n = 1,000 rpm is used as excitation. Figure 14 illustrates 

the torque acting on a distinct drivetrain shaft, which is 

relevant for cyclic irregularity, for the original 

drivetrain and the drivetrain modification 1 in order to 

evaluate oscillations due to cyclic irregularity. 
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Figure 14: Cyclic Irregularity for n = 1,000 rpm, 

Modification 1 

 

The illustration shows that the amplitude of the 

torque oscillation of the modified drivetrain decreased 

from 70 Nm to 30 Nm. Thus, the exemplary system 

modification worked in the desired way and helped to 

palliate the conflict of objectives between shuffle and 

cyclic irregularity. 

For modification 2, the drivetrain was excited in 

the same way as described for modification 1 above. 

Figure 15 and Figure 16 illustrate the simulation results 

for drivetrain modification 2. 

 

 
Figure 15: Vehicle Acceleration with Modification 2 

 
Figure 16: Cyclic Irregularity for n = 1,000 rpm, 

Modification 2 

 

The vehicle acceleration in Figure 15 shows that 

the effect of modification 2 for shuffle is marginal. The 

reason for that is the minimal change of 2mod

1
. The 

decrease of the first stiffness almost completely 

compensates the increase of the second stiffness. 

Improved behaviour is observable for cyclic irregularity 

in Figure 16. The effect of modification 2 is smaller 

than that of modification 1. 

 

5. CONCLUSION 

For vehicle drivetrain design, oscillations represent a 

major aspect in order to gain a setup that meets the 

comfort requirements of the driver. Shuffle and cyclic 

irregularities due to the engine excitation cause a 

serious conflict of objectives. A methodology is 

presented that can help to solve this conflict of 

objectives for selected drivetrain setups, based on an 

understanding of the drivetrain eigenfrequency 

sensitivities. 

 First, a detailed model of the drivetrain is presented 

in Section 2, containing a complex engine model for the 

vehicle excitation and a mechanical drivetrain model 

including tires. A measurement comparison for the 

engine torque, intake manifold pressure and the vehicle 

acceleration is presented to verify the correctness of the 

models. In Section 3, the desired vehicle behaviour and 

the conflict of objectives for the palliation of shuffle 

and cyclic irregularity is described. The methodology is 

presented in Section 4, starting with a simplification of 

the drivetrain model and an eigenfrequency sensitivity 

analysis based on (Dresig and Holzweißig 2010). The 

following visualisation facilitates the identification of 

palliation measures for the described conflict of 

objectives. Two exemplary palliation measures are 
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derived from these illustrations. In order to show the 

conflict of objectives, a three cylinder engine is derived 

from the examined models, which particularly suffers 

from the described conflict, since the excitation 

frequency is close to the second drivetrain 

eigenfrequency for low engine speed. The setup of the 

mechanical drivetrain is not changed any further to 

illustrate the methodology principle. Simulations for the 

detailed models show that the suggested, exemplary 

measures can palliate the described conflict of 

objectives for the observed drivetrain. 

The example shows improved vehicle behaviour 

for the performed time-based simulations. Nevertheless, 

a final measurement comparison is required. It must 

eventually be clarified for other conditions of use that 

the suggested measures will not worsen the vehicle 

behaviour for those use cases. This can also include 

oscillations of cyclic irregularity for higher frequencies 

since other effects affect the driver perception here as 

well. 

It shall also be remarked that the described method 

is not the usual method to derive a drivetrain setup. In 

particular, the vehicle mass of the three cylinder engine 

remained identical to the six cylinder engine. Also the 

gear and final drive ratios remained the same. For a 

drivetrain design in the industry, the gear and final drive 

ratio, the vehicle mass and additional parameters are 

adjusted to achieve a coherent vehicle setup. In this 

paper, these adoptions are neglected in order to 

demonstrate the methodology principle. It is the 

dedicated objective of the presented method to palliate 

the conflict of objectives between shuffle and cyclic 

irregularity and not to derive a drivetrain setup for new 

vehicle concepts. 

Despite to an optimisation algorithm, the 

comparison of the sensitivities for the different use 

cases provides a profound understanding of the dynamic 

vehicle drivetrain behaviour. Furthermore, optimisation 

algorithms require distinct optimisation criteria and 

boundaries that often do not exist explicitly. In 

particular, for the heterogeneous design process of a 

vehicle with different responsibilities spread around 

research and development departments, a methodology 

providing a profound understanding of the dynamic 

behaviour is superior compared to a singular optimum. 
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