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ABSTRACT 

This paper describes the architecture of an agent-based 

simulation environment for large-scale emergency 

response. In an effort to increase “model payoff”, it uses 

two representations for both the environment and the 

agents. Around each incident, where topographical 

information is necessary, an operational level simulator 

program models the environment using the OS 

MasterMap topography and Integrated Transport 

Network (ITN) layers. At these incident sites, first 

responder agents are modelled with a rich repertoire of 

actions.  The remaining area of interest, encompassing 

the locations of relevant resource bases (e.g. ambulance 

stations, hospitals and fire stations) which are outside of 

the incident sites, is modelled using only transport 

network information by a tactical level simulator 

program. This program also simulates the tactical level 

agents, communicates with each operational level 

simulator, and provides a viewer. A separate Pre-

Simulator program allows new scenarios to be set up 

with ease.   
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1. INTRODUCTION 

The simulation of emergency scenarios is an important 

part of the preparedness stage of the emergency 

management cycle (Haddow 2010). In silico simulation 

in particular finds numerous applications within 

emergency preparedness and response (Jain and 

McLean 2003, Longo 2010).   

 Agent-based models are a popular way of 

simulating responses to large-scale emergencies (Khalil 

et al 2009). Roberts (2010) describes an agent-based 

model (ABM) design as:  

 “...one in which analogs of those real-world entities 

that are to be modeled are represented as software 

agents, or objects, at a level of detail and resolution 

necessary to address the questions the model is 

required to answer.”     

 The importance of finding the appropriate level of 

resolution in an ABM is emphasized by Grimm et al. 

(2005): 

 “Finding the optimal level of resolution in a 

bottom-up model's structure is a fundamental problem. 

If a model is too simple, it neglects essential 

mechanisms of the real system, limiting its potential to 

provide understanding and testable predictions 

regarding the problem it addresses. If a model is too 

complex, its analysis will be cumbersome and likely to 

get bogged down in detail.” 

  This leads to the concept of the “Medawar zone” 

(Grimm et al. 2005), a region of complexity in which 

the ABM is not only useful for its intended purpose, but 

is also structurally realistic. Together, the usefulness 

and structural realism of an ABM determine the “model 

payoff”. The Medawar zone may be seen as an 

application of the Aristotelian notion of “the golden 

mean”, the most desirable region between two 

extremes, to ABM design.   

 Whilst North and Macal (2007) assert that “realistic 

agent behaviors are the key to agent-based modeling”, 

they also state that “properly specified agent 

environments are critical for correct agent operation.” 

Thus it is important that both the agents and their 

environment are appropriately represented.  

 In the remainder of this section, we briefly discuss 

different representations of agents and their 

environment in ABMs for large-scale emergency 

response, and consider their relation to model payoff. 

We also briefly discuss the high-level software 

organization of existing ABMs. Then in Section 2 we 

propose the use of two different representations for both 

the environment and the agents: one for around incident 

sites, and another for elsewhere.  In Section 3 we 

describe our software which uses these two 

representations. Section 4 provides a summary, and 

describes future planned developments and use of the 

software. 

 

1.1. Agent representations for large-scale 

emergency response 

The range of complexity which is possible when 

implementing agents, from simple production systems 

to cognitive architectures, is discussed by Gilbert 

(2007). An agent consists of a state (variables) and 

behavior (methods). The behavior of an agent manifests 

itself through the actions it decides to make. At the 

highest level, decision making may be descriptive or 

normative (Peterson 2009). Depending on which is used 

to implement the behavior of the agents, one of two 

conceptually different ABMs may arise:  
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1. Descriptive: An ABM in which the behaviors 

of agents are designed to mimic that of their 

real-life counterparts.  

2. Normative: An ABM in which agents have 

behavior which is not based on reality. Instead 

their behavior is designed to be optimal, 

according to some criteria.  

 An example of an ABM which has agents whose 

behavior is defined by normative decision making is the 

RoboCup Rescue Simulation (RRS) (Skinner and 

Ramchurn 2010). The aim in the annual RRS 

competition is to design ex novo behaviors for police, 

fire brigade and ambulance agents, along with their 

control centers, to optimize an objective function which 

combines the health of civilians and damage to 

property. As Carley et al (2006) says, “it is concerned 

with designing smart algorithms, not with investigating 

a current human social system as it exists and designing 

a public policy for it.” Such “smart algorithms” are 

often quite complex. A simple, yet crude, measure of 

the complexity of agent representation could be the 

number of lines of code taken to implement it. For 

example, thousands of lines of Java code were used to 

implement agent behaviors in RoboAkut (Akin 2010), 

the winning entry in the RRS 2010 competition. An 

interesting approach which yields agents of different 

complexities is described by Runka (2010). Agents are 

represented by decision trees, which evolve using 

genetic programming (Koza 1992). Different fitness 

functions yield different sized trees, corresponding to 

agents of different complexity. 

 This paper is concerned with agents whose 

behavior is designed to mimic that of their real-life 

counterparts. A variety of ABMs exist which implement 

such agents, and complexity can vary greatly. For 

example, the rescuer agents in the ABS SimGenis (Saoud 

2006) are quite simple in their implementation (despite 

being described as having “perceptive and cognitive 

intelligence”). A set of heuristic rules determine their 

behaviors. The casualty agents are even simpler, having 

only a discrete-valued health state, the evolution of 

which is modelled using a Markov chain. In PLAN-C 

(Narzisi 2007), rescue agents are also quite simple.  For 

example, the pseudo-code in (Mysore 2006) is only a 

few lines long. Although pseudo-code, it is low-level 

enough to suggest that the actual (Java) code would not 

be significantly longer. More complex are the rescue 

agents in the AROUND project (Chu 2009), which 

learn their behavior from their human counterparts 

through interactive sessions. Weights in a utility 

function, which combines multiple objectives, are 

adjusted so as to select actions in a manner which is 

most consistent with that of the human experts. State of 

the art cognitive architectures, such as Soar (Lehman 

2006) and ACT-R (Anderson 2007), do not appear to 

have yet been applied to large-scale emergency 

response ABMs. 

 Just from these examples, it is evident that a range 

of complexities are possible for representing agents, and 

different research groups differ in what they deem 

appropriate. Müller (1999) gives eleven general 

guidelines for choosing the right agent architecture to 

apply to a specific problem, one of which is “Do not 

break a butterfly upon a wheel” (i.e. do not waste effort 

in developing complex agents when simpler agents 

suffice). While Sun (2006) points out that most social 

simulation tools “embody very simplistic agent models, 

not even comparable to what has been developed in 

cognitive architectures”, Gilbert (2006) questions when 

cognitive architectures are needed anyway. Grimm et al 

(2005) point out that many ABMs “try only one model 

of decision-making and attempt to show that it leads to 

results compatible with a limited data set”, and point 

out the flaws in doing so. 

 One characteristic which existing ABMs for large-

scale emergency response do share however is that 

within each ABM, the representation of any particular 

agent is constant. For example, whether a firefighter 

agent is leaving the fire station, travelling to an incident 

scene, or inside the inner cordon, it is modelled using 

the same code, and thus at the same level of complexity, 

throughout the simulation. 

1.2. Environment representations for large-scale 

emergency response 

Some large-scale emergencies, such as earthquakes, 

may cause widespread damage to the environment, 

whilst others, such as terrorist bombs, may cause 

localized damage.  Some may even cause no damage to 

the environment, e.g. human pandemics.  Thus, the 

most appropriate representation for the environment is 

dependent on the type of large-scale emergency being 

simulated, and in particular the damage it causes.  

 For example, in the ABM EpiSimS (Del Valle 

2006), which models the effect of different policies on 

the spread of human pandemics, only the transport 

network is modelled. RRS on the other hand, which 

simulates the response to an earthquake, models the 

buildings as well, as many will be damaged and need to 

be considered during the response effort. The 

representation of the environment in RRS is explored 

by Sato and Takahashi (2011). They found that the 

representation of topography influenced simulation 

results: when modelled at a lower resolution, buildings 

were found to take a longer time to burn; at a higher 

level of resolution, gaps between the smaller buildings 

prevented fire from spreading.  

In the context of military simulations, which use 

triangulated irregular networks (TIN) to model terrain, 

Campbell et al. (1997) point out that “users naturally 

favour high resolution, high fidelity models because of 

the realism they offer, but computers that run the 

simulations may not be able to store and process the 

amount of data that is associated with these high 

resolution models.” They propose “by identifying 

tactically significant (and insignificant) terrain, we can 

more effectively manage the TIN budget by suggesting 

areas of terrain that should be modelled at high and low 

fidelity”, i.e. the use of different resolutions within a 

single model. 
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1.3. Software organization of ABMs for large-scale 

emergency response 

Many ABMs are single-process programs. However, 

some do make use of multiple programs, and in 

particular distributed memory parallelism. 

 RRS makes use of functional parallelism. Different 

sub-simulators, each of which simulates one aspect of 

the earthquake response scenario (such as a fire sub-

simulator, and a flood sub-simulator), run on separate 

processors. Using more processors enables more 

functionality to be modelled; however it does not allow 

larger areas to be simulated. As well as functional 

parallelism, the IDSS ABM (Koto 2003), which is also 

designed for earthquake response simulation, uses data 

parallelism: large geographical regions are split into 

smaller ones, which are simulated in parallel.  The use 

of up to 34 machines is reported for modelling an area 

affected by an earthquake. 

 Data parallelism is also used in EpiSimS to split the 

large environment, spanning five US counties, into 

smaller regions, which are then simulated in parallel 

following a master-slave model.  Del Valle et al. (2006) 

report distributing a single simulation over 106 

processors. 

 EpiSimS also reports the use of separate programs 

for “enhanced pre- and post-processing” (Del Valle et al 

2006).  An “InitializeHealth” program allows the user 

to specify different probability distributions on the 

population being modelled. A “graphic user interface 

enables it to be used by nonprogrammers”. This 

program is part of a suite of programs that are combined 

into a “Set-up Wizard”.  A set of scripts, which call 

programs such as gnuplot and Excel, are then used for 

carrying out post-processing on the output files 

generated by the simulation. 

 

2. IMPROVING MODEL COMPLEXITY FOR 

LARGE-SCALE EMERGENCIES 
In this section, we propose the use of more than one 

representation for both agents and their environment, 

when simulating large-scale emergency response.  

 

2.1. Agent representation 
 In the vicinity of an incident site, where the 

casualties are (possibly trapped), first responders carry 

out a wide range of actions. Using the National 

Occupational Standards for firefighters in the U.K. 

(U.K. Firefighter NOS 2005) as an example, four broad 

groups of activities may be identified (out of nine) as 

being directly relevant at the time of an emergency. 

These four groups are highlighted in bold in Table 1. 

Using the detailed descriptions of these four 

activity groups, twelve distinct actions may be 

identified, as shown in Figure 1. Of these twelve 

distinct actions, only one is relevant away from the 

actual incident sites: “driveVehicle” (the action 

necessary to arrive at the incident site). Thus, away 

from the incident sites, it is unnecessary to model the 

full repertoire of twelve actions for firefighters. In this 

regime, the behavior of firefighters reduces to movement 

 Table 1: Activities in the National Occupational 

Standards for FireFighters in the U.K. 

 

Ref Activity 

FF1 Inform and educate your community to 

improve awareness of safety matters 

FF2 Take responsibility for effective performance 

FF3 Save and preserve endangered life 

FF4 Resolve operational incidents 

FF5 Protect the environment from the effects of 

hazardous materials 

FF6 Support the effectiveness of operational 

response 

FF7 Support the development of colleagues in the 

workplace 

FF8 Contribute to safety solutions to minimize 

risks to your community 

FF9 Drive, manoeuvre and redeploy fire 

service vehicles 
 

 

 
 

 
 

 
 

 
 

Figure 1: Identification of FireFighter agent actions 
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along the transport network, and the ABS is more akin 

to a traffic simulation. The same arguments hold for 

other first responder agents, such as paramedics and 

police. 

 

2.2. Environment representation 

The preceding discussion leads us to two different 

representations of the environment also. Around 

incident scenes, information is required (cues) in order 

for agents to discern which action to perform. The 

Ordnance Survey MasterMap (OS MasterMap 2011) 

topography and Integrated Transport Network (ITN) 

layers are used to model the topography and transport 

network of rectangular regions centred around each 

individual incident scene.   

Away from the incident scenes however, as the 

only action which agents are performing is the action of 

moving, only the transport network needs to be 

represented. Thus, only the ITN layer is used to model 

the larger area which surrounds the incident sites. This 

area is sufficiently large to capture all the hospitals, fire 

stations and police stations that may be involved in 

resolving the incident. 

 Figure 2 illustrates our approach for the case of the 

London 2005 bombings.  The locations of the bomb 

explosions are modelled using the topography and ITN 

layers. Edgware Road (Figure 2 (a)) and Liverpool 

Street (Figure 2 (b)) are modelled as separate 1 km
2
 

regions. As the Tavistock Square and King’s 

Cross/Russell Square incidents were quite close, they 

are modelled together in a larger 3 km
2
 (1.5 km x 2 km) 

region (Figure 2 (c)). To capture all the hospitals and 

fire stations used, the road network in the larger 60 km
2
 

area is modelled using the ITN layer as shown. 

 

 

 
 

Figure 2: Two representations for the environment  

 

  

3. SOFTWARE ORGANIZATION 
In this section, we describe the high-level organization 

of the software used to set up and perform simulations, 

using the different representations mentioned in the 

previous section. 

 Three separate programs make up the agent-based 

simulation environment: 

1. A Pre-Simulator program, which is used to set 

up the emergency to be simulated. 

2. A Tactical level simulator program, which: 

a. simulates tactical level agents,  

b. simulates first responders when they 

are travelling along the road network, 

to and from incident sites, 

c. provides a viewer for the simulation, 

d. communicates with the operational 

level simulator programs. 

3. An Operational level simulator program, one 

instance of which simulates one individual 

incident site. 

 

Figure 3 shows how these programs are organized.  The 

Pre-Simulator program is used to set up the scenario to 

be simulated. The details are written to xml files which 

then serve as input to the Tactical level Simulator 

program.  

  
 

Figure 3: High-level software organization 

 

More precisely, the Pre-Simulator is used to: 

 

1. Specify the OS ITN file defining the transport 

network, and (optionally) specify a folder 

containing OS StreetView raster files (OS 

StreetView 2011) covering the same area. This 

information is saved to transportNetwork.xml. 

2. Identify nodes on this transport network which 

represent locations of resource bases 

(hospitals, fire stations, ambulance stations and 

police stations). This information is saved to 

resources.xml. 

3. Set the resources available at each resource 

base (e.g. the number of ambulances at each 

ambulance station). This information is saved 

to initialization.xml. 

4. Initialize the positions and crew of each 

individual resource. This information is also 

saved to initialization.xml. 

5. Specify the individual incident sites, and the 

OS MasterMap topography file(s) which 

define the topography in each. This 

information is saved to sites.xml.  

6. Set up the incidents (including casualty 

information held in text files) at each incident 

site. This information is saved to crisis.xml. 
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Figure 4: Setting up the transport network, identifying 

resource bases, and initializing resources in the Pre-

Simulator. 

 

Steps 1-4 of this process are illustrated in Figure 4, 

whilst steps 5-6 are illustrated in Figure 5. Note that, 

once the road network is loaded and displayed (Step 1), 

the user must select nodes as resource bases (Step 2). 

As it is difficult to identify the appropriate nodes using 

the road network alone, the first dialog in Figure 4 

allows the user to (optionally) specify a folder 

containing OS StreetView raster files. If specified, these 

are superimposed onto the Pre-Simulator view which 

shows the transport network, allowing the user to easily 

identify the nodes of interest. 

 
 

Figure 5: Setting up the incident sites, and creating 

incidents in the Pre-Simulator. 

 

The tactical level simulator takes the xml input files 

written    by    the    Pre-Simulator    as   command   line 

parameters, and uses them to create the virtual 

environment and populate it with agents. It also 

provides a viewer of the environment, as shown in 

Figure 6. Each incident site has its own dockable 

window showing the topography of the area as defined 

by its OS MasterMap topography files.  These windows 

are docked in region “a” in Figure 6. The area outside  

the  incident  sites  is  represented by the transport 

network, but is visualized  using  the  OS StreetView 

maps. This window is labeled “b” in Figure 6.   

 The tactical level simulator also simulates the 

tactical level agents (in the strategic-tactical-operational 

command structure used for major incidents in the U.K. 

(LESLP 2007)). These agents are responsible for 

issuing a plan (usually a predetermined attendance) to 

the available resources. This is represented in the form 

of an evolving Gannt chart, which is shown in the 

window labeled “c” in Figure 6.  Finally, the window 

labeled “d” in Figure 6 shows how the estimated total 

number of fatalities evolves with time. 
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Figure 6: Screenshot of the viewer 

 

 The road network is represented as a graph in the 

tactical level simulator, using the Boost graph library 

(Siek, Lee and Lumsdaine 2002). This allows the use of 

Dijkstra’s algorithm, to determine responder agents’ 

paths to and from the incident sites (once issued with 

their part of the plan). 

 When an agent enters an incident site, it stops being 

simulated in the tactical level simulator, and starts being 

simulated inside the appropriate operational level 

simulator. Its representation changes from a basic agent 

which can merely move along a transport network, to a 

more sophisticated agent which can perceive its 

environment, as shown in Figure 7, and select among a 

wide range of actions to perform. The actions for 

FireFighters have already been given in Figure 1. In a 

similar manner, eight actions for Paramedic agents and 

fourteen actions for Police agents have been identified 

from their National Occupational Standards and Major 

Incident Plans. 

 

 
 

Figure 7: An agent perceiving its environment in the 

operational-level simulator 

 

 Finally, the tactical level simulator and operational 

level simulator(s) communicate with one another. The 

way they do this depends on whether the programs are 

running on the same machine or different machines, as 

shown in Figure 8. When on the same machine (Figure 

8 (a)), they communicate using shared memory, using 

the QSharedMemory class from Qt (Qt 2011).  When 

on different machines (Figure 8 (b)), they communicate 

using sockets, using the QTcpServer and QTcpSocket 

classes from Qt.  

 
 

   (a) Shared memory 

 

   
 

   (b) Distributed memory 

 

Figure 8: Inter-process communication 

 

 

4. SUMMARY AND FURTHER WORK 

The high-level architecture of an agent-based simulation 

environment, designed specifically for emergency 

response has been described. In an effort to target the 

most appropriate level of model complexity, it uses two 

different representations for both the agents and their 

environment. Here we describe four further ongoing 

developments. 

 First, although agents have a rich repertoire of 

actions available in the operational level simulators, 

their action selection mechanism is still basic. Efforts 

are underway to model these mechanisms using 

naturalistic decision making (Klein 2008), in particular 

using a recognition-primed decision (RPD) model 

(Klein 2003, Warwick et al 2001).  This has been 

shown to correspond well to the decision making of 

emergency first responders, such as firefighters (Burke 

and Hendry 1997, Klein et al 2010). 

 Second, parallel to the implementation of an RPD 

model of decision making for operational level agents, 

validation and verification will be carried out. 

Practitioners from local Emergency Planning Units, 

involved from the initial stages of the project, will 

provide face validation, whilst past case studies, such as 

the London 2005 bombings, will be used for 

retrodiction. 

 Third, a post-processor program will be developed 

to enable the analysis and understanding of simulation 

results. 
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 Finally, the agent-based simulation environment is 

just one of  two software  components in the “REScUE” 

project (Coates et al 2011), being carried out at Durham 

University. The other component is a decision support 

system (DSS). The DSS has a two way communication 

with the tactical level simulator. It receives information 

about the emergency from tactical level agents as it 

becomes available, and uses this to generate plans for 

the responder agents. It then communicates these plans 

back to the tactical level agents, who may or may not 

decide to issue them to the operational level agents 

(who may or may not decide to adhere to the plan, 

depending on their most up-to-date knowledge of the 

emergency situation). It is a goal of the REScUE project 

to identify how to formulate near-optimal plans quickly, 

especially in the case of rapidly evolving, large-scale, 

unprecedented events where the practice of 

predetermined attendances and adhering to standard 

operating procedures may be far from optimal. 
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