
NEW GENETIC PROGRAMMING HYPOTHESIS SEARCH STRATEGIES FOR 

IMPROVING THE INTERPRETABILITY IN MEDICAL DATA MINING APPLICATIONS 
 

 

Michael Affenzeller, Christian Fischer, Gabriel Kronberger, Stephan M. Winkler, Stefan Wagner 

 

 

Upper Austria University of Applied Sciences 

School for Informatics, Communications, and Media 

Heuristic and Evolutionary Algorithms Laboratory 

Softwarepark 11, 4232 Hagenberg, Austria 

 

michael.affenzeller@fh-hagenberg.at, gabriel.kronberger@heuristiclab.com, stephan.winkler@fh-hagenberg.at, 

christian.fischer@students.fh-hagenberg.at, stefan.wagner@heuristiclab.com 

 

 

 

 

ABSTRACT 

In this paper we describe a new variant of offspring 

selection applied to medical diagnosis modeling which 

is designed to guide the hypothesis search of genetic 

programming towards more compact and more easy to 

interpret prediction models. This new modeling 

approach aims to combat the bloat phenomenon of 

genetic programming and is evaluated on the basis of 

medical benchmark datasets. The classification 

accuracies of the achieved results are compared to those 

of published results known from the literature. 

Regarding compactness the models are compared to 

genetic programming prediction models achieved 

without the new offspring selection variant.  

 

Keywords: Medical data mining, Genetic programming, 

Offspring selection. 

 

1. INTRODUCTION 

Genetic Programming (GP) plays an outstanding 

role among the various data-mining techniques from the 

field of machine learning and computational 

intelligence. Due to its model representation, GP is able 

to produce human interpretable models without taking 

any assumptions about the nature of the relationship. 

Also GP-based data analysis has quite good 

generalization properties. Furthermore, GP is able to 

simultaneously evolve the structure and the parameters 

of a model with implicit feature selection. The 

combination of these aspects makes GP a very powerful 

and also robust method for various data analysis tasks. 

 

Nevertheless, there are still some aspects in the 

practical application of GP-based data analysis which 

leave room for improvement: 

GP-based data analysis suffers from the fact that – 

even if the models are interpretable – the results are 

often quite complex and far from being unique. Often 

the models are still quite complex because of the 

tendency of GP to bloat and also because of introns 

which is counterproductive in terms of interpretability 

as well. 

One of the reasons for genetic bloat is identified in 

the tendency of GP to favor more complex hypothesis 

structures for explaining equivalent correlations (Luke 

and Panait, 2006). The new proposed offspring 

selection variant aims to counteract this phenomenon by 

including additional offspring selection criteria: Instead 

of only considering the error measure, the enhanced 

offspring selection (OS) criteria also consider the 

complexity as well as the number of variables of the 

candidate hypothesis in order to decide, whether or not 

a new candidate hypothesis is accepted for the next 

generation. By this means the hypothesis search should 

be lead not only to models with more predictive power, 

but also to more compact and more unique models 

which are easier to interpret. Especially the latter 

aspects are considered as important in the field of 

medical data mining where the domain expert should be 

able to analyze not only the statistical properties of the 

prediction models but also their usefulness in the 

medical context.  

The effects of the new introduced extended 

offspring selection formulation for data based modeling 

are discussed for medical benchmark datasets from the 

UCI machine learning repository1. 

 

The rest of the paper is organized as follows: 

Section 2 describes standard offspring selection with its 

parameters, its main characteristics, and how it can be 

integrated into genetic programming. Section 3 

discusses specific extensions of offspring selections 

designed for data based modeling which aim to guide 

hypothesis search to simpler and easier to interpret 

models. In section 4 the characteristics of the extended 

offspring selection variant are discussed exemplarily for 

medical benchmark data sets. Finally, section 5 

summarizes the achieved results and points out future 

perspectives for future research.  

 

                                                           
1 http://archive.ics.uci.edu/ml/ 
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2. OFFSPRING SELECTION 

The basic principles of offspring selection have been 

described in (Affenzeller and Wagner 2005). In the 

meanwhile, offspring selection has been discussed for 

several benchmark problems from the field of 

combinatorial optimization, function optimization and 

data based modeling. The following description of 

standard offspring selection is taken from (Wagner et al 

2010) where the aspect of mutation in offspring 

selection has been discussed in further detail. 

In general, offspring selection consists of the following 

steps: 

At first parents are selected for reproduction either 

randomly or in any other well-known way of genetic 

algorithms (e.g., fitness proportional selection, linear 

rank selection, tournament selection). After crossover 

and optionally mutation have been applied to create a 

new child solution, another selection step is introduced 

which considers the success of the applied reproduction 

procedure. The goal of this second selection step is to 

continue the search process with offspring which 

surpass their parents’ quality. Therefore, a new 

parameter called success ratio (SuccRatio) is 

introduced. The success ratio defines the relative 

amount of members in the next population that have to 

be generated by successful mating (crossover, 

mutation). 

Additionally, it has to be defined when a solution 

is considered to be successful: Is a child solution better 

than its parents, if it surpasses the fitness of the weaker, 

the better, or some kind of mean value of both? For this 

purpose a parameter called comparison factor (cf) is 

used to define the success criterion for each created 

solution as a weighted average of the quality of the 

worse and the better parent (i.e., if the comparison 

factor is 0, successful solutions at least have to be better 

than the worse parent, and if it is 1 they have to 

outperform the better parent). 

For steering the comparison factor, the authors 

decided to introduce a cooling strategy which is similar 

to simulated annealing. Following the basic principle of 

simulated annealing, an offspring only has to surpass 

the fitness value of the worse parent in order to be 

successful at the beginning of the search process (cf is 

initialized with 0 or a rather small value). While 

evolution proceeds solutions have to be better than a 

fitness value continuously increasing between the 

fitness of the weaker and the better parent (cf is 

increased in each generation until it reaches 1 or a rather 

high value). As in the case of simulated annealing, this 

strategy leads to a broader search at the beginning, 

whereas at the end the search process becomes more 

and more directed. 

After the amount of successful solutions in the next 

generation has reached the success ratio, the remaining 

solutions for the next generation (i.e., 

(1-SuccRatio)∙|POP|) are taken from the pool of 

solutions which were also created by crossover and 

mutation but did not necessarily reach the success 

criterion. The actual selection pressure ActSelPress at 

the end of a single generation is defined by the quotient 

of individuals that had to be created until the success 

ratio was reached and the number of individuals in the 

population: 

 

POP

POOLSuccRatioPOP
sActSelPres


  (1) 

 

 
Figure 1: Flowchart of Offspring Selection 

 

Figure 1 shows these basic steps of offspring 

selection and how they are embedded into a classical 

genetic algorithm. 

Furthermore, an upper limit for the selection 

pressure (MaxSelPress) can be defined as another 

parameter which states the maximum number of 

children (as a multiple of the population size) that might 

be created in order to fulfill the success ratio. With this 

additional parameter offspring selection also provides a 

precise detector for premature convergence: If the 

algorithm cannot create a sufficient number of 

successful solutions (SuccRatio∙|POP|) even after 

MaxSelPress∙|POP| solutions have been created, 

convergence has occurred and the algorithm can be 

stopped. 

If OS is applied with the parameters cf = 1 and 

SuccRatio = 1, it is commonly referred to as strict OS. 

Strict OS has the property that children with worse 

quality compared to its better parent are automatically 

discarded and therefore the overall quality of the 

population steadily increases. 

 

3. NEW OFFSPRING SELECTION FOR DATA 

ANALYSIS 

The standard variant of offspring selection as 

discussed in Section 2 implements the offspring 

selection criterion purely on the basis of solution 

quality. For data based modeling the offspring selection 

criterion is usually based on the mean squared error 

(MSE) for classification problems and on the coefficient 

of correlation R2 or MSE for regression problems. This 

means that an offspring solution candidate is considered 

successful if the MSE or R2 fitness measure of the 

candidate offspring is better than the respective fitness 

measure of the parent solutions. This means that only 

the quality of the models is considered and not the 
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simplicity of interpretability of the involved solution 

candidates.  

The main idea of the here discussed offspring 

selection extension is that not only the quality of the 

candidate models should be considered but also its 

compactness in order to combat the bloat. From 

theoretical bloat analyses (Luke and Panait, 2006) it is 

known that genetic programming based hypothesis 

search tends to find rather more complex models in 

order to achieve the same model quality. Therefore, it 

seems reasonable to include also model complexity 

measures into the offspring selection criterion. In that 

sense, an offspring candidate model is considered 

successful if it surpasses not only the model quality of 

its own parents but is also not more complex than its 

parent models. As model complexity measures we have 

introduced the number of nodes as well as the number 

of used input features (variables) of the involved 

structure trees. In that sense an offspring solution is 

considered successful not only if it surpasses the model 

quality of its own parents; additionally, the offspring 

model must not be more complex than its parent model. 

Similar to the standard case of offspring selection we 

have to decide if the criterion compares the resulting 

offspring to the better, the weaker, or to some 

intermediate value. In order to handle this aspect we 

introduce new model complexity comparison factors: 

Let qb and qw be the model qualities of the better and 

the weaker model, lb and lw the length of the shorter 

(better) and the more complex (worse) model. As a 

model complexity measure we here use the number of 

nodes of the two parent structure trees. For the number 

of variables or the two parent models let vb be the 

model using less variables (better) and vw the model 

using more variables (worse). Similar to the standard 

case of offspring selection comparison factors cfq , cfl , 

and cfv  0, 1 define the certain thresholds which 

distinguish a successful offspring from an unsuccessful 

offspring based on the characteristic features of the 

parents. But in contrast to original offspring selection a 

candidate offspring has to fulfill three criteria instead of 

one in order to be accepted; it does not only have to be 

better but also less complex and use less variables. 

Similar to the standard case a comparison factor of 0 

means that it is sufficient to surpass the certain 

characteristics of the worse parent whereas a 

comparison factor of 1 means that the candidate 

offspring has to be better than the better of the two 

parents.  

Obviously it becomes harder to evolve successful 

offspring solution candidates which results in higher 

selection pressures on the one hand; on the other hand 

due to the preference to simpler and more compact 

models genetic diversity can hardly emerge. Therefore, 

the additional offspring selection criteria concerning the 

model complexities and the number of variables should 

better not be activated from the start. First studies have 

shown that the new OS variant works a lot better if the 

additional criteria are activated not until genetic 

diversity can emerge which usually happens after about 

one or two dozen of iterations. Algorithmically we have 

considered this aspect by introducing further parameters 

which specify two time windows twl and twv which 

specify when the additional length and number of 

variables criterion should be active. 

Summarizing the above mentioned aspects, the 

here discussed first version of a new offspring selection 

criterion dedicated to the reduction of bloat can be 

stated as follows (in the minimization variant for MSE 

as quality): 

 

            (            ) ⇔

[ (  )        (     )]    

[( (  )        (     ))  (        )]    

[( (  )        (     ))  (        )]

 

 

This means that in order to be considered as successful, 

a candidate offspring (co) has to be better than some 

intermediate fitness value of its own parents (defined by 

cfq) in any case. Additionally, in some predefined time 

window twl an offspring does not only have to be better 

but also at least as compact than some intermediate 

compactness value of its own parents and in the same 

sense there is a time window twl where the candidate 

offspring have to use not more variables than some 

intermediate value of variables used by its parent 

models. Therefore, also the actual generation gen has to 

be considered in order to decide if one of the two time 

windows is active at the moment. 

The empirical discussion of the next section compares 

the achieved results on the basis of standard 

classification benchmark datasets for generating 

prediction models for breast cancer, thyroid, and 

melanoma. 

 

4. RESULTS 

The configurations used for the test runs in table 2, 

4 and 6 with Melanoma, Thyroid and Wisconsin 

datasets are shown in table 1. If not otherwise stated the 

time windows include all generations. The maximum 

solution length is 100, maximum solution height is 12. 

Up to 1000 Generations are created with a maximum 

permitted selection pressure of 555. 

 
# Configuration 

1 cfq=0,cfl=0 

2 cfq=1,cfl=0 

3 cfq=0..1,twq=1..100,cfl=0 

4 cfq=0,cfl=-100..1,twl=20..100 

5 cfq=1,cfl=-100..1,twl=20..100 

6 cfq=0..1,cfl=-100..1,twl=20..100 

7 cfq=0,cfl=1,twl=20..100 

8 cfq=1,cfl=1,twl=20..100 

9 cfq=0..1,cfl=1,twl=20..100 

10 cfq=0,cfh=0,twh=20..100 

11 cfq=1,cfh=0,twh=20..100 

12 cfq=0..1,twq=1..100,cfh=0,twh=20..100 

13 cfq=0,cfh=-100..1,twh=20..100 

14 cfq=1,cfh=-100..1,twh=20..100 

15 cfq=0..1,cfh=-100..1,twh=20..100 

450



16 cfq=0,cfh=1,twh=20..100 

17 cfq=1,cfh=1,twh=20..100 

18 cfq=0..1,cfh=1,twh=20..100 

19 cfq=0,cfv=0,twv=20..100 

20 cfq=1,cfv=0,twv20..100 

21 cfq=0..1,twq=1..100,cfv=0,twv=20..100 

22 cfq=0,cfv=-100..1,twv=20..100 

23 cfq=1,cfv=-100..1,twv=20..100 

24 cfq=0..1,cfv=-100..1,twv=20..100 

25 cfq=0,cfv=1,twv=20..100 

26 cfq=1,cfv=1,twv=20..100 

27 cfq=0..1,cfv=1,twv=20..100 

28 cfq=0,cfl=cfh=cfv=-100..1,twl=twh=twv=20..100 

29 cfq=1,cfl=cfh=cfv=-100..1,twl=twh=twv=20..100 

30 cfq=0..1,cfl=cfh=cfv=-100..1,twl=twh=twv=20..100 

Table 1: Configurations for all datasets 

 

For comparison purposes the same datasets were 

used in regular Offspring Selection Genetic Algorithms 

(OSGA) as seen in table 3, 5 and 7. A strict 

configuration with a comparison factor of 1 is used. 

Maximum allowed length is 50, 100 and 200; maximum 

allowed height is 7, 12 and 17 for configurations a, b, 

and c respectively. 

 

4.1. Results Melanoma Dataset 

The results of the performed test runs with the 

Melanoma dataset are shown in table 2. The regular 

OSGA results for Melanoma are shown in table 3. 
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1 0.924 0.925 9.8 31.6 5.6 0.091 0.074 03:04 

2 0.934 0.934 8.2 37.8 6.6 0.069 0.166 03:24 

3 0.923 0.907 9.4 36.6 5.8 0.070 0.075 02:30 

4 0.935 0.929 9.8 49.8 7.2 0.062 0.068 39:03 

5 0.916 0.913 9.0 32.2 5.4 0.078 0.083 02:48 

6 0.931 0.926 11.8 68.0 8.8 0.068 0.077 08:37 

7 0.927 0.924 8.6 30.4 5.8 0.080 0.075 01:22 

8 0.929 0.929 11.0 40.8 7.2 0.063 0.069 03:53 

9 0.927 0.914 9.6 32.8 6.6 0.075 0.096 01:12 

10 0.924 0.920 7.8 18.2 4.0 0.073 0.077 01:04 

11 0.920 0.921 10.6 56.8 8.6 0.072 0.249 02:46 

12 0.917 0.921 9.4 32.0 5.4 0.081 0.081 01:55 

13 0.937 0.927 12.0 66.4 8.0 0.060 0.066 09:25 

14 0.931 0.911 11.4 42.0 7.2 0.065 0.071 09:15 

15 0.925 0.914 10.4 50.8 6.4 0.065 0.072 05:33 

16 0.921 0.914 11.2 46.2 7.4 0.075 0.077 01:41 

17 0.919 0.921 11.2 36.8 5.8 0.078 0.153 11:14 

18 0.918 0.915 8.4 34.6 6.2 0.123 0.087 01:10 

19 0.927 0.921 11.8 49.8 6.8 0.071 0.073 02:19 

20 0.926 0.907 10.6 41.0 6.6 0.071 0.078 02:47 

21 0.930 0.918 11.4 45.4 7.2 0.075 0.075 03:12 

22 0.944 0.927 12.8 85.0 10.8 0.054 0.074 15:39 

23 0.921 0.915 9.4 29.6 4.8 0.072 0.071 03:00 

24 0.925 0.918 11.8 67.8 10.0 0.091 0.070 12:02 

25 0.920 0.917 11.0 45.8 8.8 0.077 0.074 01:28 

26 0.924 0.902 8.6 33.6 6.0 0.111 0.095 03:32 

27 0.911 0.911 9.8 41.2 6.8 0.086 0.082 02:12 

28 0.930 0.917 10.8 43.2 5.8 0.064 0.070 10:41 

29 0.923 0.915 10.2 31.2 6.0 0.104 0.125 03:07 

30 0.932 0.922 11.6 65.8 8.8 0.077 0.064 07:07 

Table 2: Results with Melanoma dataset 

 

 
Figure 2: Melanoma Results: Configuration vs. Quality; 

little–high complexity (blue–red and bubble size) 
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a 0.919 0.917 6.8 15.6 3.2 0.086 0.100 02:49 

b 0.931 0.919 9.0 35.6 7.0 0.075 0.072 03:46 

c 0.927 0.915 13.2 71.0 11.6 0.071 0.078 04:30 

Table 3: Regular OSGA results Melanoma 

 

4.2. Results Thyroid Dataset 

The results of the performed test runs with the 

Thyroid dataset are shown in table 4. The regular 

OSGA results for Thyroid are shown in table 5. 
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1 0.970 0.962 6.6 14.2 2.2 90.87 220.17 04:08 

2 0.983 0.976 10.6 49.8 6.8 57.37 78.24 08:55 

3 0.989 0.987 7.8 22.8 3.2 61.17 74.60 06:48 

4 0.991 0.988 12.6 85.0 6.6 32.81 39.22 58:05 

5 0.983 0.980 12.4 67.2 7.6 69.52 87.90 13:18 

6 0.990 0.986 12.6 76.4 6.0 36.74 52.99 24:02 

7 0.941 0.935 9.0 30.2 3.4 220.92 207.82 02:53 

8 0.984 0.983 11.4 61.8 6.2 63.17 63.53 05:00 

9 0.950 0.945 8.8 23.2 3.0 183.75 194.81 02:17 

10 0.943 0.943 7.4 29.6 3.8 197.61 192.17 02:21 

11 0.983 0.975 10.4 61.2 6.8 65.27 94.61 05:46 

12 0.952 0.947 9.0 32.8 4.8 150.90 170.13 03:19 

13 0.992 0.990 12.2 88.0 6.2 36.00 59.93 17:11 

14 0.988 0.987 11.4 82.2 7.4 46.20 60.26 33:37 

15 0.993 0.991 11.8 76.4 7.4 34.88 45.13 22:04 

16 0.938 0.938 10.2 37.4 4.0 199.67 186.36 01:50 

17 0.982 0.980 11.4 60.0 6.4 63.38 76.04 03:14 

18 0.935 0.936 10.6 48.4 6.2 216.02 236.95 01:34 

19 0.942 0.939 9.2 34.2 1.4 161.51 160.31 01:06 

20 0.987 0.984 11.8 67.6 6.6 53.26 65.30 13:02 

21 0.953 0.952 10.4 44.8 2.2 136.96 171.29 02:10 

22 0.993 0.987 12.8 91.6 6.2 32.45 50.64 18:20 

23 0.989 0.987 12.8 73.0 7.4 48.39 54.27 45:34 

24 0.993 0.989 12.6 92.0 7.0 41.28 46.95 21:06 

25 0.943 0.940 8.6 24.0 3.0 230.51 235.51 01:10 

26 0.979 0.979 11.2 60.2 7.0 73.97 96.89 03:13 
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27 0.938 0.935 10.0 40.4 2.0 189.46 189.00 01:43 

28 0.993 0.991 11.8 86.0 5.8 39.09 223.87 37:29 

29 0.986 0.982 12.8 88.0 7.6 51.26 66.97 09:51 

30 0.985 0.983 12.2 75.6 7.6 56.67 90.64 10:13 

Table 4: Results with Thyroid dataset 

 

 
Figure 3: Thyroid Results: Configuration vs. Quality; 

little–high complexity (blue–red and bubble size) 
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a 0.982 0.977 7.8 36.2 4.8 50.67 70.50 08:33 

b 0.977 0.972 12.0 68.0 7.6 311.36 98.74 09:36 

c 0.990 0.986 17.4 115.4 9.0 53.14 67.22 09:45 

Table 5: Regular OSGA results Thyroid 

 

4.3. Results Wisconsin Dataset 

The results of the performed test runs with the 

Wisconsin dataset are shown in table 6. The regular 

OSGA results for Wisconsin are shown in table 7. 
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1 0.956 0.955 9.2 26.4 4.2 0.188 0.204 02:25 

2 0.959 0.947 12.4 59.0 6.0 0.168 0.236 03:03 

3 0.960 0.955 11.4 39.8 4.4 0.190 0.174 03:28 

4 0.960 0.943 12.6 71.4 4.4 0.149 0.211 14:09 

5 0.967 0.959 12.0 63.0 6.8 0.151 0.185 13:39 

6 0.961 0.934 12.2 67.6 5.6 0.162 0.197 11:21 

7 0.944 0.925 8.4 23.6 3.4 0.225 0.238 01:10 

8 0.968 0.959 11.2 50.0 6.4 0.159 0.166 04:17 

9 0.950 0.952 9.4 23.2 3.2 0.239 0.209 02:20 

10 0.947 0.946 7.6 20.4 3.2 0.205 0.232 01:33 

11 0.967 0.955 11.8 62.0 5.8 0.153 0.180 03:17 

12 0.942 0.934 9.0 31.4 3.8 0.208 0.241 02:12 

13 0.963 0.953 12.0 71.6 6.6 0.155 0.189 14:08 

14 0.966 0.949 12.0 60.0 6.2 0.146 0.172 04:41 

15 0.960 0.937 11.8 58.4 5.6 0.158 0.214 08:53 

16 0.947 0.937 8.8 34.8 4.4 0.220 0.239 01:26 

17 0.959 0.946 12.4 59.8 6.6 0.183 0.198 02:49 

18 0.946 0.925 7.4 15.6 2.8 0.256 0.285 00:59 

19 0.944 0.937 10.8 36.4 3.2 0.206 0.202 01:20 

20 0.964 0.959 12.0 55.8 6.8 0.161 0.191 02:41 

21 0.948 0.938 10.4 30.4 3.2 0.241 0.239 01:28 

22 0.965 0.950 12.4 55.4 5.6 0.158 0.217 09:11 

23 0.966 0.947 12.2 69.0 6.4 0.144 0.200 03:18 

24 0.962 0.950 12.6 79.0 6.0 0.149 0.155 11:06 

25 0.940 0.930 9.2 30.8 2.8 0.229 0.255 00:57 

26 0.963 0.958 12.2 65.0 6.4 0.175 0.193 03:27 

27 0.935 0.921 9.6 30.2 2.8 0.266 0.240 00:53 

28 0.966 0.955 11.4 52.8 5.4 0.141 0.213 16:04 

29 0.967 0.960 11.8 51.0 6.6 0.148 0.170 02:59 

30 0.965 0.960 10.4 53.4 5.0 0.155 0.160 11:01 

Table 6: Results with Wisconsin dataset 

 

 
Figure 4: Wisconsin Results: Configuration vs. Quality; 

little–high complexity (blue–red and bubble size) 

 

# A
cc

.(
T

r.
) 

A
cc

.(
T

e.
) 

H
ei

g
h

t 

L
en

g
th

 

N
r.

O
fV

ar
 

M
S

E
(T

r.
) 

M
S

E
(T

e.
) 

E
x
ec

.T
im

e 

a 0.976 0.966 8.0 36.6 5.6 0.109 0.157 53:56 

b 0.979 0.966 13.0 92.8 6.6 0.087 0.139 138:34 

c 0.981 0.960 17.8 181.8 8.4 0.085 0.151 64:17 

Table 7: Regular OSGA results Wisconsin 

 

5. CONCLUSION 

In this paper we have considered the aspects of 

model interpretability and uniqueness in genetic 

programming based medical data mining. Due to 

introns and the bloat phenomenon GP models tend to 

produce more complex than necessary (Luke and 

Panait, 2006). In contrast to the so called bloat free GP 

(Silva, 2011) which allows only those models which do 

not exceed a certain model complexity we have adapted 

the concept of offspring selection in a way that the 

hypothesis search process should he guided towards 

simple and good prediction models. For this purpose the 

offspring selection criterion has been extended in a way 

that it considers not only the model quality in order to 

decide whether or not a candidate hypothesis should be 

accepted; in addition also the complexity in terms of 

number of nodes and the interpretability in terms of 

number of used variables are considered for the 

offspring selection criterion. The effects of this 

approach have been analyzed for some well-known 
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benchmark problems from the field of medical data 

mining. The results show that the new offspring 

selection criterion is quite sensitive in terms of causing 

premature convergence due to the loss of genetic 

diversity caused by the complexity limiting aspects in 

the OS-criterion. Therefore, it remains as a topic for 

future research to further develop this new way of 

hypothesis search in a way that a sufficient amount of 

genetic diversity is maintained in the GP population. 

One possible way of achieving such kind of behavior 

might an automated switch on/off of the additional 

criteria depending on the average model complexity or 

the diversity in the actual population. 

 

ACKNOWLEDGMENTS 

The work described in this paper was done within the 

Josef Ressel Centre for Heuristic Optimization 

Heureka! (http://heureka.heuristiclab.com/) sponsored 

by the Austrian Research Promotion Agency (FFG). 

 

REFERENCES 

Affenzeller, M. and Wagner, S., 2005. Offspring 

selection: A new self-adaptive selection scheme 

for genetic algorithms. Adaptive and Natural 

Computing Algorithms, Springer Computer 

Science, pp. 218-221. 

Affenzeller, M., Winkler, S., Wagner, S., A. Beham, 

2009. Genetic Algorithms and Genetic 

Programming - Modern Concepts and Practical 

Applications. Chapman & Hall/CRC. ISBN 978-

1584886297. 2009. 

Luke S. and Panait L., 2006. A Comparison of Bloat 

Control Methods. Journal of Evolutionary 

Computation, Vol. 14, No.3 pp. 48-48. 

Silva S., 2011 Reassembling Operator Equalisation - A 

Secret Revealed. Proceedings of GECCO 2011, 

pp. 1395-1403. 

Wagner, S., Affenzeller M., Beham A., Kronberger G., 

and Winkler S.M., 2010. Mutation Effects in 

Genetic Algorithms with Offspring Selection 

Applied to Combinatorial Optimization Problems. 

Proceedings of EMSS 2010, pp. 48-48. 

 

AUTHORS BIOGRAPHIES 

 

MICHAEL AFFENZELLER has 

published several papers, journal articles 

and books dealing with theoretical and 

practical aspects of evolutionary 

computation, genetic algorithms, and 

meta-heuristics in general. In 2001 he 

received his PhD in engineering sciences and in 2004 he 

received his habilitation in applied systems engineering, 

both from the Johannes Kepler University of Linz, 

Austria. Michael Affenzeller is professor at the Upper 

Austria University of Applied Sciences, Campus 

Hagenberg, and head of the Josef Ressel Center 

Heureka! at Hagenberg. 

 

 

CHRISTIAN FISCHER received his 

BSc in software engineering in 2009 

from the Upper Austria University of 

Applied Sciences, Campus Hagenberg. 

He is currently pursuing studies for his 

master’s degree. In the course of his 

studies he is involved in the project team for the 

prediction of blood demands in a hospital in 

cooperation with the Josef Ressel Centre Heureka! and 

the General Hospital Linz. 

 

GABRIEL KRONBERGER authored 

and co-authored numerous papers in the 

area of evolutionary algorithms, genetic 

programming, machine learning and data 

mining. Currently he is a research 

associate at the Research Center 

Hagenberg of the Upper Austria University of Applied 

Sciences working on data-based modeling algorithms 

for complex systems within the Josef-Ressel Centre for 

Heuristic Optimization Heureka!. 

 

STEPHAN M. WINKLER received his 

MSc in computer science in 2004 and his 

PhD in engineering sciences in 2008, both 

from Johannes Kepler University (JKU) 

Linz, Austria. His research interests 

include genetic programming, nonlinear 

model identification and machine learning. 

Since 2009, Dr. Winkler is professor at the Department 

for Medical and Bioinformatics at the Upper Austria 

University of Applied Sciences, Campus Hagenberg. 

 

STEFAN WAGNER received his MSc in 

computer science in 2004 and his PhD in 

engineering sciences in 2009, both from 

Johannes Kepler University (JKU) Linz, 

Austria; he is professor at the Upper 

Austrian University of Applied Sciences 

(Campus Hagenberg). Dr. Wagner’s research interests 

include evolutionary computation and heuristic 

optimization, theory and application of genetic 

algorithms, machine learning and software 

development. 

 

453

http://heureka.heuristiclab.com/

