
A NEW DEVS-BASED GENERIC ARTFICIAL NEURAL NETWORK MODELING

APPROACH

S. TOMA
(a)

, L. CAPOCCHI
(b)

, D. FEDERICI
(c)

(a)(b)(c)

 SPE UMR CNRS 6134 Laboratory, University of Corsica, Quartier Grimaldi, 20250, Corte, France

(a)

toma@univ-corse.fr,
(b)

capocchi@univ-corse.fr,
 (c)

federici@univ-corse.fr

ABSTRACT

The Artificial Neural Network (ANN) is a black box

model capable of resolving paradigms that linear

computing cannot. Therefore, the configuration of ANN

is a hard task for modeler since it depends on the

application complexity. The Discrete EVent system

Specification (DEVS) is a formalism to describe

discrete event system in a hierarchical and modular

way. DEVS is mainly used to defragment a system or a

model in an easy way allowing the interaction with the

architecture and behavior of the system. This paper

presents a new artificial neural network modeling

approach using DEVS formalism in order to facilitate

the network configuration by introducing a new scheme

of the training phase. We validate our approach with a

simple not linearly separable data set example provided

by two-dimensional XOR problem.

Keywords: artificial intelligence, discrete event

systems, artificial neural networks, learning systems,

modeling, simulation.

1. INTRODUCTION

Throughout the years, the computational changes have

brought growth to new technologies. Such is the case of

ANNs; they have given various solutions to the

industry. Designing and implementing intelligent

systems has become a crucial factor for the innovation

and development of better products for society. Such is

the case of the implementation of artificial life as well

as giving solution to interrogatives that linear systems

are not able resolve (Bishop 1995, Mas and Flores

2008, Agatonovic-Kustrin and Beresford 2000). In the

world of engineering, neural networks have two main

functions: Pattern classifiers and non linear adaptive

filters (Bishop 1995). As its biological predecessor, an

ANN is an adaptive system where each parameter is

changed during its operation and it is deployed for

solving the problem in matter (Drew and Monson

2003).

 ANN is a system capable of resolving paradigms

that linear computing cannot. It is a system based on the

operation of biological neural networks, in other words,

it is an emulation of biological neural system. Another

aspect of the ANN is that there are different

architectures, which consequently requires different

types of algorithms, so it might look like a complex

system (Agatonovic-Kustrin and Beresford 2000).

Always said that the ANN is a black box system and we

can never interact with its structure. Sometimes

depending on the architecture or the algorithm used

some parameters must be initialized. Some of these

parameters are a function of the complexity of the

system that we will try to solve. For certain types of

problem try and error are able to get the best network

configuration, but it will be better to find some

algorithms to automate this process (Bishop 1995,

Agatonovic-Kustrin and Beresford 2000).

DEVS is a formalism which allows the behavior

modeling of a non linear system (Zeigler and Praehofer

and kim 2000). This formalism provides a model

(atomic) in order to define the behavior of a system

(Concepcion and Zeigler 1988). DEVS and ANN are

two concepts that are able to simulate complex systems

and problems. Combining DEVS and ANNs could

make a perfect match because of the nature of each of

these concepts. In (Choi and Kim 2002) we can see this

combination was the extraction of the DEVS from a

trained ANN. An another interesting approach has been

presented in (Filippi and Bisgambilia and Delhom

2001) where the ANN behavior is encapsulated into

only one atomic DEVS model making a hybrid system

that offers a better simulation.

In order to go much further with hybrid systems

this paper presents a new modeling approach of the

ANN using DEVS aspects. This new model will

concern presenting an ANN into certain number of

atomic and coupled models. This approach will be able

to facilitate the network configuration that depends a lot

on the application. In other words the new model will

be able to give the space to implement algorithms and

plug-ins to automate the network configuration as the

network efficiency.

The remainder of the paper is organized as follows.

In section 1, we introduce the DEVS formalism and the

ANN concepts, showing their usage, their structure and

how could they be implemented. Section 2 describes the

new hybrid system that transforms the ANN into

several DEVS models. Section 3 describes a test

comparison of the new model using an XOR problem in

order to present our new design. Finally, we conclude

and present future works.

351

mailto:toma@univ-corse.fr
mailto:capocchi@univ-corse.fr
mailto:federici@univ-corse.fr

2. BACKGROUND

2.1. DEVS Formalism

DEVS is a formalism introduced by Zeigler (1976) to

describe discrete event system in a hierarchical and

modular manner. A manner way means that the system

has input and output ports that allow it to interact with

the external environment (Concepcion and Zeigler

1988). This formalism is distincter between the

simulation approach and the modeling one. The DEVS

modeling approach captures dynamic behavior with

atomic models. The simulation approach is responsible

for the automatic generation of the simulation

algorithms. DEVS collected the simulated system

behaviors into two models: atomic and coupled model.

Each model type could be considered like a black box

with some behaviors and interactions with the external

environment through input and output ports. The atomic

models can be linked together in a well-defined way to

produce more complex coupled models whose

behaviors are described by their atomic models and a

set of a relation between those models. Any real system

can be modeled using DEVS into a collection of

coupled and atomic models (Barros and Zeigler and

Fishwick 1998).

2.1.1. Atomic and Coupled Models

An atomic model is a model for a system that has a set

of inputs, outputs, states, transition functions, a time

advance function and an output function. Any atomic

model can be defined by the following structure.

Matomic = < X, Y, S, ext, int,, ta>

 X is a set of inputs

 Y is a set of outputs

 S is a set of states

 int : S→S is the internal transition function.

 ext : Q×X →S is the external transition

function, Where Q = {(s, e) |s S, 0 ≤ e ≤

ta(s)} is the set of total states, e is the time

elapsed since the last transition.

 : S→Y is the output function

 ta: S→ R
+

0,∞ is the time advance function.

 The internal transition function describes state

changes that occur in the absence of input over time.

The external transition function responds to an input

with a certain state change. Based on the current state

the output function produces and output event. The time

advance function calculates the amount of time before

the next internal state transition takes place (assuming

no inputs arrive in the interim).

 A coupled model is a confirmation on the

hierarchical notation of DEVS. It is consisted of a set of

sub-models. Sub-models could be either atomic or

coupled models. The behavior of such models is defined

by the behavior of its models components and the

relations between them.

 The coupled models consist of a set of inputs,

outputs, states, a set of sub-models with the influences

between them and three types of coupling between

models (Figure 1).

Figure 1: DEVS coupling in coupled models

The coupled model has inputs and outputs defined the

same way as the atomic model. The couplings between

the sub-models are defined under three categories: (i)

External input coupling, (ii) Internal coupling, (iii)

External output coupling. With the atomic and the

coupled models it is easy to model and simulate discrete

event systems.

2.1.2. DEVS Softwares

Nowadays the number of tools implementing the DEVS

formalism is growing too quickly. In (Lara and

Vangheluwe 2002) the authors present a General User

Interface (GUI) allowing multi-paradigm (including

DEVS) modeling. PowerDEVS (Kofman and Lapadula

and Pagliero 2003) is an excellent GUI for the DEVS

modeling and simulation focused on hybrid systems.

Another interesting tool is described in (Baati and

Frydman and Giambiasi 2007) that is often used for

pedagogical aspects. In the case of ANN modeling we

need a GUI only based on DEVS formalism allowing us

to design and implement any architecture and ANN

algorithm.

 The main benefit using this kind of software is the

simplicity of modeling the ANN algorithms and the

possibility of creating libraries of reusable and

"viewable" components. The GUI software allows

creating, deleting, handling or switching the models in a

simply way using toolbar or shortcut. Moreover, the

simulation process is automatic and performed by

clicking on a simple button.

 DEVSimPy (Python Simulator for DEVS models)

(Capocchi and Santucci and Poggi And Nicolai 2011) is

a user-friendly interface for collaborative modeling and

simulation of DEVS systems implemented in Python.

Python is a programming language known for its simple

syntax and its capacity to allow modelers to implement

quickly their ideas (Sanner 1999). The DEVSimPy

project uses the python language and provides a GUI

based on PyDEVS (Bolduc and Vangheluwe 2001)

Application Program Interface (API) in order to

facilitate both the coupling and the reusability of

PyDEVS models. This API is used in the excellent

multi-modeling GUI software named ATOM3 (Lara

and Vangheluwe 2002) which allows the usage of

several formalisms without focusing on DEVS.

DEVSimPy is an open source project under GPL V3

license and its development is supported by the SPE

352

research laboratory team. It uses the wxPython graphic

library and it can be downloaded from

http://code.google.com/p/devsimpy/.

 The main goal of this environment is to facilitate

the modeling of DEVS systems using the GUI dynamic

library and the drag and drop functionality. With

DEVSimPy, models can be stored in a dynamic library

in order to be reused and shared. The creation of

dynamic libraries composed by DEVS components is

easy since the user is coached by dialogs and wizard

during the building process. We propose in this paper

the DEVS modeling of ANNs algorithm through

DEVSimPy in order to implement a generic ANN

library. Thereby, the DEVSimPy developer will be able

to use this library when the ANN is needed in the

modeling of complex systems at all times.

2.2. Artificial Neural Network

Basically, an ANN is a system that receives input,

process the data, and provides an output. This system

can be used for two main functions: Pattern classifiers

and as non linear adaptive system. By adaptive, it

means that the system parameters can be changed

during operation to solve the faced problem. This is

called the training phase. During this phase a classifier

or a non linear adaptive system ANN tries to adapt its

parameters to solve the problem in matter. The ANN

has many different architectures and for everyone there

is some personalized algorithms. In this section the

Feed-Forward Neural architecture with

Backpropagation algorithm is presented.

2.2.1. Feed-Forward Neural Architecture

Any ANN has a certain number of entities called

neuron. The power of the network comes from the

weighted connections between different neurons. When

neuron receives weighted inputs it calculates the sum

and then passes the data through a transfer function. The

transfer function is the element that introduces the non-

linearity aspect into the neural network. Many types of

function can be used: hyperbolic, threshold, piecewise-

linear, and the sigmoid functions.

Figure 2: Artificial Neural Network Architecture.

 The multilayer perceptrons (MPLs) is the most

used class of ANN in all applied fields. A MPL consists

of a set of input units (input layer), one or more

computation layers (hidden layers), and one output layer

(computation/output). In feed-forward architecture

(Figure 2) a neuron on layer s always connects to a

neuron on layer s+1. A fully connect network means

that all neurons on layer s are connected to each neuron

on layer s+1. Every neural network must be trained

before we can use it. So a training algorithm is chosen

to adapt and change the connection weights between

each layer.

2.2.2. Backpropagation Learning Algorithm

The training algorithm that is used to adjust the network

weights is a principal factor of the network accuracy

and performance. Two major types of algorithms can be

found to train an ANN: supervised and unsupervised

(Omatu and Khalid and Yusof 1996, Bishop 1995).

Unsupervised learning is used when no output is desired

for the ANN. Supervised training is used when we have

a well defined desired output. First the input propagate

forwardly throw layer and an output is calculated. The

supervised algorithm calculates the error between

desired and calculated output. The layer connection

weights are modified trying to minimize this error. This

cycle is repeated many times until the network is trained

(Agatonovic-Kustrin and Beresford 2000).

 The backpropagation (BP) is the most common

supervised learning algorithm to a feed-forward neural

network used as classifiers (Figure 2). A BP network

learns by example; in other word it learns by training

sets. At the beginning of the training phase, all weights

are initialized by random values - say between -1 and

+1. Next the input patterns (p) propagate throw the

network layers (s) calculating the output value (Eq.1,

Eq.2). After the first propagation of data the calculated

output normally is different than the desired output. At

that point the BP algorithm comes to calculate the error

of each output neuron. After that a reverse procedure to

the forward propagation takes place trying to calculate

new weights as a function of the calculated error. This

back propagation of values is calculated using the

derivative of the activation function, the inputs, outputs

of each layer, a momentum factor (M) and a learning

factor (N). Equation 3 is used for the output layer error

calculation and for all other layer the equation 4 is

applied. Equations 5 and 6 are used for the weight

adaption and to calculate the quadratic error.

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

353

http://code.google.com/p/devsimpy/

Figure 3: (a) ANN/DEVS model transformation (b) Input Atomic Model block diagram.

3. PROPOSED ANN MODELING APPROACH

3.1. ANN/DEVS Compatibility

Since its birth the ANN is inspired from the human

brain neurons and known as a black box. When an ANN

is build some configuration must take place. First the

number of layers that we are going to use and this

depends on the complexity of the problem that we are

trying to solve. Usually we use a two layer neural

network (two calculation layer + input layer) that is

sufficient to solve most non-linear problems. Second

the number of neuron in each layer: it is fixed for the

input and output layers by the input and output data

length; for the hidden layer it is one of the hardest

choices. The choice of the number of neuron in the

hidden layer is different for each application but some

recommendations may take place; taking half the

number of input neurons plus one is one of them. Also

the bias value in each layer can be a difficulty too. Third

the algorithms that can learn or train the network can

have a great effect on the network performance. The BP

algorithm is one of the most common ones. As a result

for the BP choice, learning and momentum factors

(N,M) must be chosen. Forth the stop condition for the

training phase. Too much training could be considered

as over-training, which means that the network will

learn the data noise and not the desired pattern. Too

short training could lead to an untrained network. So an

iteration number depending on the application

complexity must be chosen or define a stop condition.

 As shown in the previous paragraph too many

parameters must be calibrated before using the neural

network. Creating a generic ANN library that can be

automatic configured and even new aspect and

algorithms can be plug-in directly to the network

without re-building it. Trying to break the idea that the

ANNs are always black boxes and they are not easy to

calibrate, a DEVS model is proposed to simulate an

ANNs. The ANNs are by default using discrete event;

the network is always waiting to an input event to

generate an output one. Even inside the network itself,

every layer is waiting to receive data from the previous

layer to start calculations. Also during the BP algorithm

the recalculation of weights starts when an output is

calculated; than the error is calculated; than

modification of weight is done layer after layer waiting

the changes in the previous ones. So ANNs have a

natural compatibility with DEVS formalism, which

makes it obvious to create the generic neural library

using this formalism.

3.2. ANN/DEVS Mapping Approach

Usually when we represent the neural network we see it

as in Figure 2, but what we can see in Figure 3 (a) could

be a little bit different. In this paper we propose a DEVS

model per layer, which means that for the input, hidden

and output layers in the neural network will be

presented as a standalone atomic model. And a new

training layer will be presented into multiple atomic

models.

 The input atomic model (input layer) could be

considered as the leader of the network. It is called

leader because it controls the data propagation throw the

network. Controlling the data propagation means that it

controls when to propagate the learning, testing, or the

real data patterns. First this input model receives with

all pattern types and the stop learning condition

(iteration number). After initialization it starts to push

learning patterns into the network to start calculations

(Figure 3 (b)). An iteration number can be determined

but also a minimum error to reach to not to get the over

training problem. In this design the hidden and the

output models are almost the same model. The unique

difference is the number of neurons in the output model

is fixed by the number of outputs as it is the rule of any

neural network. Then the calculations made in the

hidden model are the same as in the output model. Both

of them are multiplying the inputs by the weight list for

each neuron inside this model and then go through the

transfer function that must be chosen before the

calculation starts (Eq.1, Eq.2).

 This is the first time to see something called

training layer. All models that help only to train the

network will be considered as the training layer (Figure

3 (a)). The idea of having a neural DEVS network came

354

while trying to enhance and automate the training of

any neural network and make it as generic as possible.

In this layer the learning algorithm takes place, so any

learning algorithm can implemented with its own

design. One of these algorithms is the BP shown in the

previous section. So the training layer will be composed

of an error calculator and deltas and weights generators.

The error calculator model has two function; First is to

calculate the error of each output, which means the

difference between the calculated output and the desired

one for each single output; Second is the calculate the

global quadratic error (Eq.6). The deltas and weight

generator is the model where the learning algorithm

appears. Algorithm 1 shows the external function of this

generator model and how the BP algorithm can be

implemented.

Algorithm 1:

errors = msg_received

for i in range(len(outputs)):

 deltas[i] = self.dactivation(outputs[i]) * errors[i]

 for j in range(len(inputs)):

 for k in range(len(outputs)):

 change=deltas[k]*nputs[j]

 weights[j][k] =weights[j][k] + N*change + M *

C[j][k]

 C[j][k] = change

for i in range(len(inputs)):

 for j in range(len(outputs)):

 GError[i] = GError[i] + (deltas[j] * weights[i][j])

As shown in Figure 3(a) the first deltas and

weights generator receives the output error list from the

error generator and then starts to calculate the deltas and

the new weights for the output model, then the next

deltas and weights generator does the same for all

hidden models. Trying to prevent the overtraining

phenomenon an error stop condition will be

implemented. After the training phase ends either by a

fixed iteration number or another stop condition the test

phase begins automatically by the input model. During

the test phase the error generator still works but only to

calculate the global error and send nothing to the deltas

and weight generator so no more weight modification

could be done during this phase.

 Figure 4: DEVSimPy Dynamic library.

 Also sometimes we need to use some validation

patterns during the training phase. Using DEVS and so

DEVSimPy we can send during the training phase in

parallel to the training patterns and the validation

patterns too; which can help to have at the end of the

training and the validation error data after each

iteration. The validation pattern can help us to see if the

network is going thought an over training or not.

 To implement this modeling approach into

DEVSimPy an ANN library is created that contains six

atomic models that will help to construct a full ANN:

input, output, hidden, error calculator, deltas and

weights generator, input file (Figure 4). The input file is

a model that extracts data from a file and gives it to the

network in form of patterns. Some validation tests using

this library will be presented in the next section.

4. VALIDATION AND ANALYSIS

The ANN can solve many non-linear problems and

depending on the problem complexity the configuration

of the network changes. The complexity of a network

depends on two parameters: First the problem

dimension; second is if the problem data is linearly

separable or not. A simple example of a data set which

is not linearly separable is provided by two-dimensional

X-OR problem (Mas and Flores 2008) In this example

we can show the problem of learning to classify a given

data set, where each input vector has been labeled as

belonging to one of two classes C1 and C2. The input

vectors x = (0,0) and (1,1) belongs to class C1,while the

input vectors (0,1) and (1,0) belongs to class C2. It is

clear that there is no linear decision boundary which can

classify all four point correctly. The neural network

using the bias value and the weights values in each layer

which is a linear discriminant that will lead to perfect

classification. A comparison is made between the

designed DEVSimPy neural network models (Figure 4)

Figure 5: Test and Validation

355

and a mono-thread ordinary neural network written with

python programming language. The tests represent the

effect of the incrementation of neurons number inside

the hidden layer; also the implementation of the stop

learning condition is presented with the different

number of neurons to show the effect of increasing

neurons number and the iteration number.

 Figure 5 represent the comparison between the

proposed neural DEVS network and the ordinary neural

network when the transfer function is sigmoid with

different number of neurons in the hidden layer. These

results shows that is the Neural DEVS network is

capable to solve the same problem as the normal ANN

but using DEVS has a big facility to add or remove

hidden layers using the Drag and drop ability that

DEVSimPy offer. Also using DEVS formalism gives

more automatic configuration that can be added and

many plug-ins and enhancements could be developed

too. One of those implemented enhancements is the

automization of the stop condition. In other word the

learning phase stops only when the network has been

learned with minimum accepted error. Figure 5 shows

the number of iteration as a function of number of

neurons in the hidden layer when an XOR problem is

solved using sigmoid transfer function.

5. CONCLUSION

In this paper a new DEVS-model for artificial neural

network is presented. This model shows a technique

during the training phase by implementing an additional

layer named as the training layer. The training layer is

composed of several small atomic DEVS models that

control the weights adaption independently for each

layer. This approach was tested and compared to the

standard network. With this technique a great facility to

change the training algorithm or to add additional

algorithms to make it more efficient is available. The

stop error condition is added to the training layer as a

test of additional algorithms that can be added as a new

model and that could be removed at any time. With the

same idea more algorithms to enhance the network

performance could simply be added. Moreover there is

a work in progress to implement the pruning algorithm.

The pruning is a very interesting algorithm that

minimizes the number of neurons in the hidden layers to

get the smallest network to solve the problem in

question. With this defragmentation of the training layer

into several models the pruning algorithm can

intervenes as an atomic DEVS model just before the

entry of the new weights into the hidden layer to make

its elimination decision. On the other hand the decision

of using DEVS formalism to implement this

defragmentation of the neural network opens a new

dimension to implement new individual small models or

plug-ins to enhance the performance of the network.

REFERENCES

Agatonovic-Kustrin, S., Beresford, R., 2000. Basic

 Concepts of Artificial Neural Network (ANN)

 Modeling and its Application in Pharmaceutical

 Research. Journal of Pharmaceutical and

 Biomedical Analysis, vol. 22, no. 5, pp. 717-727.

Baati, L., Frydman, C., Giambiasi, N., 2007. LSIS

 DME M&S Environment Extended by Dynamic

 Hierarchical Structure DEVS Modeling Approach,

 in Proceedings of the 2007 spring simulation

 multiconference, Vol. 2, pp. 227-234. San Diego,

 CA, USA.

Barros, F. J., Zeigler, B. P., Fishwick, P. A., 1998.

 Multimodels and Dynamic Structure Models: an

 Integration of DSDE/DEVS and OPMM,

 Proceedings of the 30
th

 conference on Winter

 simulation, pp. 413-420. Los Alamitos, CA, USA.

Bishop, C. M., 1995. Neural Networks for Pattern

 Recognition, 1st ed. Oxford University Press, USA.

Bolduc, J. S., Vangheluwe, H., 2001. The Modelling

 and Simulation Package PythonDEVS for Classical

 Hierarchical DEVS, MSDL Technical Report

 MSDL-TR--01. Montreal, Quebec, Canada.

Capocchi, L., Santucci, J.F., Poggi, B., Nicolai, C.,

 2011. DEVSimPy: A Collaborative Python

 Software for Modeling and Simulation of DEVS

 Systems, Accepted in 20
th

 IEEE International

 Workshops on Enabling Technologies:

 Infrastructure for Collaborative Enterprises, Paris.

Choi , S. J., Kim, T. G., 2002. Identification of Discrete

Event Systems Using the Compound Recurrent

 Neural Network: Extracting DEVS from Trained

 Network, Simulation, vol. 78, no. 2, p. 90.

Concepcion, A.I., Zeigler, B.P., 1988. DEVS

 Formalism: A Framework for Hierarchical Model

 Development, IEEE Transactions on Software

 Engineering, vol. 14, no. 2, pp. 228-241.

Drew, P. J. J., Monson, R. T., 2003. Artificial Neural

 Networks, Surgery, vol. 127, no. 1, pp. 3-11, jan.

Kofman, E., Lapadula, M., Pagliero, E., 2003.

 PowerDEVS: A DEVS-based Environment for

 Hybrid System Modeling and Simulation, Tech.

 Rep., Rosario National University.

Filippi. J., Bisgambiglia, P., Delhom, M., 2001.

 Neuro-DEVS, an Hybrid Methodology to Describe

 Complex Systems, in Actes of SCS ESS 2001

 conference on simulation in industry, vol. 1, pp.

 647-652.

Lara, J., Vangheluwe, H., 2002. AToM 3: A Tool for

 Multi-Formalism and Meta-Modelling,

 Fundamental Approaches to Software Engineering,

 pp. 174-188.

Mas, J. F., Flores,J. J., 2008. The application of

Artificial Neural Networks to the Analysis of

Remotely Sensed Data, International Journal of

Remote Sensing, vol. 29, no. 3, p. 617.

Omatu , S., Khalid, M., Yusof,R., 1996. Neuro-Control

and its Applications, Springer.

Sanner, M. F., 1999. Python: A Programming Language

For Software Integration and Development, J. Mol.

Graphics Mod, vol. 17, pp. 57-61.

Zeigler, B.P., Praehofer, H., Kim, T.G., 2000. Theory of

Modeling and Simulation, Academic press, 2
nd

Edition.

356

