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ABSTRACT 

The paper presents a heterogeneous neural network 

based system that can be used for estimation of missing 

tumor marker values in patient data and in a second step 

for calculating the possibility of a cancerous disease.  

For estimation of missing values we use different 

approaches: neural network based estimation of a 

specific marker depending on existing values of a 

related marker and neural network based estimation of 

missing tumor markers depending on standard blood 

parameter measurements. Finally we compare the 

results for calculating the possibility of a cancerous 

disease using different methods for missing value 

estimation of patient data. 

 

Keywords: neural network, tumor marker prediction, 

missing values in biomedical data 

 

1. INTRODUCTION 

Tumor markers are substances produced by cells of the 

body in response to cancer but also to noncancerous 

conditions.  They can be found in body liquids like 

blood or in tissues and can be used for detection, 

diagnosis of some types of cancer. For different types of 

cancer different tumor markers can show abnormal 

values and the levels of the same tumor marker can be 

altered in more than one type of cancer.   

Blood examination tests only a few tumor marker 

values and for this reason the usage of such incomplete 

data for cancer diagnosis support needs estimation of 

missing marker values. Neural networks are proven 

tools for prediction tasks. For example neural networks 

were applied to differentiate benign from malignant 

breast conditions bases on blood parameters (Astion et 

Wilding 1992), for diagnosis of different types of liver 

disease (Reibnegger et al. 1991), for early detection of 

prostate cancer (Djavan et al. 2002; Matsui et al. 2004), 

for studies on blood plasma (Liparini et al. 2005) or for 

prediction of acute coronary syndromes (Harrison et al. 

2005). 

In this work we present a heterogeneous neural 

network based system that can be used for tumor 

marker value estimation and for prediction of cancer 

possibility.   

We combine different neural networks, which 

calculate the possibility of a cancerous disease in 

different ways,  

 without estimation of missing marker values,  

 with neural network based estimation of missing 

marker values depending on existing values of 

other markers, and  

 with neural network based estimation of missing 

marker values depending on standard blood 

parameters. 

 

2. GENERAL CANCER DIAGNOSIS SUPPORT 

SYSTEM 

We focus our considerations on the design of a complex 

decision support system for the calculation of the 

possibility of cancerous diseases.  

The cancer prediction system is based on data 

coming from vector C = (C1, …, Cm) of  tumor marker 

values. We use several parallely coupled neural 

networks to calculate the possibility of general cancer 

occurrence.  

The basic problem in such approaches is data 

incompleteness of training data, which leads to 

problems in training neural networks. Data 

completeness can be achieved in two ways.  

First we can use the existing values of markers in 

vector C = (C1, …, Cm) of  tumor marker values to 

estimate the missing values of other  markers in the 

same vector. 

Second we can estimate the missing values of 

markers by using supporting data - in this case a blood 

parameter vector P = (P1, …, Pn) of each patient is used. 

Frequently also this vector is incomplete too. For that 

reason it is necessary to develop a system using 

complete or partially complete blood parameters for 

directly estimating values for missing tumor markers or 

for a classification of them. The structure of the system 

is presented in Figure 1. 

 

3. TUMOR MARKER VALUES BASED 

CANCER DIAGNOSIS SUPPORT SYSTEM 

Cancer diagnosis support uses parallel working systems 

(Cancer
k
), with the same structure of networks trained 

for different types of cancer. The input of each Cancer
k
 

system is the complete or incomplete vector C of tumor 

marker specific for the chosen type of cancer, and the 

345

mailto:Witold.Jacak@fh-hagenberg.at


output represents the possibility (values between 0 and 

1) of a cancerous disease. Output values of the network  

system greater than 0,5 are treated as cancer occurrence.  

  

 

Figure 1. Architecture of Data Driven Cancer Diagnosis 

Support System 

 

Each Cancer
k
 system consists of many different groups 

of neural networks (see Figure 1.).  

 Group of neural networks (C
k
net) for individual 

marker Ci: i=1,..,m. 

 Feed forward neural network (C
Group

net) for a whole 

vector of marker C, with complete or incomplete 

values. 

 Group of neural networks (C
kj

net) for estimation of 

marker value of marker Cj based on marker Ck 

 Feed forward neural network (P
Group

net) for 

estimation of maker value Cj, depending  on blood 

parameters 

 Cascaded coupled aggregation method for final 

calculation of cancer plausibility. 

 

4. GROUP OF SEPARATE NEURAL 

NETWORKS FOR INDIVIDUAL MARKER 

(C
K

NET) 

The first group of neural networks contains parallel 

coupled neural networks, which are individually trained 

for different tumor markers. Each neural network is of 

type feed forward with one hidden layer having 6 -10 

neurons, activation functions tan/sigmoid, further one 

input (normalized tumor marker value) and one output 

(diagnosis: 0 – no cancer (healthy) and 1– cancer  (ill)).  

The networks were trained independently of type of 

cancer disease (i.e. for all types of cancer diseases).  

The values of markers are further categorized to 

four intervals (Classes). The first interval includes all 

values less than a Normal Value of marker, the second 

interval includes all values between the Normal Value 

and an Extreme Normal Value of marker, third interval 

includes values between the Extreme Normal Value and 

a still Plausible Value of marker and fourth interval 

includes all values greater than  Plausible Value.  

The input values of each network for each training 

and testing process are normalized using the respective 

upper bound of Plausible Value. Each value of marker, 

which extends that upper bound, obtains the value 1. 

The individually trained networks represent a 

generalized cancer occurrence prediction, disregarding 

specific type of cancer and based only on one specific 

tumor marker. 

 

4.1. Case study: Breast Cancer – C125, C153, C199 

and CEA marker Group 

One example of a trained neural network (with 6 

neurons in hidden layer) for tumor marker C125 is 

presented in Figure 2. The x-axis represents the 

normalized values of tumor marker C125 and the y-axis 

represents cancer possibility. Network-output values 

greater than 0,5 (middle line) are interpreted as cancer 

occurrence. 

 

 
Figure 2. Output of individual trained neural network 

for tumor markers C125. 

 

The networks were trained with 2598 datasets for 

C125 marker, with 2442 datasets for C153 marker, with 

4519 dataset for C199 marker and with 7153 dataset for 

CEA marker. The datasets contain data with different 

cancer types from C00 to C96 ICD 10 code (44%) and 

data without cancer occurrence (56%).  

Additionally, we trained these networks with 

smaller sets of data for one specific type of cancer 

disease. Figure 2 presents an example of trained C125 

representing breast cancer.  

Generally the network trained for all cancer types 

is more pessimistic, it means this network predicts 

cancer possibility greater than 0,5 for smaller values of 

tumor marker as the network trained for one special 

cancer type. In the example in Figure 2 the threshold 

points of networks trained for all cancer types is 0,46 

(75,9 U/ml) for C125 marker. For marker C153 the 

threshold was 0,32 (34,8 U/ml), for C199 0,55 (73,1 

U/ml) and or CEA 0,25 (14,1 ng/ml). The threshold 

points of networks trained for breast cancer are 0,52 

(85,5 U/ml) for C125, 0,44 (48,2 U/ml) for C153, 0,42 

(55,8 U/ml) for C199 and 0,37 (20,4 ng/ml) for CEA. 
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(Values for Markers C153, C199 and CEA are not 

shown in Figure 2). 

The regressions between network outputs trained 

for all cancer types and breast cancer type are 0.69, 

0.88, 0.88, and 0.91 for C125, C153, C199 and CEA, 

respectively. The influence of networks trained in this 

way on the final diagnosis prediction will be discussed 

in the next section. 

The input of parallel coupled Cnets is the vector of 

tumor marker C = (C1, …, Cm), where some Ci  are 

missing. When the tumor marker value in vector C is 

available, then the adequate Cnet calculates the predicted 

cancer possibility. When a marker value in vector C is 

not available, then the output of Cnet is set to -1. The 

individually calculated output values of Cnets can be 

aggregated in many different ways. We compare three 

methods of aggregation: 

1. Maximum value of all individual network 

outputs: Cnet (C ) = max{ C
i
net (Ci)| i =1, .., m} 

2. Average value of all individual network 

outputs, without missing values: Cnet (C ) = 

avg{ C
i
net (Ci)| i =1, .., m & Ci ≠ -1} 

3. Netaggregation - neural network trained on 

individual networks outputs (this neural 

network can be trained with data of only one 

chosen cancer type Cancer
k
). Cnet (C ) = 

netaggregation(C
i
net | i =1, .., m) 

 

Other interesting possibility is using the thresholded 

values of outputs of individual networks (i.e. if Cnet(C) 

<0,5 then Cnet(C)=0, else Cnet(C) =1) as input for the 

perceptron type network.  

We use one aggregation type in the full system. In 

case of max aggregation: If only one marker of the 

marker group shows a greater value than the 

aggregation has yielded this value is taken. 

The diagnosis prediction based on aggregation of 

separately cancer predictions of individual marker 

networks Cnet is not sufficient for generalization of 

cancer occurrence. It is necessary to reinforce the 

information coming from data of whole group of 

markers. Therefore two neural networks with 

cumulative marker groups are added. These networks 

will be trained only for a specific cancer type. When the 

tumor marker value in vector C is not available, then 

this value is set to -1. Based on this assumption we can 

generate training sets for a specific cancer type 

(Cancer
k
) and train the neural network: A feed forward 

neural network with 16-20 hidden neurons and 

tansig/linear activation functions (C
group

net) with a  

vector C on input and diagnosis of tumor occurrence on 

output. This network can be used additionally to the 

individually trained networks for diagnosis prediction 

without and with estimated missing values of vector C. 

 

 

 

 

 

 

5. SYSTEM FOR PREDICTION OF MISSING 

TUMOR MARKER VALUE 

 

5.1. Estimation of missing tumor marker values 

based on other tumor marker 

 

Estimation of missing values of tumor markers can be 

done by values of other tumor markers from tested 

marker group C. It can be accomplished by preparation 

of pair wise trained neural networks C
ij

net where the 

pattern set includes values of Ci marker as input and 

values of Cj marker as output in case both marker 

values are availibale. Not all tumor marker values can 

be predicted with sufficient level of plausibility. 

In our case study we use feed forward neural networks 

with 5-10 hidden neurons for the estimation of a 

missing value of marker Cj based on a known value of 

marker Ci.  

Figure 3 presents the prediction of C125 based on 

marker C153 and the prediction of marker value of 

CEA based on marker C199.  

 

Figure 3. Outputs of neural networks for tumor markers 

C125 based on C153, and CEA based on C199. 

 

In the first case we can observe clear dependency of 

marker C125 on marker C153 and in the second case a 

dependency does not exist.   

In cases more than one value exists in vector C, 

then the estimator for a missing value Ck can be 

computed as: 

 

Ck =max{C
ik

net(Ci)|i ≠  k}   or   Ck =avg{C
ik

net(Ci)|i ≠  k} 

347



where Ci  represent the existing values markers in 

vector C. The quality of the estimation of a missing 

value will highly depend on existing values in vector C 

= (C1, …, Cm). 

 

5.2. Estimation of missing tumor marker values 

based on blood parameters. 

Typically in labor blood examination 27 blood 

parameters such as HB, WBC, HKT, MCV, RBC, PLT, 

KREA, BUN, GT37, ALT, AST, TBIL, CRP, LD37, 

HS, CNEA, CMOA, CLYA, CEOA, CBAA, CHOL, 

HDL, CH37, FER, FE, BSG1, TF and tumor markers 

such as AFP, C125, C153, C199, C724, CEA, CYFRA, 

NSE, PSA, S100, SCC, TPS etc. are measured. For each 

parameter and marker are experimentally established 

upper and lower bounds of values. We divide the values 

range of marker C and blood parameter P into k non-

overlapping intervals, called classes.  

In our case study we define four classes (k = 4). 

Class 1 includes all values less than Normal Value of 

marker or blood parameter, Class 2 includes all values 

between Normal Value and Extreme Normal Value of 

marker or blood parameter, Class 3 includes values 

between Extreme Normal Value and Plausible Value of 

marker or blood parameter and Class 4 include all 

values greater than Plausible Value. These classes and 

their limits are used in normalizing process of parameter 

and marker values. In normalizing process, we replace 

the missing value with the value -1. 

The system consists of three heterogeneous parallel-

coupled artificial neural networks and a decision-

making system based on aggregation rules (Jacak et al., 

2010a).  

The input and output values of each network for 

training and testing are normalized using the respective 

upper bound of Plausible Value. Each value of 

parameter or marker, which is greater than this upper 

bound, obtains the normalized value 1.  

 

The general marker value estimation system contains 

three neural networks. 

 Feed forward neural network (FF) with p inputs 

(normalized values of blood parameter vectors P) 

and one output, normalized values of marker Ci 

 Pattern recognition neural network (PR) with p 

inputs (normalized values of blood parameter 

vectors P) and k outputs, k-dimensional binary 

vector coding classes of marker Ci 

 Combined feed forward neural network (FC) with p 

inputs (normalized values of blood parameter 

vectors P) and two outputs: normalized values of 

marker Ci (as in network FF), and normalized 

classes of marker Ci : 

 

All neural networks have one hidden layer and tan-

sigmoid or log-sigmoid transfer function. The output 

values of neural networks belong usually to interval [0, 

1]. 

Based on the neural networks calculated estimation 

of marker value we can establish four hypotheses x1, x2, 

x3, x4 concerning the class of marker. For each 

hypothesis x1, x2, x3, x4 the possibility value is 

calculated too. These hypotheses are to be verified for 

finding the maximal possible prediction. (Jacak et al., 

2010b) 

The empirical test shows that the best results are 

achieved with networks having 40-60 neurons of hidden 

layer.  

It can be expected that not all markers can be 

predicted with good quality. The examples of regression 

between blood parameters test data and estimation 

system output for tumor markers C153 (regression 0,71) 

and CEA (regression 0,53) are presented in Figure 4. 

 

 

 
Figure 4: Regression between test data and predicted 

tumor marker values for markers C153 (first) and CEA 

(second). 

 

In this method of value estimation, the quality of 

estimation will highly be dependent on missing values 

of marker in vector C = (C1, …, Cm).  

The two methods presented have different 

properties and it will be necessary to combine both 

estimations results for a final prediction of cancer 

occurrence. We aggregate the outputs of the three 

diagnosis prediction networks (without estimation of 

missing values, with estimation of missing values based 

on other existing markers values and with estimation of 

missing values based on blood parameters) by the 
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applying the maximum function. The result of 

prediction quality is presented in the next section. 

 

6. RESULTS AND COMPARISON OF 

PREDICTION QUALITY OF DIFFERENT 

APPROACHES 

For comparison between previously described methods 

of breast cancer prediction based on marker group C= 

(C125, C153, C199, CEA) we have prepared a test data 

set containing 695 positive cases (diagnose coded as 1) 

and 765 negative cases (diagnose coded as 0). By 

assumption that the general probability of positive and 

negative cancer occurrence is 0,5. We can estimate the 

probability P(1/1) (true positives) and P(0/0) (true 

negatives) for  the various systems. 

The results of prediction are presented in table 1. 

 

Table 1: Prediction of cancer occurrence  

 
System P 

(correct) 

P 

(1/1) 

P 

(0/0) 

Individually trained networks without 

estimation of missing values 

0,63 0,29 0,93 

FF network with C vector, no 

estimation of missing values 

0,67 0,45 0,89 

Individually trained networks with 

estimation of missing values, based on 
existing additional values in vector C 

(max as aggregation function) 

0,63 0,35 0,90 

FF network with C vector, with 
estimation of missing values based on 

existing additionalr values in vector C 

(max as aggregation function) 

0,66 0,57 0,74 

Individual trained networks with 
estimation of missing values based on 

blood parameters values  

0,66 0,57 0,73 

FF network with C vector, estimation of 
missing values based on blood 

parameters 

0,63 0,42 0,80 

Aggregated prediction based on three 

network outputs (maximum 

aggregation function applied) 

0,70 0,77  0,63 

 

Diagnosis prediction performed without estimation 

of missing values of marker values works increases the 

probability P(0/1) of false negatives (see Figure 5).  

Prediction based on missing value estimation decreases 

false negatives rate but increases false positives rate. All 

confusion matrices of chosen experiments are presented 

in Figures 5-8. The whole system increases the 

probability of correct cancer diagnosis and decreases 

the false positives rate. The confusion matrix of the 

overall system for breast cancer diagnosis is presented 

in Figure 8. 

 

  
Figure 5. Confusion matrix of breast cancer diagnosis 

based on C125, C199, C153 and CEA marker group 

without estimation of missing values. False positives 

rate is 34%. 
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Figure 6. Confusion matrix of breast cancer diagnosis 

based on C125, C199, C153 and CEA marker group 

with marker based estimation of missing values of 

markers. The false positives rate is 20%. 
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Figure 7. Confusion matrix of breast cancer diagnosis 

based on C125, C199, C153 and CEA marker group 

with blood parameters based estimation of missing 

values of markers. False positives rate is 20 %. 
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Figure 8. Confusion matrix of breast cancer diagnosis 

based on aggregated outputs of 3 networks with 

different estimation of missing values. The false 

positive rate is 11%. 
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