
MODELING AND SIMULATION OF PETRI NETS FOR COMPLEX SCHEDULING

RULES OF AUTOMATED MANUFACTURING SYSTEMS

Chulhan Kim and Tae-Eog Lee

Department of Industrial and Systems Engineering

KAIST

291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea

E-mail: chulhan.kim@kaist.ac.kr, telee@kaist.ac.kr

ABSTRACT

Discrete event systems such as automated

manufacturing systems and engineering systems can be

modeled and simulated by Petri nets. Precedence

relations between activities or events, concurrent

processes, synchronization, resource sharing, mutual

exclusion, etc can be well modeled by Petri nets.

However, discrete event systems, especially discrete

event manufacturing systems, tend to have diverse

complex scheduling rules to optimally utilize the

resources, meet scheduling requirements and constraints,

and optimize the performance measures such as

makespan or cycle time. In this paper, we propose ways

of modeling such complex scheduling rules by

controlling the firing sequences and timing of the

associated transitions in the Petri net model. We also

present a Petri net model for scheduling a robotized

indexer cell for flat panel display manufacturing.

Keywords: Petri net, scheduling, simulation, indexer

1. INTRODUCTION

A Petri net is a graphical and mathematical modeling

framework for discrete event systems (Murata 1989).

Discrete event systems such as automated

manufacturing systems and engineering systems can be

modeled and simulated by Petri nets. Transitions, places,

arcs, and tokens represent activities or events,

conditions or resources, precedence relations between

transitions and places, and availability of resources or

conditions, respectively. They are graphically

represented by rectangles, circles, arrows, and dots,

respectively. A more formal definition including

transition enabling and firing rules can be found in

Murata (1989). Precedence relations between activities

or events, concurrent processes, synchronization,

resource sharing, mutual exclusion, etc can be well

modeled by Petri nets.

 Scheduling is to determine the order and timings of

processing jobs at a resource. The processing order

may be fixed and independent of the system state such

as the number of jobs at each resource, or can be

dynamically changed depending on the system state.

When there are multiple resources that can process a job,

a resource should be selected to process the job.

Discrete event systems, especially discrete event

manufacturing systems, tend to have diverse complex

scheduling rules to optimally utilize the resources, meet

scheduling requirements and constraints, and optimize

the performance measures such as makespan or cycle

time.

 In a Petri net model, resources and activities that

contend for using a resource can be modeled by a place

and its output transitions, respectively. The tokens at

such a conflict place are properly routed to the output

transitions. Therefore, we expect that complex

scheduling rules can be modeled by token routing rules,

which can depend on the system state information such

as the number of tokens and the token sojourn times at

the places. However, it is not so straightforward to

represent complex scheduling rules by token routing

rules. For instance, even a simple state-independent

cyclic scheduling rule that processes jobs at a resource

in a fixed cyclic order is not simply modeled by routing

tokens at a conflict place cyclically. It is because a

transition firing for processing a job may be delayed

due to delayed arrivals of tokens at the other input

places of the transition. Furthermore, there are not

enough studies on modeling and simulating scheduling

rules in Petri nets. Most Petri net simulators can model

decision-free nets that have no scheduling decisions or

conflict places, or nets that have probabilistic token

routing rules. There are few works on Petri net models

or simulators that can model complex token routing

rules or scheduling rules effectively.

 In this paper, we propose ways of modeling such

complex scheduling rules by controlling the firing

sequences and timings of the associated transitions in

the Petri net model. As an application, we also present a

Petri net model for scheduling a robotized indexer cell

for flat panel display manufacturing.

2. FIRING POLICIES OF PETRI NETS

We explain policies for controlling firings of transitions

in a Petri net. Consider an example of Petri net in

Figure 1. Places p1 and p4 are conflict places, each of

which has two output transitions. A token routing rule

basically determines an output transition to be fired at

319

mailto:chulhan.kim@kaist.ac.kr
mailto:telee@kaist.ac.kr

each conflict place. A token that entered a conflict place

and has stayed there as long as the token holding time

of the place, if any, can be released to one of the output

transitions of the conflict place. The token released to

the output transition can join enabling the transition.

The release can be made as soon as the token is ready to

be released or delayed. An enabled transition can be

fired immediately or after a prescribed firing delay of

the transition, if any. It also can be delayed. Therefore,

the token routing, delays of token releases and transition

firings can be controlled by modeling and simulating

scheduling rules. A token routing rule indicates such

token route and release timing. A token routing rule

eventually determines the order and timings in which

the output transitions are fired. In the sense, it can be

told that the scheduling decisions are made by a

transition firing policy that determines the order and

timings of firing the output transitions of each conflict

place. When some intentional delays are made in

scheduling decisions, but most practical scheduling

rules for manufacturing systems start an activity or job

as soon as possible. In other words, the token release

and transition firings are not intentionally delayed.

Therefore, in this paper, we focus on controlling only

the order of transition firings. Of course, job release

control rules such as kanban or CONWIP(Constant

Work in Progress) intentionally delay jobs or activities.

Therefore, such scheduling rules might be modeled by

token routing rules or transition firing policies that

make intentional delays in token release or transition

firing appropriately. However, even such scheduling

rules for timing regulation can be incorporated into Petri

net model as an appropriate subnet that provides

feedback of tokens from some transitions to other

transitions (Lee and Park 2005; Mascolo, Frein, Dallery

and David 1991). We therefore define four types of

transition firing policies that determine only the order of

transition firings.

Figure 1: A Petri net which has two conflict places.

2.1. Probabilistic sequence

In a probabilistic sequence, the output transitions of a

conflict place are fired in a random order. For example,

in Figure 1, output transitions and of the place p1

are fired with the same probability, 0.5. Of course, the

probabilities may be unequal. Probabilistic sequence

can be used for describing systems of which the order of

activities is not important and systems with decision

makers that behave randomly.

2.2. Cyclic sequence

A cyclic sequence is a fixed sequence which repeats

firing the transitions based on a specified cycle. We use

the following expression for a cycle:

where is th firing transition and is the length of the

order list. For example, a cycle repeats

transition firing by an order of
 .

A cycle is feasible if every transition can be fired

continuously by the order of it. The Petri net in Figure 1

has possible cycles but there is no feasible

cycle. On the other hand, the Petri net in Figure 2 has

 cycles and is feasible.

Figure 2: A Petri net which has a feasible cycle,

 .

2.2.1. K-cyclic sequence

A k-cyclic sequence is a special case of the cyclic

sequence. It selects a firing transition based on a

specified cycle which contains every transition of the

net. Transitions are fired by the order of cycle and every

transition is fired k times in a cycle. For example,
2-cyclic sequence means the

transitions are fired by an order of
 .

Cyclic sequence is useful to describe systems in

which the several events are repeated by a cyclic order.

In case of the k-cyclic sequence, since every transition

should be fired k times in a cycle and it is independent

of the marking of Petri nets, the problem complexity is

much more reduced. Hence, much research has been

done for finding optimal cycles to maximize/minimize

the value/cost using mathematical programming

techniques.

2.3. Non-cyclic sequence

Some decision makers such as distribution machines in

manufacturing cells may behave without any pattern. A

non-cyclic sequence can be used to describe this kind of

non-repeating firing orders. A list is described as

 .

 The only difference from the order list of cyclic

sequence is that it does not fire any transition after

firing the last one in the list, regardless of the existence

of enabled transitions. In most cases it leads to the end

of simulation.

320

2.4. Rule

Probabilistic, cyclic, and non-cyclic sequences select a

firing transition based on random numbers or a pre-

specified order list which means that they do not care

about the marking of Petri nets. In contrast, rule policy

is marking-dependent. It means that we can use rule

policy when we describe systems with decision makers

that depend on the state of the systems.

Figure 3: A Petri net.

Table 1: Two rules for a Petri net in Figure 3.

Rule Statements

#1

If , then fire .

Else if , then fire .

Else, fire .

#2

If , then fire .

Else if , then fire .

Else, fire .

 Basically, a rule is a series of if-then statements.

Each statement follows a format of “if condition C is

satisfied, then fire transition T”. Every time a transition

is fired, the rule is considered to select a next firing

transition. Table 1 shows two sample rules for a Petri

net in Figure 3 where is the number of tokens in

place . We do not state the enabling condition of

transition in a rule for simplicity. For example, the first

statement of Rule #1 in Table 1 actually means “If is

enabled and , fire .”. The firing order

based on Rule #1 and Rule #2 in Table 1 are
 and ,

respectively.

Using probabilistic, cyclic, non-cyclic sequences

and rule policies properly, we can model diverse types

of discrete event systems and simulate them more

effectively.

3. GLOBAL AND LOCAL FIRING POLICY

In section 2, we defined four firing policies to describe

various discrete event systems with Petri nets. In this

section, we discuss the meaning of global firing policy,

local policy, and the difference between adapting a

single global firing policy and several local firing

policies to a Petri net.

3.1. Global firing policy

A global firing policy is a firing policy that deals with

every transition of a Petri net. For example, the global

cycle policy should include all transitions of a Petri net

in its firing order list. We use a single global firing

policy for a Petri net to model a system with a single

decision maker that controls the whole system.

3.2. Local firing policy

Some systems may have several independent decision

makers like a manufacturing cell with two independent

transportation robots. They act without considering

other decision makers. Describing this kind of system

with a global firing policy may not be easy. In this case,

we use several local firing policies for each conflict set

in a Petri net.

Definition: A conflict set of a Petri net is a subnet

which includes two nonempty sets and , where

1. is the smallest set of places such that

⋃
 where is the set of

output transitions of .

2. is the smallest set of transitions such that

⋃
 where is the set of input

places of .

For example, in Figure 1, there are two conflict

sets. The first one is a subnet including , , , and

 . Second one consists of , , and . There is no

conflict between every pair of conflict sets. It means

that firing of a conflict set does not disable transitions in

the other conflict sets. That is, every conflict set works

concurrently. In case of the Petri net in Figure 1, we

need to specify two firing policies for each conflict set

to describe the system with two independent decision

makers.

4. SIMPN

There have been already a lot of free and commercial

Petri net tools/simulators available. However, they are

not well suited for modeling and simulation of discrete

event systems which behave based on complex

operating schedules with them because most of them

deal with conflict situations randomly or by asking the

users to select one of enabled firing transitions. Based

on firing policies discussed in section 2 and 3, we

developed a java-based p+-time simulator, SIMPN.

Figure 4 illustrates the main frame of SIMPN.

Figure 4: SIMPN

P+-time Petri net is an extension of a timed places

Petri net (Wang 1998) whose places have random token

holding time and maximum token delay. It is formally

defined by Kim and Lee (2008) to be used for modeling

cluster tools with non-deterministic processing time and

time window constraints. P+-time Petri net is a useful

321

extension of the Petri net that can describe various types

of discrete event systems especially manufacturing

systems.

4.1. Simulator

The simulator of SIMPN supports Petri net simulations

with a global firing policy and local policies. Basically,

a simulation engine works based on the discrete event

simulation framework. It controls an event list which

prioritizes the events according to the times of event

occurrences.

 The users should specify firing policies for the Petri

net to simulate it. In case of simulation with local firing

policies, SIMPN automatically finds all conflict sets of

the Petri net.

4.2. Statistical analysis

The users can make the simulator gather data from

simulation and analyze the results. The following is a

list of possible statistical analysis from SIMPN:

 Average token inter-arrival time of a place,

 Time interval between two firing epochs of

transitions, and

 Gantt chart of token holding time of a place.

For example, in a manufacturing line, first option

can be used when we want to know the average time

interval between two consecutive finished products

(cycle time). Second option can be used to measure the

whole processing time of products (turnaround time).

Lastly, we can make SIMPN draw a Gantt chart for a

place to see overall status of processing chamber and to

check patterns.

5. APPLICATION: LCD INDEXERS

An LCD indexer is a machine for sorting, loading and

unloading glasses in the LCD panel manufacturing.

Robot arms are responsible for transportation of glasses

between two processing chambers. Therefore, the

behavior of the robot arms is closely related to the

overall performance or productivity of the LCD indexer.

LCD indexers are quite similar with cluster tools

for the semiconductor manufacturing. A cluster tool

combines several single-wafer processing modules with

wafer handling robots in a closed environment (Lee

2008). There is much research for evaluating the

performance of cluster tools (Chan, Yi and Ding 2010;

Dwande, Geismar, Sethi and Sriskandarajah 2007) and

finding optimal robot arm schedules, especially

marking-independent cyclic schedules using timed Petri

nets and mathematical programming techniques (Jung

2010).

However, finding optimal robot behavior of an

LCD indexer is not simple due to some differences from

cluster tools. First, we cannot assume processing time

as deterministic parameters because the variance is too

large to ignore. Second, some chambers may have time

window constraints. That is, if a glass stays too long in

a chamber with time window constraint, it becomes

defective due to heat or hazardous gases. Similar cases

for cluster tools are introduced in (Kim, Lee, Lee and

Park 2003; Lee and Park 2005; Kim and Lee 2008).

However, they are about analyzing schedulability

analysis of timed event graphs which are special cases

of timed Petri nets. Third, some modules can process

several glasses at once. Batch process tends to make the

problem much complicated. Last main difference is that

processing order of some abnormal glasses may not be

the same as that of the other glasses.

For LCD indexers, we cannot get an optimal

operating schedule using mathematical programming

techniques because of their stochastic behavior and high

complexity. Simulation approach can be used to find

good schedules for them. We introduce a case of finding

robust and efficient dispatching rules of an LCD

indexer, annealing oven line.

5.1. Annealing oven line

An annealing oven line is a type of LCD indexer which

anneals glasses with heat and cools them. It consists of

one or more ovens, coolers and a robot arm. A single-

arm robot is responsible for transportation of glasses.

Figure 5 illustrates the annealing oven line that we deal

with.

Figure 5: Annealing oven line

 Normal glasses are unloaded from the input

conveyor, visit oven, cooler and output conveyor,

sequentially. On the other hand, abnormal glasses are

not processed in the oven and cooler. They just move

from the input conveyor to the output conveyor.

We assume no batch process in the system and 1% of

total glasses are abnormal. Minimum and maximum

processing times of the oven and cooler are 200, 300,

150 and 200 seconds, respectively. Due to hot

environment, a glass should be unloaded from the oven

within 100 seconds after it is processed. If a finished

glass is not unloaded within the specified time window

constraint, severe quality problems occur. Times for

unloading/loading and transportation are all taken to be

1.

Figure 6 shows a p+-time Petri net model of the

system and the meaning of each place and transition is

explained in Table 2. In addition, Table 3 shows the

time information of each place.

5.2. Deadlock prevention

There are two types of deadlock in this problem. First,

deadlock occurs when the robot tries to load a glass into

322

Figure 6: A p+-time Petri net model of annealing oven

line in Figure 5.

Table 2: Legend for Figure 6.

Name Meaning

p1
Robot moves a glass from input conveyor to

oven.

p2 Oven is processing.

p3 Robot moves a glass from oven to cooler.

p4 Cooler is processing.

p5
Robot moves a glass from cooler to output

conveyor.

p6 Finished normal glasses.

p7 Finished abnormal glasses.

p8 Availability of oven.

p9 Availability of cooler.

p10 Availability of robot arm.

t1 Unloading a glass from the input conveyor.

t2 Loading a normal glass to the oven.

t3 Unloading a normal glass from the oven.

t4 Loading a normal glass to the cooler.

t5 Unloading a normal glass from the cooler

t6
Loading a normal glass to the output

conveyor.

t7
Loading an abnormal glass to the output

conveyor.

Table 3: Time information of each place in Figure 6.

Place Holding time
Time window

constraint

p1 2

p2 (200, 300) 100

p3 2

p4 (150, 200)

p5 2

p6 0

p7 0

p8 0

p9 0

p10 2

the oven or the cooler without an empty slot. We can

prevent this kind of deadlock by defining conditions in

firing rules as follows:

1. If , fire , and

2. If , fire .

 Second possible deadlock is due to the time

constraint of the oven. If a glass is not unloaded within

100 seconds after processing, the oven stops working.

Since we cannot directly control the processing times of

the oven and cooler, this type of deadlock is almost

impossible to be prevented by defining conditions. A

good way to avoid the problem is changing the

availabilities of the oven and the cooler on purpose. In

this case, there are too many slots in the oven, so the

cooler may not be able to handle coming glasses fast

enough. Therefore, reducing the number of usable slots

in the oven can help prevent deadlock.

5.3. Defining firing rules

Now we define firing rules for two conflict sets which

have more than one output transition. For the first

conflict set, we have to define firing rules for selecting a

firing transition between and . Since 1% of glasses

are abnormal, rules can be set up as follows:

If , fire ;

Otherwise, fire ,

where is a random number between 0 and 1.

The other conflict set has transitions , , and .

This conflict set represents the behavior of the robot.

Firing policies for the robot are directly related to the

performance of this anneal oven line. For a simple

experiment, we define two firing rules in Table 4. As

the rules in Table 1, we omit the conditions for the

enablement of transitions. For example, first statement

in Rule #1 means “If is enabled, fire .

Table 4: Two rules for a Petri net in Figure 6.

Rule Statements

#1

Fire .

Else if , then fire .

Else if , fire .

#2

If , fire .

Else if , then fire .

Else, fire .

Briefly, a robot with Rule #1 always unloads a

glass from the cooler whenever its cooling process is

done, while a robot with Rule #2 always loads a glass to

the empty oven slot right after it becomes available. The

only difference between two rules is the priority of

statements.

5.4. Simulation

Simulation experiments are conducted with SIMPN.

First, we find the maximum number of available oven

slots while avoiding deadlock. It can be simply found

by doing simulation reducing the availability of oven

one by one until no deadlock occurs during the

simulation.

After finding the availability, we obtain the

average cycle time of normal glasses. In this case, we

can get this result by analyzing the average inter-arrival

time of tokens in .

Simulation results with simulation time 100,000

are in Table 5. In case of Rule #1, even though all the

oven slots are available, the average cycle time of

323

glasses is much greater than the case of Rule #2 which

has 9 available slots. That is because it uses only one

oven slot and cooler slot at once. In summary, Rule #1

guarantees no deadlock, but the efficiency is limited. On

the other hand, Rule #2 ensures the good average cycle

time even though it may have to disable some oven

slots on purpose.

Table 5: Simulation results

Rule Max availability Average cycle time

#1 28 434.51

#2 9 28.86

6. CONCLUSION

We defined firing policies for Petri nets: probabilistic,

cyclic, non-cyclic sequences and rule policy. These

firing policies can be used to model complex and

dynamic schedules of the system. One global firing

policy is defined for a Petri net if there is only one

decision maker. Several local firing policies can be also

adapted to a Petri net in order to describe systems with

multiple decision makers working independently. Petri

nets with dynamic firing policies cannot be modeled

mathematically in most cases. Simulation approach is

valuable for efficient operating schedules for this kind

of systems. We developed SIMPN which is a java-

based p+-time Petri net simulator with firing policies.

We conducted simulation for an annealing oven line for

a case study. Experiment results showed the

productivity of the system to be highly dependent upon

its operating rules.

For further study, firing policies can be more

generalized and well-organized for more general

schedule. In addition, we have to specify a general

framework for finding good firing policies especially

marking-dependent firing rules.

ACKNOWLEDGMENTS

This research was supported by Basic Science Research

Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Education,

Science and Technology (2011-0011438).

REFERENCES

Chan, W.K.V., Yi, J. and Ding, S., 2010. Optimal

scheduling of multicluster tools with constant

robot moving times, Part I: Two-cluster analysis.

IEEE transactions on automation science and

engineering, 8 (1), 5–16.

Dawande, M.W., Geismar, H.N., Sethi, S.P. and

Sriskandarajah, C. , 2007. Throughput

optimization in robotic cells. USA: Springer

Science + Business Media, LLC.

Jung, C., 2010. Cyclic scheduling of timed Petri nets:

Behavior, optimization, and application to cluster

tools. Thesis (Ph. D.). KAIST.

Kim, J.H., Lee, T.E, Lee, H.W and Park, D.B, 2003.

Scheduling analysis of time-constrained dual-

armed cluster tools. IEEE transactions on

semiconductor manufacturing, 16 (3), 521–534.

Kim, J.H. and Lee, T.E., 2008. Schedulability analysis

of time-constrained cluster tools with bounded

time variation by an extended Petri net. IEEE

transactions on automation science and

engineering, 5 (3), 490–503.

Lee, T.E. and Park, S.H., 2005. An extended event

graph with negative places and tokens for time

window constraints. IEEE transactions on

automation science and engineering, 2 (4), 319–

332.

Lee, T.E., 2008. A review of scheduling theory and

methods for semiconductor manufacturing cluster

tools. Proceedings of the 2008 winter simulation

conference, 2127-2135. December 7-10, Miami,

F.L., USA.

Mascolo, M., Frein, Y., Dallery, Y. and David, R., 1991.

A unified modeling of Kanban systems using Petri

nets. International journal of flexible

manufacturing systems, 3 (3-4), 275–307.

Murata, T., 1989. Petri nets: Properties, analysis and

applications. Proceedings of the IEEE, 77 (4),

541–580.

Wang, J., 1998. Timed Petri nets: Theory and

application. USA: Kluwer academic publishers.

AUTHORS BIOGRAPHIES

CHULHAN KIM received the B.S. degree in Korea

Advanced Institute of Science and Technology (KAIST)

in 2010. He is in integrated master’s and Ph. D.

program in the same university. His research interests

focus on simulation of Petri nets, and cyclic scheduling

with Petri nets using mathematical programming

techniques.

TAE-EOG LEE is a Professor with the Department of

Industrial and Systems Engineering, Korea Advanced

Institute of Science and Technology (KAIST). He is

also the head of the department. His research interests

include cyclic scheduling theory, scheduling and control

theory of timed discrete-event dynamic systems, and

their application to scheduling and control of automated

manufacturing systems.

324

