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ABSTRACT 

Discrete event systems such as automated 

manufacturing systems and engineering systems can be 

modeled and simulated by Petri nets. Precedence 

relations between activities or events, concurrent 

processes, synchronization, resource sharing, mutual 

exclusion, etc can be well modeled by Petri nets. 

However, discrete event systems, especially discrete 

event manufacturing systems, tend to have diverse 

complex scheduling rules to optimally utilize the 

resources, meet scheduling requirements and constraints, 

and optimize the performance measures such as 

makespan or cycle time. In this paper, we propose ways 

of modeling such complex scheduling rules by 

controlling the firing sequences and timing of the 

associated transitions in the Petri net model. We also 

present a Petri net model for scheduling a robotized 

indexer cell for flat panel display manufacturing. 
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1. INTRODUCTION 

A Petri net is a graphical and mathematical modeling 

framework for discrete event systems (Murata 1989). 

Discrete event systems such as automated 

manufacturing systems and engineering systems can be 

modeled and simulated by Petri nets. Transitions, places, 

arcs, and tokens represent activities or events, 

conditions or resources, precedence relations between 

transitions and places, and availability of resources or 

conditions, respectively. They are graphically 

represented by rectangles, circles, arrows, and dots, 

respectively. A more formal definition including 

transition enabling and firing rules can be found in 

Murata (1989). Precedence relations between activities 

or events, concurrent processes, synchronization, 

resource sharing, mutual exclusion, etc can be well 

modeled by Petri nets. 

 Scheduling is to determine the order and timings of 

processing jobs at a resource.  The processing order 

may be fixed and independent of the system state such 

as the number of jobs at each resource, or can be 

dynamically changed depending on the system state. 

When there are multiple resources that can process a job, 

a resource should be selected to process the job. 

Discrete event systems, especially discrete event 

manufacturing systems, tend to have diverse complex 

scheduling rules to optimally utilize the resources, meet 

scheduling requirements and constraints, and optimize 

the performance measures such as makespan or cycle 

time. 

 In a Petri net model, resources and activities that 

contend for using a resource can be modeled by a place 

and its output transitions, respectively. The tokens at 

such a conflict place are properly routed to the output 

transitions. Therefore, we expect that complex 

scheduling rules can be modeled by token routing rules, 

which can depend on the system state information such 

as the number of tokens and the token sojourn times at 

the places. However, it is not so straightforward to 

represent complex scheduling rules by token routing 

rules. For instance, even a simple state-independent 

cyclic scheduling rule that processes jobs at a resource 

in a fixed cyclic order is not simply modeled by routing 

tokens at a conflict place cyclically. It is because a 

transition firing for processing a job may be delayed 

due to delayed arrivals of tokens at the other input 

places of the transition. Furthermore, there are not 

enough studies on modeling and simulating scheduling 

rules in Petri nets. Most Petri net simulators can model 

decision-free nets that have no scheduling decisions or 

conflict places, or nets that have probabilistic token 

routing rules. There are few works on Petri net models 

or simulators that can model complex token routing 

rules or scheduling rules effectively. 

 In this paper, we propose ways of modeling such 

complex scheduling rules by controlling the firing 

sequences and timings of the associated transitions in 

the Petri net model. As an application, we also present a 

Petri net model for scheduling a robotized indexer cell 

for flat panel display manufacturing. 

 

2. FIRING POLICIES OF PETRI NETS 

We explain policies for controlling firings of transitions 

in a Petri net. Consider an example of Petri net in 

Figure 1. Places p1 and p4 are conflict places, each of 

which has two output transitions. A token routing rule 

basically determines an output transition to be fired at 
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each conflict place. A token that entered a conflict place 

and has stayed there as long as the token holding time 

of the place, if any, can be released to one of the output 

transitions of the conflict place. The token released to 

the output transition can join enabling the transition. 

The release can be made as soon as the token is ready to 

be released or delayed. An enabled transition can be 

fired immediately or after a prescribed firing delay of 

the transition, if any. It also can be delayed. Therefore, 

the token routing, delays of token releases and transition 

firings can be controlled by modeling and simulating 

scheduling rules. A token routing rule indicates such 

token route and release timing. A token routing rule 

eventually determines the order and timings in which 

the output transitions are fired. In the sense, it can be 

told that the scheduling decisions are made by a 

transition firing policy that determines the order and 

timings of firing the output transitions of each conflict 

place. When some intentional delays are made in 

scheduling decisions, but most practical scheduling 

rules for manufacturing systems start an activity or job 

as soon as possible. In other words, the token release 

and transition firings are not intentionally delayed. 

Therefore, in this paper, we focus on controlling only 

the order of transition firings. Of course, job release 

control rules such as kanban or CONWIP(Constant 

Work in Progress) intentionally delay jobs or activities. 

Therefore, such scheduling rules might be modeled by 

token routing rules or transition firing policies that 

make intentional delays in token release or transition 

firing appropriately. However, even such scheduling 

rules for timing regulation can be incorporated into Petri 

net model as an appropriate subnet that provides 

feedback of tokens from some transitions to other 

transitions (Lee and Park 2005; Mascolo, Frein, Dallery 

and David 1991). We therefore define four types of 

transition firing policies that determine only the order of 

transition firings. 

 

 
Figure 1: A Petri net which has two conflict places. 

 

2.1. Probabilistic sequence 

In a probabilistic sequence, the output transitions of a 

conflict place are fired in a random order. For example, 

in Figure 1, output transitions    and    of the place p1 

are fired with the same probability, 0.5. Of course, the 

probabilities may be unequal. Probabilistic sequence 

can be used for describing systems of which the order of 

activities is not important and systems with decision 

makers that behave randomly. 

 

2.2. Cyclic sequence 

A cyclic sequence is a fixed sequence which repeats 

firing the transitions based on a specified cycle. We use 

the following expression for a cycle: 

 

                

 

where    is  th firing transition and   is the length of the 

order list. For example, a cycle             repeats 

transition firing by an order of              
                 . 

A cycle is feasible if every transition can be fired 

continuously by the order of it. The Petri net in Figure 1 

has       possible cycles but there is no feasible 

cycle. On the other hand, the Petri net in Figure 2 has 

     cycles and          is feasible. 

 

 
Figure 2: A Petri net which has a feasible cycle, 

        . 

 

2.2.1. K-cyclic sequence 

A k-cyclic sequence is a special case of the cyclic 

sequence. It selects a firing transition based on a 

specified cycle which contains every transition of the 

net. Transitions are fired by the order of cycle and every 

transition is fired k times in a cycle. For example,  
2-cyclic sequence                      means the 

transitions are fired by an order of           
                 . 

 

Cyclic sequence is useful to describe systems in 

which the several events are repeated by a cyclic order. 

In case of the k-cyclic sequence, since every transition 

should be fired k times in a cycle and it is independent 

of the marking of Petri nets, the problem complexity is 

much more reduced. Hence, much research has been 

done for finding optimal cycles to maximize/minimize 

the value/cost using mathematical programming 

techniques. 

 

2.3. Non-cyclic sequence 

Some decision makers such as distribution machines in 

manufacturing cells may behave without any pattern. A 

non-cyclic sequence can be used to describe this kind of 

non-repeating firing orders. A list is described as 

 

              . 

 

 The only difference from the order list of cyclic 

sequence is that it does not fire any transition after 

firing the last one in the list, regardless of the existence 

of enabled transitions. In most cases it leads to the end 

of simulation. 
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2.4. Rule 

Probabilistic, cyclic, and non-cyclic sequences select a 

firing transition based on random numbers or a pre-

specified order list which means that they do not care 

about the marking of Petri nets. In contrast, rule policy 

is marking-dependent. It means that we can use rule 

policy when we describe systems with decision makers 

that depend on the state of the systems. 

 

 
Figure 3: A Petri net. 

 

Table 1: Two rules for a Petri net in Figure 3. 

Rule Statements 

#1 

If        , then fire   . 

Else if        , then fire   . 

Else, fire   . 

#2 

If              , then fire   . 

Else if        , then fire   . 

Else, fire   . 

 

 Basically, a rule is a series of if-then statements. 

Each statement follows a format of “if condition C is 

satisfied, then fire transition T”. Every time a transition 

is fired, the rule is considered to select a next firing 

transition. Table 1 shows two sample rules for a Petri 

net in Figure 3 where      is the number of tokens in 

place  . We do not state the enabling condition of 

transition in a rule for simplicity. For example, the first 

statement of Rule #1 in Table 1 actually means “If    is 

enabled and        , fire   .”. The firing order 

based on Rule #1 and Rule #2 in Table 1 are     
             and                 , 

respectively. 

Using probabilistic, cyclic, non-cyclic sequences 

and rule policies properly, we can model diverse types 

of discrete event systems and simulate them more 

effectively. 

 

3. GLOBAL AND LOCAL FIRING POLICY 

In section 2, we defined four firing policies to describe 

various discrete event systems with Petri nets. In this 

section, we discuss the meaning of global firing policy, 

local policy, and the difference between adapting a 

single global firing policy and several local firing 

policies to a Petri net. 

 

3.1. Global firing policy 

A global firing policy is a firing policy that deals with 

every transition of a Petri net. For example, the global 

cycle policy should include all transitions of a Petri net 

in its firing order list. We use a single global firing 

policy for a Petri net to model a system with a single 

decision maker that controls the whole system. 

 

3.2. Local firing policy 

Some systems may have several independent decision 

makers like a manufacturing cell with two independent 

transportation robots. They act without considering 

other decision makers. Describing this kind of system 

with a global firing policy may not be easy. In this case, 

we use several local firing policies for each conflict set 

in a Petri net. 

 

Definition: A conflict set of a Petri net is a subnet 

which includes two nonempty sets    and   , where 

1.    is the smallest set of places such that 

⋃           
    where     is the set of 

output transitions of   . 

2.    is the smallest set of transitions such that 

⋃          
    where     is the set of input 

places of   . 
 

For example, in Figure 1, there are two conflict 

sets. The first one is a subnet including   ,   ,   , and 

  . Second one consists of   ,   , and   . There is no 

conflict between every pair of conflict sets. It means 

that firing of a conflict set does not disable transitions in 

the other conflict sets. That is, every conflict set works 

concurrently. In case of the Petri net in Figure 1, we 

need to specify two firing policies for each conflict set 

to describe the system with two independent decision 

makers. 

 

4. SIMPN 

There have been already a lot of free and commercial 

Petri net tools/simulators available. However, they are 

not well suited for modeling and simulation of discrete 

event systems which behave based on complex 

operating schedules with them because most of them 

deal with conflict situations randomly or by asking the 

users to select one of enabled firing transitions. Based 

on firing policies discussed in section 2 and 3, we 

developed a java-based p+-time simulator, SIMPN. 

Figure 4 illustrates the main frame of SIMPN. 

 

 
Figure 4: SIMPN 

 

P+-time Petri net is an extension of a timed places 

Petri net (Wang 1998) whose places have random token 

holding time and maximum token delay. It is formally 

defined by Kim and Lee (2008) to be used for modeling 

cluster tools with non-deterministic processing time and 

time window constraints. P+-time Petri net is a useful 
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extension of the Petri net that can describe various types 

of discrete event systems especially manufacturing 

systems. 

  

4.1. Simulator 

The simulator of SIMPN supports Petri net simulations 

with a global firing policy and local policies. Basically, 

a simulation engine works based on the discrete event 

simulation framework. It controls an event list which 

prioritizes the events according to the times of event 

occurrences. 

 The users should specify firing policies for the Petri 

net to simulate it. In case of simulation with local firing 

policies, SIMPN automatically finds all conflict sets of 

the Petri net. 

 

4.2. Statistical analysis 

The users can make the simulator gather data from 

simulation and analyze the results. The following is a 

list of possible statistical analysis from SIMPN: 

 

 Average token inter-arrival time of a place, 

 Time interval between two firing epochs of 

transitions, and 

 Gantt chart of token holding time of a place. 

 

For example, in a manufacturing line, first option 

can be used when we want to know the average time 

interval between two consecutive finished products 

(cycle time). Second option can be used to measure the 

whole processing time of products (turnaround time). 

Lastly, we can make SIMPN draw a Gantt chart for a 

place to see overall status of processing chamber and to 

check patterns. 

 

5. APPLICATION: LCD INDEXERS 

An LCD indexer is a machine for sorting, loading and 

unloading glasses in the LCD panel manufacturing. 

Robot arms are responsible for transportation of glasses 

between two processing chambers. Therefore, the 

behavior of the robot arms is closely related to the 

overall performance or productivity of the LCD indexer.  

LCD indexers are quite similar with cluster tools 

for the semiconductor manufacturing. A cluster tool 

combines several single-wafer processing modules with 

wafer handling robots in a closed environment (Lee 

2008). There is much research for evaluating the 

performance of cluster tools (Chan, Yi and Ding 2010; 

Dwande, Geismar, Sethi and Sriskandarajah 2007) and 

finding optimal robot arm schedules, especially 

marking-independent cyclic schedules using timed Petri 

nets and mathematical programming techniques (Jung 

2010). 

However, finding optimal robot behavior of an 

LCD indexer is not simple due to some differences from 

cluster tools. First, we cannot assume processing time 

as deterministic parameters because the variance is too 

large to ignore. Second, some chambers may have time 

window constraints. That is, if a glass stays too long in 

a chamber with time window constraint, it becomes 

defective due to heat or hazardous gases. Similar cases 

for cluster tools are introduced in (Kim, Lee, Lee and 

Park 2003; Lee and Park 2005; Kim and Lee 2008). 

However, they are about analyzing schedulability 

analysis of timed event graphs which are special cases 

of timed Petri nets. Third, some modules can process 

several glasses at once. Batch process tends to make the 

problem much complicated. Last main difference is that 

processing order of some abnormal glasses may not be 

the same as that of the other glasses. 

For LCD indexers, we cannot get an optimal 

operating schedule using mathematical programming 

techniques because of their stochastic behavior and high 

complexity. Simulation approach can be used to find 

good schedules for them. We introduce a case of finding 

robust and efficient dispatching rules of an LCD 

indexer, annealing oven line. 

 

5.1. Annealing oven line 

An annealing oven line is a type of LCD indexer which 

anneals glasses with heat and cools them. It consists of 

one or more ovens, coolers and a robot arm. A single-

arm robot is responsible for transportation of glasses. 

Figure 5 illustrates the annealing oven line that we deal 

with. 

 

 
Figure 5: Annealing oven line 

 

 Normal glasses are unloaded from the input 

conveyor, visit oven, cooler and output conveyor, 

sequentially. On the other hand, abnormal glasses are 

not processed in the oven and cooler. They just move 

from the input conveyor to the output conveyor. 

We assume no batch process in the system and 1% of 

total glasses are abnormal. Minimum and maximum 

processing times of the oven and cooler are 200, 300, 

150 and 200 seconds, respectively. Due to hot 

environment, a glass should be unloaded from the oven 

within 100 seconds after it is processed. If a finished 

glass is not unloaded within the specified time window 

constraint, severe quality problems occur. Times for 

unloading/loading and transportation are all taken to be 

1. 

Figure 6 shows a p+-time Petri net model of the 

system and the meaning of each place and transition is 

explained in Table 2. In addition, Table 3 shows the 

time information of each place. 

 

5.2. Deadlock prevention 

There are two types of deadlock in this problem. First, 

deadlock occurs when the robot tries to load a glass into  
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Figure 6: A p+-time Petri net model of annealing oven 

line in Figure 5. 

 

Table 2: Legend for Figure 6. 

Name Meaning 

p1 
Robot moves a glass from input conveyor to 

oven. 

p2 Oven is processing. 

p3 Robot moves a glass from oven to cooler. 

p4 Cooler is processing. 

p5 
Robot moves a glass from cooler to output 

conveyor. 

p6 Finished normal glasses. 

p7 Finished abnormal glasses. 

p8 Availability of oven. 

p9 Availability of cooler. 

p10 Availability of robot arm. 

t1 Unloading a glass from the input conveyor. 

t2 Loading a normal glass to the oven. 

t3 Unloading a normal glass from the oven. 

t4 Loading a normal glass to the cooler. 

t5 Unloading a normal glass from the cooler 

t6 
Loading a normal glass to the output 

conveyor. 

t7 
Loading an abnormal glass to the output 

conveyor. 

 

Table 3: Time information of each place in Figure 6. 

Place Holding time 
Time window 

constraint 

p1 2   

p2 (200, 300) 100 

p3 2   

p4 (150, 200)   

p5 2   

p6 0   

p7 0   

p8 0   

p9 0   

p10 2   

  

the oven or the cooler without an empty slot. We can 

prevent this kind of deadlock by defining conditions in 

firing rules as follows: 

 

1. If        , fire   , and 

2. If        , fire   . 

 

 Second possible deadlock is due to the time 

constraint of the oven. If a glass is not unloaded within 

100 seconds after processing, the oven stops working. 

Since we cannot directly control the processing times of 

the oven and cooler, this type of deadlock is almost 

impossible to be prevented by defining conditions. A 

good way to avoid the problem is changing the 

availabilities of the oven and the cooler on purpose. In 

this case, there are too many slots in the oven, so the 

cooler may not be able to handle coming glasses fast 

enough. Therefore, reducing the number of usable slots 

in the oven can help prevent deadlock. 

 

5.3. Defining firing rules 

Now we define firing rules for two conflict sets which 

have more than one output transition. For the first 

conflict set, we have to define firing rules for selecting a 

firing transition between    and   . Since 1% of glasses 

are abnormal, rules can be set up as follows: 

 

If         , fire   ; 

Otherwise, fire   , 

 

where     is a random number between 0 and 1. 

The other conflict set has transitions   ,   , and   . 

This conflict set represents the behavior of the robot. 

Firing policies for the robot are directly related to the 

performance of this anneal oven line. For a simple 

experiment, we define two firing rules in Table 4. As 

the rules in Table 1, we omit the conditions for the 

enablement of transitions. For example, first statement 

in Rule #1 means “If    is enabled, fire   . 

 

Table 4: Two rules for a Petri net in Figure 6. 

Rule  Statements 

#1 

Fire   . 

Else if        , then fire   . 

Else if        , fire   . 

#2 

If        , fire   . 

Else if        , then fire   . 

Else, fire   . 

 

Briefly, a robot with Rule #1 always unloads a 

glass from the cooler whenever its cooling process is 

done, while a robot with Rule #2 always loads a glass to 

the empty oven slot right after it becomes available. The 

only difference between two rules is the priority of 

statements. 

 

5.4. Simulation 

Simulation experiments are conducted with SIMPN. 

First, we find the maximum number of available oven 

slots while avoiding deadlock. It can be simply found 

by doing simulation reducing the availability of oven 

one by one until no deadlock occurs during the 

simulation. 

After finding the availability, we obtain the 

average cycle time of normal glasses. In this case, we 

can get this result by analyzing the average inter-arrival 

time of tokens in   . 

Simulation results with simulation time 100,000 

are in Table 5. In case of Rule #1, even though all the 

oven slots are available, the average cycle time of 
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glasses is much greater than the case of Rule #2 which 

has 9 available slots. That is because it uses only one 

oven slot and cooler slot at once. In summary, Rule #1 

guarantees no deadlock, but the efficiency is limited. On 

the other hand, Rule #2 ensures the good average cycle 

time even though it may have to disable some oven 

slots on purpose. 

 

Table 5: Simulation results 

Rule Max availability Average cycle time 

#1 28 434.51 

#2 9 28.86 

 

6. CONCLUSION 

We defined firing policies for Petri nets: probabilistic, 

cyclic, non-cyclic sequences and rule policy. These 

firing policies can be used to model complex and 

dynamic schedules of the system. One global firing 

policy is defined for a Petri net if there is only one 

decision maker. Several local firing policies can be also 

adapted to a Petri net in order to describe systems with 

multiple decision makers working independently. Petri 

nets with dynamic firing policies cannot be modeled 

mathematically in most cases. Simulation approach is 

valuable for efficient operating schedules for this kind 

of systems. We developed SIMPN which is a java-

based p+-time Petri net simulator with firing policies. 

We conducted simulation for an annealing oven line for 

a case study. Experiment results showed the 

productivity of the system to be highly dependent upon 

its operating rules. 

For further study, firing policies can be more 

generalized and well-organized for more general 

schedule. In addition, we have to specify a general 

framework for finding good firing policies especially 

marking-dependent firing rules.  
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