
MODELLING RESILIENCE IN CLOUD-SCALE DATA CENTRES

John Cartlidge (a) & Ilango Sriram(b)

Department of Computer Science
University of Bristol

Bristol, UK, BS8 1UB

(a) john.cartlidge@bristol.ac.uk, (b) ilango@cs.bris.ac.uk

ABSTRACT
The trend for cloud computing has initiated a race
towards data centres (DC) of an ever-increasing size.
The largest DCs now contain many hundreds of
thousands of virtual machine (VM) services. Given the
finite lifespan of hardware, such large DCs are subject
to frequent hardware failure events that can lead to
disruption of service. To counter this, multiple
redundant copies of task threads may be distributed
around a DC to ensure that individual hardware failures
do not cause entire jobs to fail. Here, we present results
demonstrating the resilience of different job scheduling
algorithms in a simulated DC with hardware failure.
We use a simple model of jobs distributed across a
hardware network to demonstrate the relationship
between resilience and additional communication costs
of different scheduling methods.

Keywords: cloud computing, simulation modelling, data
centres, resilience

1. INTRODUCTION
Cloud computing—the online utility provision of
hardware and software computing infrastructure and
applications—necessitates the demand for data centres
(DC) on an ever-increasing scale. The largest now fill
purpose-built facilities approaching one million square
feet.1 Already, DCs are so large that manufacturers
(including IBM, HP, Sun) do not have the capability to
build and destructively test models on the scale of the
final production systems. Hence, every day, massively
parallel, tightly-coupled, complex and sometimes
heterogeneous data centres are put to service having
undergone insufficient pre-testing; while it is still
possible to test individual node servers and other
standalone hardware, the complex interactions between
the components of the DC under normal and abnormal
operating conditions are largely unknown. Whereas in
other engineering domains this problem has been
addressed with robust industry-standard simulation
tools—SPICE for integrated circuit design (Nagel
1975), or computational fluid dynamics for the
aeronautics industry—a well established realistic
(rigorous) simulation framework of cloud computing
facilities is lacking.

1

 http://www.datacenterknowledge.com/special-report-the-worlds-largest-data-centers

There are two important reasons why this is the
case. Firstly, there is no uniform definition of what a
cloud computing infrastructure or platform should look
like: where Amazon uses virtualization (DeCandia et al.
2007), Google uses MapReduce (Dean and Ghemawat
2008). Secondly, it is a hard problem: a realistic
simulation tool should include real network models
(fibre channel, Gbit ethernet), disk models (disk arrays,
solid-state, caching, distributed protocols and file
systems), queueing models for web servers, etc. As
such, while it is our long-term goal to develop a set of
simulation tools that can be used to aid the development
of cloud DCs, as an initial step we present a tractable
problem using a simplified model.

DCs for cloud computing have now reached such a
vast scale that frequent hardware failures (both
temporary and permanent) have become a normal
expectation. For example, if a DC contains 100,000
servers and the average commodity server life
expectancy is 3 years, we expect a server to reach the
end of its natural life every 15 minutes; considering
temporary failures and failure of other components
makes failures occur even more frequently. Thus, when
a job is submitted to the cloud, the physical hardware
available at the start of the job cannot be guaranteed to
be there at the end:

 With such high component failure rates, an
application running across thousands of machines
may need to react to failure conditions on an
hourly basis (Barroso and Hölzle 2009)

To avoid frequent job failures, redundancy is

necessary. The cloud computing design paradigm builds
on achieving scalability by performing scale-out rather
than scale-up operations, i.e., increasing resources by
using additional components as opposed to using more
powerful components. For this reason, jobs are
generally split into parallel tasks that can be executed
by (potentially) several services. For resilience
purposes, the tasks can be multiply copied and run in
parallel threads on different hardware (Hollnagel,
Woods, and Levson 2006). Thus, as long as a “backup”
copy exists, individual task failures will not degrade a
job's overall resilience.

However, redundancy inherently generates extra
work, requiring more space, greater computational

299

effort and increased communication costs. There is
clearly a trade off here: how much redundancy and how
to schedule redundancy—where to physically locate
copies of the same code in the DC to minimise the
chances of failure—versus increased communication
cost and computational effort.

In this paper, we conduct an initial foray into the
analysis of this trade off, using a simple simulation
model to analyse the relationships between scheduling,
redundancy, network structure and resilience. In Section
2 we introduce cloud-scale data centres and the problem
of failure resilience. Section 3 outlines the simulation
model we use, before detailing our experimental set-up
in Section 4. Section 5 presents the results of our
experiments, which are discussed in Section 6. In
Section 7 we outline our future plans to extend this
work, before summarising our conclusions in Section 8.

2. BACKGROUND

2.1. Cloud Data Centres
Cloud Computing transitions DCs from co-located
computing facilities to large resources where
components are highly connected and used in an
interlinked way. Computations are broken down into
services, allowing for easier scale-out operations. From
the physical perspective, DCs are structured regularly in
a hierarchical design: a warehouse scale DC is made up
of aisles of racks, each rack being a vertical frame to
which a number of chassis can be mounted; each
chassis containing an arrangement of thin computer
mother-board units: the blade-servers that make up the
DC's computing infrastructure. Each blade server in
turn hosts Virtual Machines (VMs) running cloud
services. Figure 1 shows example chassis and rack
components.

With Cloud Computing, the level of
interconnectivity and dependency between services
across the DC is so high that Barroso and Hölzle (2009)
coined the term “warehouse-scale computers”. This
introduces various aspects of complexity to DCs.
Firstly, many of the protocols in place scale worse than
linearly, making conventional management techniques
impractical beyond a certain scale as complex
interactions between services lead to unpredictable
behaviour. Secondly, DC design has reached a stage

where test environments are no longer larger, or even of
the same order of magnitude, as the final products.
Cutting edge DCs are believed to have more than half a
million cores,2 but even one order of magnitude less
would make a physical test environment too expensive
to be practical. Hence, it is difficult to impossible to test
the chosen configurations before going into production,
which can lead to costly errors.

This highlights the need for predictive computer
simulations to evaluate possible designs before they go
into production: with simulation studies it is possible to
rapidly evaluate design alternatives. However, for
simulating cloud-scale computing DCs there are
currently no well-established tools.

The literature includes some early-stage cloud
simulation models. For a consumer centric view of the
cloud, there is CloudSim (Buyya, Ranjan, and Calheiros
2009). CloudSim's design goal is to compare the
performance of services on a cloud with limited
resources against their performance on dedicated
hardware. To aid the vendor perspective, we have
previously developed SPECI (Simulation Program for
Elastic Cloud Infrastructures) for modelling scaling
properties of middleware policy distribution in
virtualised cloud data centres (Sriram and Cliff 2011).
This paper explores aspects of resilience modelling that
we aim to develop as a component in a set of simulation
tools for data centre designers.

2.2. Failure, Resilience and Communication Cost
As economies of scale drive the growth of DCs, there
are such a large number of individual independent
hardware components that the average life expectancy
will imply that component failure will occur continually
and not just in exceptional or unusual cases. This
expected near permanent failing of components is called
normal failure. For practicable maintenance, failed
components are left in situ and only replaced from time
to time; it may also be imagined that entire racks are
replaced once several servers on it have failed.
However, despite normal failure, resiliency must be
maintained. Furthermore, the cloud design paradigm of
solving jobs using smaller tasks or services that are
typically spread across several physical components
further increases the risk of normal failure affecting any
given job. As cloud vendors seek to provide reliable
services, requiring the maintenance of guaranteed levels
of performance and dependability, resilience has
become a new non-functional requirement (Liu, Deters,
and Zhang 2010). To this end, cloud applications such
as BigTable, Google's massively parallel data storage
application, have in-built management systems for
dealing with failures (Chang et al. 2008).

Hardware failure can occur anywhere in the
physical hierarchy of the data centre: power outages can
disable an entire DC; faulty cooling system behaviour
can force an aisle to be shutdown to avoid overheating;
racks, chassis and blades have individual power

2 http://www.zdnet.com/blog/storage/googles-650000-core-warehouse-size-computer/213

Figure 1: Example hardware: (a) HP C7000 chassis
holding 16 blade servers; (b) Sun Pegasus C48
server rack, containing 4 chassis

€

×12 blade servers.

300

supplies which can fail; and individual VMs can suffer
from instability in software and require an unplanned
reboot. Thus, with growing DC scales, resources can no
longer be treated as stable; and interactions no longer
static but rather exhibiting dynamic interactions on
multiple descriptive levels.

To counter normal failure, redundancy must be
introduced. This happens by spinning off parallel copies
of all tasks. Thus, when any task from the original copy
fails, a redundant copy is available to replace the service
that has gone “missing”. Hadoop, for example, is an
open-source software for reliable, scalable distributed
computing and is used by Yahoo!, Facebook and others,
on clusters with several thousand nodes.3 It includes
HDFS file system, which as default creates 3 copies
(redundancy 3).4

When considering parallel execution of tasks rather
than file storage, service redundancy causes extra load
through the additional execution of tasks. The execution
load grows linearly with the numbers of redundant
copies, but in addition, there will be some form of load
associated with parallel threads periodically passing
runtime data that we describe as communication cost.
This paper uses a simulation model of parallel job
execution to explore the trade-off between resilience
and communication cost as failure, redundancy and
scheduling types vary. For model simplicity we focus
on computational redundancy and ignore disk and I/O
redundancy.

3. SIMULATION MODEL

3.1. Network Tree Hierarchy
We model the interactions between networks of VM
cloud services that exist in a hierarchical tree-structure
(refer to Figure 2). Network structure is configurable
and we use several tree hierarchies. Throughout this
paper, however, unless otherwise stated assume a fixed
hierarchy h-8-4-16-16. That is, each aisle has 8 racks,
each with 4 chassis containing 16 blades, with each
blade running 16 cloud services. This structure was
chosen to model realistic hardware, such as the 16-blade

3

 http://wiki.apache.org/hadoop/PoweredBy
4

 http://www.hadoop-blog.com/2010/11/how-to-change-replication-factor-of.html

HP C7000 chassis and 4-chassis IBM rack shown in
Figure 1.
3.2. Jobs, Tasks and Redundancy
We assume that all jobs to be run in the cloud can be
parallelized into T independent task threads. We make
this simplifying assumption on the basis that one of the
major draws of cloud infrastructures is the elasticity of
rapid scaling and de-scaling through parallelization. In
our model, J jobs are run on the DC, with each job, J,
consisting of T independent parallel tasks. While tasks
can be parallelised, they are not entirely independent
otherwise they would constitute a new job. Thus, tasks
must periodically communicate with each other, passing
runtime data when necessary. To pass runtime data,
tasks within a job communicate at fixed time intervals.
Normally, if any one task within a job fails, the entire
job will fail. To mitigate this, redundancy can be
introduced by running R duplicate copies of tasks in
parallel. Then, job J will fail if and only if all redundant
copies of an independent parallel task fail. Such
redundancy introduces failure resilience.

Let J denote a job consisting of T tasks, each
having R redundant copies. Then, J can be written in
matrix notation, with T rows and R columns:

€

J =

j1,1 j1,2  j1,r … j1,R
j2,1 j2,2  j2,r  j2,R
     
jt,1 jt,2  jt,r  jt,R
     
jT ,1 jT ,2  jT ,r  jT ,R

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (1)

Job failure occurs when all tasks in a given row fail.
More formally:

€

fails J() ⇔∃t ∈T, ∀r∈R, fails jt,r(){ } (2)

Throughout this paper, we denote experiments running
J jobs, each with T tasks and R redundancy as a {J, T,
R} configuration, with sum total tasks #T = J x T x R.

3.3. Scheduling Algorithms
Jobs and tasks can be placed onto a DC network in an
infinite variety of ways; using schedules that range from
the simple to the complex. In this work, we are
interested in deriving general relationships between job
scheduling methods and the effects they have on
communication cost and resilience. Since we cannot
hope to assess the relative behaviours of every
scheduling algorithm, to aid analytical tractability, we
selected a small subset purposely designed to be simple.
The intention is not to test intelligent, complicated, real-
world algorithms, but rather to tease out general
behaviours of these simple algorithms so that we can
equip ourselves with better knowledge to design
intelligent industrial algorithms in the future. To this
end, we define the following three scheduling
algorithms:

Figure 2: Data centre tree schematic. We describe
this as an h-2-2-2-3 hierarchy (2 racks per aisle, 2
chassis per rack, 2 blades per chassis and 3 services
per blade). The full DC contains as many aisles as
necessary.

301

• Random: Uniformly distribute tasks across the
DC, independent of job or redundancy group.

• Pack: Use the minimum amount of DC
hardware to run all jobs. Place tasks from
consecutive redundancy groups for all jobs on
consecutive DC services.

• Cluster: Place all tasks belonging to the same
redundancy group on the smallest piece of
hardware that they fit (e.g., on one blade).5
Uniformly distribute redundancy groups across
the DC.

Figure 3 shows a schematic example of each
scheduling algorithm. Random, top line of figure,
assigns tasks to the DC using a random uniform
distribution over all DC services. Random schedules
tasks independently, taking no account of which job or
redundancy group a task belongs. Conversely, Pack
preserves geographical co-location of individual tasks
according to job and redundancy groupings, middle.
Tasks are sequentially scheduled using neighbouring
services until each hardware is filled. Finally, Cluster
uses a combined approach, bottom. Similar to Pack,
Cluster places all tasks belonging to a job redundancy
group on the same physical hardware. However,
redundancy groups themselves are uniformly distributed
across the DC. In aggregate, these trivial scheduling
algorithms form a simple strategy spanning-set from
which we aim to tease out general rules for improving
failure resilience.

3.4. Network Communication Costs
As explained in Section 3.2, the model assumes that
tasks within a job need to communicate at fixed time
intervals, passing runtime data between parallel threads.
Table 1 shows inter-task communication costs within

5 In the case that no hardware has enough free space to fit the entire
task-group, deploy as many tasks as possible on the hardware with the
largest free space, then deploy the remaining tasks as “close” (lowest
communication cost) as possible.

the DC. Intuitively, cost increases with physical
distance between tasks, increasing in magnitude each
time it is necessary to traverse a higher layer in the DC
tree (Figure 2). From Table 1, tasks communicate with
themselves and other tasks on the same service with
zero cost. For tasks on different services on the same
blade the communication cost is CS=100; between
different blades CB=101; etc.

These costs were chosen to give a qualitatively
intuitive model of costs: clearly, communication costs
between tasks running on the same physical chip are

Table 1: Communication Costs

Communication Relative Cost
Inter-Service CS = 100
Inter-Blade CB = 101
Inter-Chassis CC = 102
Inter-Rack CR = 103
Inter-Aisle CA = 104

Figure 4: Communication network costs. Top: tasks
communicate with the nearest copy of every other
task. Bottom: when a task fails, communicating
tasks find the nearest alternative. When task 2 fails,
communication costs increase from 6CS to 4Cs+2CB.
Refer to Table 1 for cost values.

Figure 5: Hardware failure. Top: initial
communication networks resulting from alternative
scheduling methods. Middle: individual service
failure produces minor restructuring of
communication networks, including the addition of
more costly inter-blade edges. Bottom: blade failure
produces major network reconfiguration, while
Random and Cluster recover Pack results in job
failure.

Figure 3: Job scheduling for a {J=2, T=3, R=2}
configuration on an h-2-3-8 hierarchy subset. Top:
Random uniformly distributes the #T=12 tasks
across the DC. Middle: Pack schedules tasks onto
the minimum physical hardware set, in this case 2
blades on 1 chassis. Bottom: Cluster schedules full
job copies onto the same physical hardware, while
uniformly distributing copies across the DC.

302

many orders of magnitude lower than between tasks
located in different aisles of a data centre. While more
accurate estimates of relative costs are possible, we
believe the simple relationship defined in Table 1
adequately serves the purposes of this paper, since we
are only interested in qualitative differences between
scheduling algorithms, rather than accurate quantitative
relationships.

3.5. Hardware Failure
Hardware failures directly affect task communication.
Figure 4 highlights a schematic example of the effects
of a single service failure. Initially, tasks communicate
with the “nearest” copy of every other task; where
“nearest” is defined as the least costly to communicate.
Top: communication takes place between tasks running
on the same blade. Middle: after task 2 fails on blade 1,
tasks 1 and 3 on blade 1 begin inter-blade
communication with the “nearest” alternative copy of
task 2. The resulting network communication load
increases from 6CS to 4Cs+2CB.

Within the model, hardware failure can occur at
any level in the physical hierarchy tree. Figure 5
demonstrates example effects of failure on the
underlying communication network. Tasks form an
initial communication network, top. Individual service
failure, middle row, results in some restructuring of the
communication network; with the addition of more
costly inter-blade links for Random and Cluster.
Hardware failure of an entire blade server, bottom row,
has a more profound effect on the network. While
Random and Cluster find a new rewiring, there no
longer exists a full task-set for Pack, thus resulting in
job failure.

4. EXPERIMENTAL DESIGN
Using the model described in Section 3, we perform a
series of empirical experiments to observe the effect
that different job scheduling algorithms have on
resilience and communication cost in a data centre with
hardware failures.

4.1. Assumptions
To keep the model tractable we make some simplifying
assumptions.

Time: Simulations have a fixed time length. Jobs
are scheduled before the simulation clock begins, then
run for the entire length of the simulation.

Jobs: Jobs consist of a set of tasks that can be run
in parallel with no inter-dependencies or I/O requests,
other than periodic passing of runtime data. Consider,
for example, computationally intensive batch jobs such
as overnight computation of market data for financial
institutions, or CFD simulations for the aeronautics
industry or Met Office. For all tasks comprising a job, if
at least one copy of the task succeeds, then the job
completes successfully; refer to equation (2).

Communication Cost: Tasks within a job need to
communicate with a copy of all other tasks at a constant

rate. Communication costs increase with physical
distance; see Table 1.

Network Utilisation: The DC is effectively infinite
in size, enabling us to ignore the dynamics of full
utilisation.

Failure: Failure can occur at any level in the
hierarchical tree. Failure events are drawn from an
exponential distribution.

4.2. Configuration

Hierarchy Tree: Unless otherwise stated, all
experimental runs use an h-8-4-16-16 tree hierarchy.
These are realistic values based on current consumer
hardware (refer to Section 3.1). Where alternative tree
architectures are used, we use the notation h-5 and h-10
as shorthand for h-5-5-5-5 and h-10-10-10-10,
respectively.

DC size: To approximate unlimited resources, we
scale the size of the data centre, |DC|, to equal twice the
size needed to run all jobs, that is:

€

DC = 2×#T = 2 × J × T × R (3)

In an alternative configuration, data centre size is fixed.
Under these conditions, set:

€

DC = 20 × J × T (4)

Communication Costs: Communication costs are
set equal to Table 1 Refer to Section 3.4 for a
discussion.

Scheduling: Jobs are scheduled using the
algorithms Random, Pack and Cluster (as detailed in
Section 3.3).

Hardware Failure: We set the proportion of
hardware that will fail, fhw, during the length of a
simulation run to 1%, 5% or 10%. Note, however, that a
failure event will cascade down the hierarchy tree, such
that failure of a chassis will cause all blades and
services running on the chassis to fail. Thus, the overall
proportion of a DC that will fail during a simulation run
will be larger than the value of fhw. These failure rates
may appear to be high. However, it is our intention to
model resilience under extreme conditions that cannot
be observed readily in operational environments. When
a hardware failure event occurs, a discrete distribution
is used to select the type of hardware failure. The
relative probability of a given type of hardware, htype,
failing is calculated as the relative proportion of that
hardware in the data centre,

€

htype hall . Although this
distribution is simplistic, it provides the intuitive result
that the more common a type of hardware, the more
likely it is to fail.

5. RESULTS
Here, we present simulation results for all scheduling
experiments. Figures plot mean values of repeated
trials, plus or minus 95% confidence interval. Thus,
where error bars do not overlap, differences are

303

statistically significant. The simulation experiments
were run in parallel and distributed across a cluster of
70 linux machines and the number of repetitions varies
between 30 repetitions to over 100 repetitions.
Confidence intervals remain relatively large due to the
stochastic nature of the failure process: particular failure
events can have widely ranging effects. It should be
noted that occasionally the entire DC fails during
simulation. When this occurs, the run is rejected so
these catastrophic outliers do not skew results. This is
reasonable since DC failure is a direct result of random
hardware failure and is independent of the scheduling
algorithms under test. Hence, all plots display summary
data from trials where the entire DC did not fail.

5.1. Resilience
Figure 6 shows simulation results for J=10 jobs using
fixed DC size, equation (4). The proportion of
successful job completions, SJ, is plotted against
number of redundant task copies, R, for each algorithm:
Random, Cluster, and Pack. In each graph, we see the
intuitive result that success, SJ, increases with
redundancy, R. However, whereas Random (blue
circle) and Cluster (red square) reach 100% success
under all conditions except bottom-right, Pack (green
triangle) reaches a maximum in the range 80%-90% at
approximately R=5 and then plateaus, with fluctuation,
as R is increased further. As shown schematically in
Figure 5, Pack schedules all tasks to fit on the smallest
hardware set possible. However, this tactic of “putting
all your eggs in one basket” is vulnerable to specific
hardware failure events that may take out the entire set
of tasks. Although such events are rare, across all runs

and all job sets they occur often enough to stop Pack
from reaching SJ=100%, regardless of R.

For all algorithms, we see that as the number of
tasks per job, T, is increased from T=10, left, to T=100,
right, more redundancy is needed to maintain a given
level of resilience. This is intuitive. Since task failure
results in job failure, the greater the number of tasks per
job, the greater the chances of any one job failing;
hence, the greater the number of redundant copies
needed to counter this failure. Similarly, when the
probability of hardware failure, fhw, is increased from
0.05, top, to 0.10, bottom, to maintain resilience
redundancy R must be increased. Once again, this is
intuitive: as failure increases, so too does the likelihood
of job non-completion.

Overall, across all conditions, Cluster is the most
resilient. With low values of R, Cluster and Pack
outperform Random. When R ≥ 7, Cluster and Random
outperform Pack. Further, there is no condition under
which Cluster is significantly outperformed by either
Random or Pack. Yet, there are several conditions
under which Cluster significantly outperforms both
alternatives. Thus, results suggest that Cluster is the
most robust strategy. Interestingly, the default number
of redundancies used in Hadoop's HDFS, R=3, appears
to be a reasonable choice when T=10. As the number of
tasks increases, R=3 does not suffice under our
conditions.

5.2. DC Architecture
Figure 6 displays a clear relationship between increased
redundancy, R, and increased resilience, SJ. However,
the resilience graphs for Pack exhibit “dips”, for
example at R=8 (top-left and bottom-right) and R=7

Figure 6: Resilience of scheduling algorithms in a fixed-size data centre with tree hierarchy h-8-4-16-16. As
hardware failure increases, top to bottom, resilience falls; as tasks per job increases, left to right, resilience
falls. Overall, Cluster is more resilient than Random and Pack across all conditions. Error bars show 95%
confidence intervals. The dotted horizontal line plots the mean percentage of DC services surviving at the
end of a run: the resilience that jobs with T=1 and R=1 will tend toward.

304

(bottom-left), which raises some questions. Are these
“dips” merely statistical aberrations, or are there
underlying dynamics causing specific R values to result
in lower SJ?

To address this issue, a series of experiments were
performed using alternative DC tree structures (Figure
2) to observe the effect that hardware hierarchy has on
resilience. Three configurations were tested: h-8-4-16-
16, h-5 and h-10. In each case, data centre size |DC| was
variable; refer to equation (3).

For all hierarchy trees, results were qualitatively
similar to those displayed in Figure 6, suggesting that
the general behaviours of each scheduling algorithm are
largely insensitive to the underlying hardware hierarchy
configuration. However, Pack does display some
idiosyncratic sensitivity to hierarchy. Figure 7 plots SJ
against R for Pack under each tree hierarchy. Left: SJ
increases with R until R=5, but then fluctuates around
80%, with a minimum at R=7. When DC hierarchy is
changed to h-5, centre, Pack has a minimum at R=5.
Finally, with hierarchy h-10, right, there is a minimum
at R=10. This evidence suggests that Pack is sensitive to
the underlying physical hierarchy of the DC. In
particular, if all redundant copies of a job fit exactly
onto one hardware unit—blade, chassis, rack, etc.—then
a failure on that hardware will take out all copies of the
entire job. Hence, with an h-5 hierarchy, for instance,
R=5 results in poor resilience for Pack. Under these
circumstances, each job, JT,R, contains 50 tasks, which
exactly fit onto 2 chassis. Thus, two neighbouring
chassis failure events will take out the entire job. In

comparison, when R=4 or R=6, task group copies will
be more unevenly distributed over hardware, giving
greater resilience to failure.

Figure 8 plots results for Cluster under the same
conditions as Figure 7. Here, we see that Cluster is
largely unaffected by the underlying tree structure of the
data centre.

5.3. Jobs
To see how results scale with an increase in jobs, we ran
experiments with J=100 jobs, using hierarchy h-8-4-16-
16 with variable data centre size, |DC|. Results are
qualitatively similar to those of Figure 6. Pack
outperforms Random with low R, but plateaus around
SJ=80%. Random has poor resilience when R is low, but
outperforms Pack as R approaches 10. Finally, Cluster
has best resilience overall. Results for other failure rates
and number of tasks, T, are also qualitatively similar,
indicating that resilience is insensitive to J.

5.4. Communication Costs
While it is important for scheduling algorithms to
enable job completion, it is also important they do not
induce prohibitive cost through wasteful
communication. In this section, we explore the mean
communication cost, CJ, for each successfully
completing job. Results suggest that the relationships
between algorithms are largely robust to variations in
hierarchy-tree, number of jobs, J, number of tasks, T,
and hardware failure rate, fhw. Thus, in this section we
consider only two conditions: variable |DC|; and fixed
|DC|. Each time an h-8-4-16-16 architecture is used.

Figure 7: Pack scheduling using h-8-4-16-16, h-5 and h-10, from left to right, respectively. Resilience
dips when jobs exactly fit on underlying hardware.

Figure 8: Cluster scheduling using h-8-4-16-16, h-5 and h-10, from left to right, respectively. Cluster is
largely insensitive to underlying hardware architecture.

305

Figure 9 displays communication costs per
successful job, CJ, using fixed |DC|. 95% confidence
intervals are drawn, but are generally very small. With
tasks uniformly distributed throughout the DC, Random
produces the greatest communication costs per job.
Conversely, with tasks placed as close together as
possible, Pack has the smallest communication costs per
job. For Pack and Random, an increase in redundancy,
R, leads to a proportional increase in cost, CJ. When
R=10, CJ is approximately 10 times greater than the
value at R=1.

For Cluster, however, the story is different. When
R=1, Cluster produces smaller CJ than Pack, since
Cluster guarantees all job copies are placed on the
lowest branch of the hardware tree that they fit; with
Pack, however, depending upon number of tasks, T, and
the underlying tree-hierarchy, some jobs will
occasionally be split across hardware (see schematic
Figure 3, for example), thus incurring greater
communication costs. When redundancy is increased to
R=2, communication costs, CJ, becomes a magnitude
greater than Pack. As Cluster distributes job groups
across the network, when an individual task fails, new
communication links to alternative copies are likely to
be long-range and costly. In contrast, Pack places all
clones near each other, so communication with
alternatives does not radically increase costs in most
cases (refer to Figure 5). Interestingly, with fixed |DC|
mean communication cost per successful job, CJ,
remains constant when R ≥ 2. Since Cluster distributes
job copies uniformly across the data centre, the mean
distance or cost for communication between tasks in
different redundancy clusters is inversely proportional
to R. Hence, additional redundancy reduces the mean
communication cost a task must pay to communicate
with an alternative clone, thus making CJ invariant
under changes to R. It should be noted that the same is
not true for Random, however. Unlike Cluster, since
Random distributes all tasks uniformly independent of
redundancy group, the majority of communication paths
are inter-hardware and costly. Hence, doubling R will
approximately double CJ.

When using a variable-sized data centre—equation
(4)—results for CJ against R are similar to Figure 9 for
Random and Pack. For Cluster, however, CJ is no

longer invariant to R and instead increases
proportionally as R increases. As |DC| increases with
each increase in R, the mean length between
communicating tasks remains stable. Thus, as the
number of tasks increases so too does overall
communication costs.

Figure 10 plots normalized communication cost for
each scheduling algorithm against redundancy, R. Clear
faces show fixed |DC| (not including Cluster) re-plotted
from Figure 9. Coloured faces show data from the
equivalent set of runs using variable |DC|. In all cases,
with all algorithms, there is clearly a linear relationship,
suggesting that communication costs rise in direct
proportion to R. Note, however that this is not the case
for Cluster under fixed |DC| (not plotted): here,
communication costs are invariant in R.

5.5. Summary of Findings
The main findings can be summarized as follows:

1. The network hierarchy tree has little effect on
the resilience of scheduling algorithms (except
in the case of Pack, where particular tree
configurations have negative impact on
particular levels of redundancy).

2. Cluster is the most resilient scheduling
algorithm from the selection modelled. In
contrast, Pack is a non-resilient high-risk
algorithm.

3. Pack is the most efficient algorithm, Random
the least. Cluster generates intermediate costs,
but scales well under fixed data centre size.

4. Overall, Cluster is the most practical
algorithm, effectively combining the
efficiencies of Pack with the resilience of
Random.

6. DISCUSSION
The aim of this work is to build an understanding of the
general relationships between scheduling, resilience and
costs (rather than perform a detailed analysis of any
particular algorithm), the results presented support our
basic endeavour to use simulation models as a
methodological framework to design and test tools for
elastic cloud-computing infrastructures. We do not

Figure 9: Costs per successful job, CJ, using fixed
|DC| with h=8-4-16-16.

Figure 10: Communication costs per successful job,
normalized to R=10. Clear-faced markers represent
variable-sized DC; filled markers show fixed-size DC.
We see that communication costs scale linearly with
redundancy for all algorithms.

306

suggest that Random, Pack or Cluster are practical job-
schedulers that should (or would) be used in industry,
but rather that these purposely naïve algorithms provide
a simple base-line set of strategies that enable us to
tease out fundamental relationships between density,
clustering and spread of jobs; and the impact each has
on resilience and communication cost. By using
simulation to better understand how these concepts
interact, we gain access to a powerful off-line test-bed
for algorithm development that provides a design route
towards more robust and efficient cloud-computing
services. The simulation model we have used makes
some simplifying assumptions that should ideally be
relaxed. However, despite this, the model is powerful
enough to highlight how underlying complex
interactions, such as between scheduling and the shape
of the hierarchy-tree, can affect resilience. This is a
promising indication of the value of pursuing the goal
of creating an extensible simulation framework for
cloud computing.

7. FUTURE WORK
Here, we outline potential future extensions:

1. More realistic modelling assumptions: the
introduction of sequential task inter-
dependencies, heterogeneous jobs and services,
full-DC utilisation, etc.

2. Model verification and validation using real-
world data. Retroactive validation of results
through testing on real-world DCs.

3. Introduction of other scheduling algorithms
from industry and the development of novel
algorithms using evolutionary computation as
an automated design tool.

4. Monitor individual failure events rather than
failure over time, to observe how the system
changes when failure occurs, and what exactly
takes place at this lower level of description.

5. Compare the effects of scale-up versus scale-
out: If the resource usage increases, what does
it mean for the resilience if more services are
used, rather than more powerful ones?

6. Introduce migration of services to the
scheduling algorithm. This allows a task to be
cloned when a parallel instantiation fails, and
the clone can then be migrated towards the
other tasks belonging to that job.

8. CONCLUSIONS
We have presented a simulation model for testing the
effects that different scheduling algorithms have on the
resilience and communication costs of jobs running “in
the cloud” of a large scale data centre (DC). Modelling
the data centre as a tree-hierarchy of physical machines
and jobs as a collection of parallel tasks that can be
cloned, we have demonstrated the effects that different
job-scheduling algorithms have on network resilience
and communication cost. As intuition would expect,
Packing all tasks together in a small area of the DC
greatly reduces communication cost but increases risk

of failure. Conversely, a Random distribution of tasks
throughout the DC leads to greater resilience, but with a
much elevated cost. Clustering tasks together in
cohesive job-groups that are then distributed throughout
the DC, however, results in a beneficial trade-off that
assures resilience without prohibitive costs. This work
provides a teasing glimpse into the powerful insights a
cloud simulator can provide. Given the grand scale of
the challenge, this work has naturally raised many open
questions and introduced scope for future extensions.

ACKNOWLEDGMENTS
Financial support for this work came from the EPSRC
grant:6 EP/H042644/17 (for J. Cartlidge) and from
Hewlett-Packard's Automated Infrastructure Lab, HP
Labs Bristol (for I. Sriram). The authors would like to
thank Prof. Dave Cliff and the sponsors for their
support and interest in this topic.

REFERENCES
Barroso, L. A. and Hölzle, U., 2009. The datacenter as a

computer: An introduction to the design of warehouse-
scale machines, Synthesis Lectures on Computer
Architecture, no. 1, pp. 1–108, 2009.

Buyya, R., Ranjan, R., and Calheiros, R. N., 2009. Modeling
and simulation of scalable cloud computing
environments and the cloudsim toolkit: Challenges and
opportunities, in International Conference on High
Performance Computing & Simulation, HPCS ’09, pp.
1–11, June.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D.
A., Burrows, M., Chandra, T., Fikes, A., and Gruber, R.
E., 2008. Bigtable: A distributed storage system for
structured data, ACM Transactions on Computer
Systems, vol. 26, no. 2, article 4, pp. 1–26, Jun.

Dean, J. and Ghemawat, S., 2008. MapReduce: Simplified
data processing on large clusters, Communications
ACM, vol. 51, no. 1, pp. 107—113.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,
Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., and Vogels, W., 2007. Dynamo: Amazon's
highly available key-value store, SIGOPS Oper. Syst.
Rev., vol. 41, no. 6, pp. 205-220.

Hollnagel, E., Woods, D. D., and Levson, N., 2006. Resilience
Engineering: Concepts and Precepts. Ashgate.

Liu, D., Deters, R., and Zhang, W. J., 2010. Architectural
design for resilience, Enterprise Information Systems,
1751-7583, vol. 4, no. 2, pp. 137–152, May.

Nagel, L., 1975. Spice2: A computer program to simulate
semiconductor circuits, University of California,
Berkeley, Tech. Rep. UCB/ERL-M520.

Sriram, I., and Cliff, D., 2011. SPECI2 - simulation program
for elastic cloud infrastructures, to appear in
SummerSim’11.

AUTHORS BIOGRAPHY
Dr John Cartlidge is a Research Associate in cloud
computing. His research interests include simulation
modelling, automated trading and electronic markets,
and evolutionary computing. Ilango Sriram is a final
year PhD student soon to defend his thesis on
simulation modelling for cloud-scale data centres.

6

http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=EP/H042644/1

307

