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ABSTRACT 
The trend for cloud computing has initiated a race 
towards data centres (DC) of an ever-increasing size.  
The largest DCs now contain many hundreds of 
thousands of virtual machine (VM) services.  Given the 
finite lifespan of hardware, such large DCs are subject 
to frequent hardware failure events that can lead to 
disruption of service.  To counter this, multiple 
redundant copies of task threads may be distributed 
around a DC to ensure that individual hardware failures 
do not cause entire jobs to fail.  Here, we present results 
demonstrating the resilience of different job scheduling 
algorithms in a simulated DC with hardware failure.  
We use a simple model of jobs distributed across a 
hardware network to demonstrate the relationship 
between resilience and additional communication costs 
of different scheduling methods.  

 
Keywords: cloud computing, simulation modelling, data 
centres, resilience 

 
1. INTRODUCTION 
Cloud computing—the online utility provision of 
hardware and software computing infrastructure and 
applications—necessitates the demand for data centres 
(DC) on an ever-increasing scale. The largest now fill 
purpose-built facilities approaching one million square 
feet.1 Already, DCs are so large that manufacturers 
(including IBM, HP, Sun) do not have the capability to 
build and destructively test models on the scale of the 
final production systems. Hence, every day, massively 
parallel, tightly-coupled, complex and sometimes 
heterogeneous data centres are put to service having 
undergone insufficient pre-testing; while it is still 
possible to test individual node servers and other 
standalone hardware, the complex interactions between 
the components of the DC under normal and abnormal 
operating conditions are largely unknown. Whereas in 
other engineering domains this problem has been 
addressed with robust industry-standard simulation 
tools—SPICE for integrated circuit design (Nagel 
1975), or computational fluid dynamics for the 
aeronautics industry—a well established realistic 
(rigorous) simulation framework of cloud computing 
facilities is lacking. 

                                                           
1
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There are two important reasons why this is the 
case. Firstly, there is no uniform definition of what a 
cloud computing infrastructure or platform should look 
like: where Amazon uses virtualization (DeCandia et al. 
2007), Google uses MapReduce (Dean and Ghemawat 
2008). Secondly, it is a hard problem: a realistic 
simulation tool should include real network models 
(fibre channel, Gbit ethernet), disk models (disk arrays, 
solid-state, caching, distributed protocols and file 
systems), queueing models for web servers, etc. As 
such, while it is our long-term goal to develop a set of 
simulation tools that can be used to aid the development 
of cloud DCs, as an initial step we present a tractable 
problem using a simplified model. 

DCs for cloud computing have now reached such a 
vast scale that frequent hardware failures (both 
temporary and permanent) have become a normal 
expectation. For example, if a DC contains 100,000 
servers and the average commodity server life 
expectancy is 3 years, we expect a server to reach the 
end of its natural life every 15 minutes; considering 
temporary failures and failure of other components 
makes failures occur even more frequently. Thus, when 
a job is submitted to the cloud, the physical hardware 
available at the start of the job cannot be guaranteed to 
be there at the end: 

 
 With such high component failure rates, an 
application running across thousands of machines 
may need to react to failure conditions on an 
hourly basis (Barroso and Hölzle 2009) 

 
To avoid frequent job failures, redundancy is 

necessary. The cloud computing design paradigm builds 
on achieving scalability by performing scale-out rather 
than scale-up operations, i.e., increasing resources by 
using additional components as opposed to using more 
powerful components. For this reason, jobs are 
generally split into parallel tasks that can be executed 
by (potentially) several services. For resilience 
purposes, the tasks can be multiply copied and run in 
parallel threads on different hardware (Hollnagel, 
Woods, and Levson 2006). Thus, as long as a “backup” 
copy exists, individual task failures will not degrade a 
job's overall resilience. 

However, redundancy inherently generates extra 
work, requiring more space, greater computational 
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effort and increased communication costs. There is 
clearly a trade off here: how much redundancy and how 
to schedule redundancy—where to physically locate 
copies of the same code in the DC to minimise the 
chances of failure—versus increased communication 
cost and computational effort.  

In this paper, we conduct an initial foray into the 
analysis of this trade off, using a simple simulation 
model to analyse the relationships between scheduling, 
redundancy, network structure and resilience. In Section 
2 we introduce cloud-scale data centres and the problem 
of failure resilience. Section 3 outlines the simulation 
model we use, before detailing our experimental set-up 
in Section 4.  Section 5 presents the results of our 
experiments, which are discussed in Section 6. In 
Section 7 we outline our future plans to extend this 
work, before summarising our conclusions in Section 8.  
 
2. BACKGROUND 
 

2.1. Cloud Data Centres 
Cloud Computing transitions DCs from co-located 
computing facilities to large resources where 
components are highly connected and used in an 
interlinked way. Computations are broken down into 
services, allowing for easier scale-out operations. From 
the physical perspective, DCs are structured regularly in 
a hierarchical design: a warehouse scale DC is made up 
of aisles of racks, each rack being a vertical frame to 
which a number of chassis can be mounted; each 
chassis containing an arrangement of thin computer 
mother-board units: the blade-servers that make up the 
DC's computing infrastructure. Each blade server in 
turn hosts Virtual Machines (VMs) running cloud 
services. Figure 1 shows example chassis and rack 
components. 

With Cloud Computing, the level of 
interconnectivity and dependency between services 
across the DC is so high that Barroso and Hölzle (2009) 
coined the term “warehouse-scale computers”. This 
introduces various aspects of complexity to DCs. 
Firstly, many of the protocols in place scale worse than 
linearly, making conventional management techniques 
impractical beyond a certain scale as complex 
interactions between services lead to unpredictable 
behaviour. Secondly, DC design has reached a stage 

where test environments are no longer larger, or even of 
the same order of magnitude, as the final products. 
Cutting edge DCs are believed to have more than half a 
million cores,2 but even one order of magnitude less 
would make a physical test environment too expensive 
to be practical. Hence, it is difficult to impossible to test 
the chosen configurations before going into production, 
which can lead to costly errors. 

This highlights the need for predictive computer 
simulations to evaluate possible designs before they go 
into production: with simulation studies it is possible to 
rapidly evaluate design alternatives. However, for 
simulating cloud-scale computing DCs there are 
currently no well-established tools. 

The literature includes some early-stage cloud 
simulation models. For a consumer centric view of the 
cloud, there is CloudSim (Buyya, Ranjan, and Calheiros 
2009). CloudSim's design goal is to compare the 
performance of services on a cloud with limited 
resources against their performance on dedicated 
hardware.  To aid the vendor perspective, we have 
previously developed SPECI (Simulation Program for 
Elastic Cloud Infrastructures) for modelling scaling 
properties of middleware policy distribution in 
virtualised cloud data centres (Sriram and Cliff 2011). 
This paper explores aspects of resilience modelling that 
we aim to develop as a component in a set of simulation 
tools for data centre designers. 
 
2.2. Failure, Resilience and Communication Cost 
As economies of scale drive the growth of DCs, there 
are such a large number of individual independent 
hardware components that the average life expectancy 
will imply that component failure will occur continually 
and not just in exceptional or unusual cases. This 
expected near permanent failing of components is called 
normal failure. For practicable maintenance, failed 
components are left in situ and only replaced from time 
to time; it may also be imagined that entire racks are 
replaced once several servers on it have failed. 
However, despite normal failure, resiliency must be 
maintained. Furthermore, the cloud design paradigm of 
solving jobs using smaller tasks or services that are 
typically spread across several physical components 
further increases the risk of normal failure affecting any 
given job. As cloud vendors seek to provide reliable 
services, requiring the maintenance of guaranteed levels 
of performance and dependability, resilience has 
become a new non-functional requirement (Liu, Deters, 
and Zhang 2010). To this end, cloud applications such 
as BigTable, Google's massively parallel data storage 
application, have in-built management systems for 
dealing with failures (Chang et al. 2008).  

Hardware failure can occur anywhere in the 
physical hierarchy of the data centre: power outages can 
disable an entire DC; faulty cooling system behaviour 
can force an aisle to be shutdown to avoid overheating; 
racks, chassis and blades have individual power 

                                                           
2 http://www.zdnet.com/blog/storage/googles-650000-core-warehouse-size-computer/213 

  
Figure 1: Example hardware: (a) HP C7000 chassis 
holding 16 blade servers; (b) Sun Pegasus C48 
server rack, containing 4 chassis 

€ 

×12 blade servers. 
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supplies which can fail; and individual VMs can suffer 
from instability in software and require an unplanned 
reboot. Thus, with growing DC scales, resources can no 
longer be treated as stable; and interactions no longer 
static but rather exhibiting dynamic interactions on 
multiple descriptive levels. 

To counter normal failure, redundancy must be 
introduced. This happens by spinning off parallel copies 
of all tasks.  Thus, when any task from the original copy 
fails, a redundant copy is available to replace the service 
that has gone “missing”.   Hadoop, for example, is an 
open-source software for reliable, scalable distributed 
computing and is used by Yahoo!, Facebook and others, 
on clusters with several thousand nodes.3 It includes 
HDFS file system, which as default creates 3 copies 
(redundancy 3).4 

When considering parallel execution of tasks rather 
than file storage, service redundancy causes extra load 
through the additional execution of tasks. The execution 
load grows linearly with the numbers of redundant 
copies, but in addition, there will be some form of load 
associated with parallel threads periodically passing 
runtime data that we describe as communication cost. 
This paper uses a simulation model of parallel job 
execution to explore the trade-off between resilience 
and communication cost as failure, redundancy and 
scheduling types vary. For model simplicity we focus 
on computational redundancy and ignore disk and I/O 
redundancy. 

 
3. SIMULATION MODEL 
 

3.1. Network Tree Hierarchy 
We model the interactions between networks of VM 
cloud services that exist in a hierarchical tree-structure 
(refer to Figure 2). Network structure is configurable 
and we use several tree hierarchies.  Throughout this 
paper, however, unless otherwise stated assume a fixed 
hierarchy h-8-4-16-16.  That is, each aisle has 8 racks, 
each with 4 chassis containing 16 blades, with each 
blade running 16 cloud services.  This structure was 
chosen to model realistic hardware, such as the 16-blade 
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HP C7000 chassis and 4-chassis IBM rack shown in 
Figure 1. 
3.2. Jobs, Tasks and Redundancy 
We assume that all jobs to be run in the cloud can be 
parallelized into T independent task threads.  We make 
this simplifying assumption on the basis that one of the 
major draws of cloud infrastructures is the elasticity of 
rapid scaling and de-scaling through parallelization. In 
our model, J jobs are run on the DC, with each job, J, 
consisting of T independent parallel tasks. While tasks 
can be parallelised, they are not entirely independent 
otherwise they would constitute a new job. Thus, tasks 
must periodically communicate with each other, passing 
runtime data when necessary. To pass runtime data, 
tasks within a job communicate at fixed time intervals. 
Normally, if any one task within a job fails, the entire 
job will fail. To mitigate this, redundancy can be 
introduced by running R duplicate copies of tasks in 
parallel.  Then, job J will fail if and only if all redundant 
copies of an independent parallel task fail. Such 
redundancy introduces failure resilience. 

Let J denote a job consisting of T tasks, each 
having R redundant copies. Then, J can be written in 
matrix notation, with T rows and R columns: 
 

  

€ 

J =

j1,1 j1,2  j1,r … j1,R
j2,1 j2,2  j2,r  j2,R
     
jt,1 jt,2  jt,r  jt,R
     
jT ,1 jT ,2  jT ,r  jT ,R

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

              (1) 

 
Job failure occurs when all tasks in a given row fail.  
More formally: 

€ 

fails J( ) ⇔∃t ∈T, ∀r∈R, fails jt,r( ){ }           (2) 

Throughout this paper, we denote experiments running 
J jobs, each with T tasks and R redundancy as a {J, T, 
R} configuration, with sum total tasks #T = J x T x R. 

 
3.3. Scheduling Algorithms 
Jobs and tasks can be placed onto a DC network in an 
infinite variety of ways; using schedules that range from 
the simple to the complex. In this work, we are 
interested in deriving general relationships between job 
scheduling methods and the effects they have on 
communication cost and resilience. Since we cannot 
hope to assess the relative behaviours of every 
scheduling algorithm, to aid analytical tractability, we 
selected a small subset purposely designed to be simple. 
The intention is not to test intelligent, complicated, real-
world algorithms, but rather to tease out general 
behaviours of these simple algorithms so that we can 
equip ourselves with better knowledge to design 
intelligent industrial algorithms in the future. To this 
end, we define the following three scheduling 
algorithms: 

 
Figure 2: Data centre tree schematic.  We describe 
this as an h-2-2-2-3 hierarchy (2 racks per aisle, 2 
chassis per rack, 2 blades per chassis and 3 services 
per blade).  The full DC contains as many aisles as 
necessary. 
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• Random: Uniformly distribute tasks across the 
DC, independent of job or redundancy group. 

• Pack: Use the minimum amount of DC 
hardware to run all jobs.  Place tasks from 
consecutive redundancy groups for all jobs on 
consecutive DC services. 

• Cluster: Place all tasks belonging to the same 
redundancy group on the smallest piece of 
hardware that they fit (e.g., on one blade).5 
Uniformly distribute redundancy groups across 
the DC. 

Figure 3 shows a schematic example of each 
scheduling algorithm.  Random, top line of figure, 
assigns tasks to the DC using a random uniform 
distribution over all DC services. Random schedules 
tasks independently, taking no account of which job or 
redundancy group a task belongs. Conversely, Pack 
preserves geographical co-location of individual tasks 
according to job and redundancy groupings, middle.  
Tasks are sequentially scheduled using neighbouring 
services until each hardware is filled.  Finally, Cluster 
uses a combined approach, bottom.  Similar to Pack, 
Cluster places all tasks belonging to a job redundancy 
group on the same physical hardware.  However, 
redundancy groups themselves are uniformly distributed 
across the DC. In aggregate, these trivial scheduling 
algorithms form a simple strategy spanning-set from 
which we aim to tease out general rules for improving 
failure resilience.  

 
3.4. Network Communication Costs 
As explained in Section 3.2, the model assumes that 
tasks within a job need to communicate at fixed time 
intervals, passing runtime data between parallel threads. 
Table 1 shows inter-task communication costs within 
                                                           
5 In the case that no hardware has enough free space to fit the entire 
task-group, deploy as many tasks as possible on the hardware with the 
largest free space, then deploy the remaining tasks as “close” (lowest 
communication cost) as possible. 

the DC. Intuitively, cost increases with physical 
distance between tasks, increasing in magnitude each 
time it is necessary to traverse a higher layer in the DC 
tree (Figure 2). From Table 1, tasks communicate with 
themselves and other tasks on the same service with 
zero cost. For tasks on different services on the same 
blade the communication cost is CS=100; between 
different blades CB=101; etc. 

These costs were chosen to give a qualitatively 
intuitive model of costs: clearly, communication costs 
between tasks running on the same physical chip are 

 
Table 1: Communication Costs 

Communication Relative Cost 
Inter-Service CS = 100 
Inter-Blade CB = 101 
Inter-Chassis CC = 102 
Inter-Rack CR = 103 
Inter-Aisle CA = 104 

 
 

 
Figure 4: Communication network costs. Top: tasks 
communicate with the nearest copy of every other 
task. Bottom: when a task fails, communicating 
tasks find the nearest alternative. When task 2 fails, 
communication costs increase from 6CS to 4Cs+2CB. 
Refer to Table 1 for cost values. 

 
 

 
Figure 5: Hardware failure. Top: initial 
communication networks resulting from alternative 
scheduling methods. Middle: individual service 
failure produces minor restructuring of 
communication networks, including the addition of 
more costly inter-blade edges. Bottom: blade failure 
produces major network reconfiguration, while 
Random and Cluster recover Pack results in job 
failure. 
 
 

 
Figure 3: Job scheduling for a {J=2, T=3, R=2} 
configuration on an h-2-3-8 hierarchy subset.  Top: 
Random uniformly distributes the #T=12 tasks 
across the DC. Middle: Pack schedules tasks onto 
the minimum physical hardware set, in this case 2 
blades on 1 chassis. Bottom: Cluster schedules full 
job copies onto the same physical hardware, while 
uniformly distributing copies across the DC. 
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many orders of magnitude lower than between tasks 
located in different aisles of a data centre. While more 
accurate estimates of relative costs are possible, we 
believe the simple relationship defined in Table 1 
adequately serves the purposes of this paper, since we 
are only interested in qualitative differences between 
scheduling algorithms, rather than accurate quantitative 
relationships. 

 
3.5. Hardware Failure 
Hardware failures directly affect task communication.  
Figure 4 highlights a schematic example of the effects 
of a single service failure. Initially, tasks communicate 
with the “nearest” copy of every other task; where 
“nearest” is defined as the least costly to communicate. 
Top: communication takes place between tasks running 
on the same blade.  Middle: after task 2 fails on blade 1, 
tasks 1 and 3 on blade 1 begin inter-blade 
communication with the “nearest” alternative copy of 
task 2. The resulting network communication load 
increases from 6CS to 4Cs+2CB. 

Within the model, hardware failure can occur at 
any level in the physical hierarchy tree. Figure 5 
demonstrates example effects of failure on the 
underlying communication network.  Tasks form an 
initial communication network, top. Individual service 
failure, middle row, results in some restructuring of the 
communication network; with the addition of more 
costly inter-blade links for Random and Cluster.  
Hardware failure of an entire blade server, bottom row, 
has a more profound effect on the network.  While 
Random and Cluster find a new rewiring, there no 
longer exists a full task-set for Pack, thus resulting in 
job failure. 
 
4. EXPERIMENTAL DESIGN 
Using the model described in Section 3, we perform a 
series of empirical experiments to observe the effect 
that different job scheduling algorithms have on 
resilience and communication cost in a data centre with 
hardware failures. 

 
4.1. Assumptions 
To keep the model tractable we make some simplifying 
assumptions. 

Time: Simulations have a fixed time length. Jobs 
are scheduled before the simulation clock begins, then 
run for the entire length of the simulation.    

Jobs: Jobs consist of a set of tasks that can be run 
in parallel with no inter-dependencies or I/O requests, 
other than periodic passing of runtime data. Consider, 
for example, computationally intensive batch jobs such 
as overnight computation of market data for financial 
institutions, or CFD simulations for the aeronautics 
industry or Met Office. For all tasks comprising a job, if 
at least one copy of the task succeeds, then the job 
completes successfully; refer to equation (2). 

Communication Cost: Tasks within a job need to 
communicate with a copy of all other tasks at a constant 

rate. Communication costs increase with physical 
distance; see Table 1. 

Network Utilisation: The DC is effectively infinite 
in size, enabling us to ignore the dynamics of full 
utilisation. 

Failure: Failure can occur at any level in the 
hierarchical tree. Failure events are drawn from an 
exponential distribution. 

 
4.2. Configuration 

Hierarchy Tree: Unless otherwise stated, all 
experimental runs use an h-8-4-16-16 tree hierarchy. 
These are realistic values based on current consumer 
hardware (refer to Section 3.1). Where alternative tree 
architectures are used, we use the notation h-5 and h-10 
as shorthand for h-5-5-5-5 and h-10-10-10-10, 
respectively. 

DC size: To approximate unlimited resources, we 
scale the size of the data centre, |DC|, to equal twice the 
size needed to run all jobs, that is: 

 

€ 

DC = 2×#T = 2 × J × T × R                            (3) 
 
In an alternative configuration, data centre size is fixed.  
Under these conditions, set: 
 

€ 

DC = 20 × J × T                                                  (4) 
 

Communication Costs: Communication costs are 
set equal to Table 1 Refer to Section 3.4 for a 
discussion. 

Scheduling: Jobs are scheduled using the 
algorithms Random, Pack and Cluster (as detailed in 
Section 3.3). 

Hardware Failure: We set the proportion of 
hardware that will fail, fhw, during the length of a 
simulation run to 1%, 5% or 10%. Note, however, that a 
failure event will cascade down the hierarchy tree, such 
that failure of a chassis will cause all blades and 
services running on the chassis to fail. Thus, the overall 
proportion of a DC that will fail during a simulation run 
will be larger than the value of fhw. These failure rates 
may appear to be high. However, it is our intention to 
model resilience under extreme conditions that cannot 
be observed readily in operational environments. When 
a hardware failure event occurs, a discrete distribution 
is used to select the type of hardware failure. The 
relative probability of a given type of hardware, htype, 
failing is calculated as the relative proportion of that 
hardware in the data centre, 

€ 

htype hall . Although this 
distribution is simplistic, it provides the intuitive result 
that the more common a type of hardware, the more 
likely it is to fail. 

 
5. RESULTS 
Here, we present simulation results for all scheduling 
experiments. Figures plot mean values of repeated 
trials, plus or minus 95% confidence interval. Thus, 
where error bars do not overlap, differences are 
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statistically significant. The simulation experiments 
were run in parallel and distributed across a cluster of 
70 linux machines and the number of repetitions varies 
between 30 repetitions to over 100 repetitions. 
Confidence intervals remain relatively large due to the 
stochastic nature of the failure process: particular failure 
events can have widely ranging effects. It should be 
noted that occasionally the entire DC fails during 
simulation. When this occurs, the run is rejected so 
these catastrophic outliers do not skew results. This is 
reasonable since DC failure is a direct result of random 
hardware failure and is independent of the scheduling 
algorithms under test. Hence, all plots display summary 
data from trials where the entire DC did not fail. 
 
5.1. Resilience 
Figure 6 shows simulation results for J=10 jobs using 
fixed DC size, equation (4).   The proportion of 
successful job completions, SJ, is plotted against 
number of redundant task copies, R, for each algorithm: 
Random, Cluster, and Pack.  In each graph, we see the 
intuitive result that success, SJ, increases with 
redundancy, R.  However, whereas Random (blue 
circle) and Cluster (red square) reach 100% success 
under all conditions except bottom-right, Pack (green 
triangle) reaches a maximum in the range 80%-90% at 
approximately R=5 and then plateaus, with fluctuation, 
as R is increased further. As shown schematically in 
Figure 5, Pack schedules all tasks to fit on the smallest 
hardware set possible.   However, this tactic of “putting 
all your eggs in one basket” is vulnerable to specific 
hardware failure events that may take out the entire set 
of tasks.   Although such events are rare, across all runs 

and all job sets they occur often enough to stop Pack 
from reaching SJ=100%, regardless of R. 

For all algorithms, we see that as the number of 
tasks per job, T, is increased from T=10, left, to T=100, 
right, more redundancy is needed to maintain a given 
level of resilience. This is intuitive. Since task failure 
results in job failure, the greater the number of tasks per 
job, the greater the chances of any one job failing; 
hence, the greater the number of redundant copies 
needed to counter this failure.  Similarly, when the 
probability of hardware failure, fhw, is increased from 
0.05, top, to 0.10, bottom, to maintain resilience 
redundancy R must be increased.   Once again, this is 
intuitive: as failure increases, so too does the likelihood 
of job non-completion. 

Overall, across all conditions, Cluster is the most 
resilient.  With low values of R, Cluster and Pack 
outperform Random.  When R ≥ 7, Cluster and Random 
outperform Pack.  Further, there is no condition under 
which Cluster is significantly outperformed by either 
Random or Pack.   Yet, there are several conditions 
under which Cluster significantly outperforms both 
alternatives.  Thus, results suggest that Cluster is the 
most robust strategy.    Interestingly, the default number 
of redundancies used in Hadoop's HDFS, R=3, appears 
to be a reasonable choice when T=10.  As the number of 
tasks increases, R=3 does not suffice under our 
conditions. 

 
5.2. DC Architecture 
Figure 6 displays a clear relationship between increased 
redundancy, R, and increased resilience, SJ. However, 
the resilience graphs for Pack exhibit “dips”, for 
example at R=8 (top-left and bottom-right) and R=7 

 
Figure 6: Resilience of scheduling algorithms in a fixed-size data centre with tree hierarchy h-8-4-16-16.   As 
hardware failure increases, top to bottom, resilience falls; as tasks per job increases, left to right, resilience 
falls.  Overall, Cluster is more resilient than Random and Pack across all conditions.  Error bars show 95% 
confidence intervals. The dotted horizontal line plots the mean percentage of DC services surviving at the 
end of a run: the resilience that jobs with T=1 and R=1 will tend toward. 
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(bottom-left), which raises some questions. Are these 
“dips” merely statistical aberrations, or are there 
underlying dynamics causing specific R values to result 
in lower SJ?   

To address this issue, a series of experiments were 
performed using alternative DC tree structures (Figure 
2) to observe the effect that hardware hierarchy has on 
resilience. Three configurations were tested: h-8-4-16-
16, h-5 and h-10. In each case, data centre size |DC| was 
variable; refer to equation (3). 

For all hierarchy trees, results were qualitatively 
similar to those displayed in Figure 6, suggesting that 
the general behaviours of each scheduling algorithm are 
largely insensitive to the underlying hardware hierarchy 
configuration. However, Pack does display some 
idiosyncratic sensitivity to hierarchy. Figure 7 plots SJ 
against R for Pack under each tree hierarchy. Left: SJ 
increases with R until R=5, but then fluctuates around 
80%, with a minimum at R=7. When DC hierarchy is 
changed to h-5, centre, Pack has a minimum at R=5. 
Finally, with hierarchy h-10, right, there is a minimum 
at R=10. This evidence suggests that Pack is sensitive to 
the underlying physical hierarchy of the DC. In 
particular, if all redundant copies of a job fit exactly 
onto one hardware unit—blade, chassis, rack, etc.—then 
a failure on that hardware will take out all copies of the 
entire job.  Hence, with an h-5 hierarchy, for instance, 
R=5 results in poor resilience for Pack.  Under these 
circumstances, each job, JT,R, contains 50 tasks, which 
exactly fit onto 2 chassis.  Thus, two neighbouring 
chassis failure events will take out the entire job.  In 

comparison, when R=4 or R=6, task group copies will 
be more unevenly distributed over hardware, giving 
greater resilience to failure. 

Figure 8 plots results for Cluster under the same 
conditions as Figure 7. Here, we see that Cluster is 
largely unaffected by the underlying tree structure of the 
data centre. 

 
5.3. Jobs 
To see how results scale with an increase in jobs, we ran 
experiments with J=100 jobs, using hierarchy h-8-4-16-
16 with variable data centre size, |DC|.  Results are 
qualitatively similar to those of Figure 6.  Pack 
outperforms Random with low R, but plateaus around 
SJ=80%. Random has poor resilience when R is low, but 
outperforms Pack as R approaches 10. Finally, Cluster 
has best resilience overall. Results for other failure rates 
and number of tasks, T, are also qualitatively similar, 
indicating that resilience is insensitive to J. 

5.4. Communication Costs 
While it is important for scheduling algorithms to 
enable job completion, it is also important they do not 
induce prohibitive cost through wasteful 
communication. In this section, we explore the mean 
communication cost, CJ, for each successfully 
completing job. Results suggest that the relationships 
between algorithms are largely robust to variations in 
hierarchy-tree, number of jobs, J, number of tasks, T, 
and hardware failure rate, fhw.  Thus, in this section we 
consider only two conditions: variable |DC|; and fixed 
|DC|.  Each time an h-8-4-16-16 architecture is used. 

   
Figure 7: Pack scheduling using h-8-4-16-16, h-5 and h-10, from left to right, respectively.  Resilience 
dips when jobs exactly fit on underlying hardware. 

 

   
Figure 8: Cluster scheduling using h-8-4-16-16, h-5 and h-10, from left to right, respectively. Cluster is 
largely insensitive to underlying hardware architecture. 
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Figure 9 displays communication costs per 
successful job, CJ, using fixed |DC|.  95% confidence 
intervals are drawn, but are generally very small. With 
tasks uniformly distributed throughout the DC, Random 
produces the greatest communication costs per job. 
Conversely, with tasks placed as close together as 
possible, Pack has the smallest communication costs per 
job. For Pack and Random, an increase in redundancy, 
R, leads to a proportional increase in cost, CJ. When 
R=10, CJ is approximately 10 times greater than the 
value at R=1. 

For Cluster, however, the story is different.  When 
R=1, Cluster produces smaller CJ than Pack, since 
Cluster guarantees all job copies are placed on the 
lowest branch of the hardware tree that they fit; with 
Pack, however, depending upon number of tasks, T, and 
the underlying tree-hierarchy, some jobs will 
occasionally be split across hardware (see schematic 
Figure 3, for example), thus incurring greater 
communication costs. When redundancy is increased to 
R=2, communication costs, CJ, becomes a magnitude 
greater than Pack. As Cluster distributes job groups 
across the network, when an individual task fails, new 
communication links to alternative copies are likely to 
be long-range and costly. In contrast, Pack places all 
clones near each other, so communication with 
alternatives does not radically increase costs in most 
cases (refer to Figure 5).  Interestingly, with fixed |DC| 
mean communication cost per successful job, CJ, 
remains constant when R ≥ 2. Since Cluster distributes 
job copies uniformly across the data centre, the mean 
distance or cost for communication between tasks in 
different redundancy clusters is inversely proportional 
to R. Hence, additional redundancy reduces the mean 
communication cost a task must pay to communicate 
with an alternative clone, thus making CJ invariant 
under changes to R. It should be noted that the same is 
not true for Random, however. Unlike Cluster, since 
Random distributes all tasks uniformly independent of 
redundancy group, the majority of communication paths 
are inter-hardware and costly. Hence, doubling R will 
approximately double CJ. 

When using a variable-sized data centre—equation 
(4)—results for CJ against R are similar to Figure 9 for 
Random and Pack. For Cluster, however, CJ is no 

longer invariant to R and instead increases 
proportionally as R increases. As |DC| increases with 
each increase in R, the mean length between 
communicating tasks remains stable. Thus, as the 
number of tasks increases so too does overall 
communication costs.    

Figure 10 plots normalized communication cost for 
each scheduling algorithm against redundancy, R. Clear 
faces show fixed |DC| (not including Cluster) re-plotted 
from Figure 9. Coloured faces show data from the 
equivalent set of runs using variable |DC|.  In all cases, 
with all algorithms, there is clearly a linear relationship, 
suggesting that communication costs rise in direct 
proportion to R. Note, however that this is not the case 
for Cluster under fixed |DC| (not plotted): here, 
communication costs are invariant in R. 

 
5.5. Summary of Findings 
The main findings can be summarized as follows: 

1. The network hierarchy tree has little effect on 
the resilience of scheduling algorithms (except 
in the case of Pack, where particular tree 
configurations have negative impact on 
particular levels of redundancy). 

2. Cluster is the most resilient scheduling 
algorithm from the selection modelled.  In 
contrast, Pack is a non-resilient high-risk 
algorithm. 

3. Pack is the most efficient algorithm, Random 
the least.  Cluster generates intermediate costs, 
but scales well under fixed data centre size. 

4. Overall, Cluster is the most practical 
algorithm, effectively combining the 
efficiencies of Pack with the resilience of 
Random. 

 
6. DISCUSSION 
The aim of this work is to build an understanding of the 
general relationships between scheduling, resilience and 
costs (rather than perform a detailed analysis of any 
particular algorithm), the results presented support our 
basic endeavour to use simulation models as a 
methodological framework to design and test tools for 
elastic cloud-computing infrastructures. We do not 

 
Figure 9: Costs per successful job, CJ, using fixed 
|DC| with h=8-4-16-16. 
 

 
Figure 10: Communication costs per successful job, 
normalized to R=10.  Clear-faced markers represent 
variable-sized DC; filled markers show fixed-size DC.  
We see that communication costs scale linearly with 
redundancy for all algorithms. 
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suggest that Random, Pack or Cluster are practical job-
schedulers that should (or would) be used in industry, 
but rather that these purposely naïve algorithms provide 
a simple base-line set of strategies that enable us to 
tease out fundamental relationships between density, 
clustering and spread of jobs; and the impact each has 
on resilience and communication cost. By using 
simulation to better understand how these concepts 
interact, we gain access to a powerful off-line test-bed 
for algorithm development that provides a design route 
towards more robust and efficient cloud-computing 
services.  The simulation model we have used makes 
some simplifying assumptions that should ideally be 
relaxed. However, despite this, the model is powerful 
enough to highlight how underlying complex 
interactions, such as between scheduling and the shape 
of the hierarchy-tree, can affect resilience. This is a 
promising indication of the value of pursuing the goal 
of creating an extensible simulation framework for 
cloud computing. 

 
7. FUTURE WORK 
Here, we outline potential future extensions: 

1. More realistic modelling assumptions: the 
introduction of sequential task inter-
dependencies, heterogeneous jobs and services, 
full-DC utilisation, etc. 

2. Model verification and validation using real-
world data.  Retroactive validation of results 
through testing on real-world DCs. 

3. Introduction of other scheduling algorithms 
from industry and the development of novel 
algorithms using evolutionary computation as 
an automated design tool. 

4. Monitor individual failure events rather than 
failure over time, to observe how the system 
changes when failure occurs, and what exactly 
takes place at this lower level of description. 

5. Compare the effects of scale-up versus scale-
out: If the resource usage increases, what does 
it mean for the resilience if more services are 
used, rather than more powerful ones? 

6. Introduce migration of services to the 
scheduling algorithm. This allows a task to be 
cloned when a parallel instantiation fails, and 
the clone can then be migrated towards the 
other tasks belonging to that job. 

 
8. CONCLUSIONS 
We have presented a simulation model for testing the 
effects that different scheduling algorithms have on the 
resilience and communication costs of jobs running “in 
the cloud” of a large scale data centre (DC). Modelling 
the data centre as a tree-hierarchy of physical machines 
and jobs as a collection of parallel tasks that can be 
cloned, we have demonstrated the effects that different 
job-scheduling algorithms have on network resilience 
and communication cost. As intuition would expect, 
Packing all tasks together in a small area of the DC 
greatly reduces communication cost but increases risk 

of failure. Conversely, a Random distribution of tasks 
throughout the DC leads to greater resilience, but with a 
much elevated cost. Clustering tasks together in 
cohesive job-groups that are then distributed throughout 
the DC, however, results in a beneficial trade-off that 
assures resilience without prohibitive costs. This work 
provides a teasing glimpse into the powerful insights a 
cloud simulator can provide. Given the grand scale of 
the challenge, this work has naturally raised many open 
questions and introduced scope for future extensions. 
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