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ABSTRACT 

To address simulation-based mixed-integer problems, a 

hybrid algorithm was recently proposed that combines 

the global search strengths and the natural capability of 

a genetic algorithm to handle integer variables with a 

local search on the real variables using an 

implementation of the generating set search method. 

Since optimization is guided only by function values, 

the hybrid is designed to run asynchronously on a 

parallel platform. The algorithm has already been 

shown to perform well on a variety of test problems, 

and this work is a first step in understanding how the 

parallelism and local search components influence the 

search phase of the algorithm. We show that the 

hybridization can improve the capabilities of the genetic 

algorithm by using less function evaluations to locate 

the solution and provide a speed-up analysis on a 

standard mixed-integer test problem with equality and 

inequality constraints. 

 

Keywords: genetic algorithm, pattern search, 

asynchronous, mixed-integer nonlinear programming 

 

1. INTRODUCTION 

The need for reliable and efficient optimization 

algorithms that do not require derivatives is common 

across engineering disciplines. In general, the optimal 

design process requires such algorithms to work in 

conjunction with simulation tools, resulting in what is 

known as black-box optimization. For example, the 

simulation may require the solution to a system of 

partial differential equations that describes a physical 

phenomenon. These problems are challenging in that 

optimization must be guided by objective function (and 

possibly constraint) values that rely on a computer 

simulation, without any additional knowledge other 

than the output from the simulation itself. The 

simulation may be computationally expensive and add 

undesirable features to the underlying problem such as 

low amplitude numerical noise, discontinuities, or 

hidden constraints (i.e. when the program simply fails to 

return a value due to its own internal solver failure). 

Derivative-free optimization (DFO) methods have been 

developed, analyzed, and demonstrated successfully 

over the last several decades on a wide range of 

applications (Conn, Scheinber, and Vincente 2009). 

Because DFO methods only rely on function values, 

parallelism is often straightforward and, in the case of 

expensive simulation calls, can make otherwise 

intractable problems solvable.                        .   

 Hybrid DFO algorithms have emerged to overcome 

inherent weaknesses and exploit strengths of the 

methods being paired (Talbi 2004; Raidl 2006; Alba 

2005). Often, the hybrid algorithms are designed to 

address problems that could not otherwise be solved. In 

this work, we focus on the parallelism of a hybrid 

evolutionary algorithm with a local search that was 

designed for simulation-based mixed-integer problems 

with nonlinear constraints (Griffin, Fowler, Gray, 

Hemker, and Parno). The performance of the hybrid 

was demonstrated on a suite of standard test problems 

and on two applications from hydrology (Gray, Fowler, 

and Griffin 2009; Gray, Fowler, and Griffin 2010; 

Griffin, Fowler, Gray, Hemker, and Parno) that were 

known to be challenging for a wide range of DFO 

methods (Fowler, Kelley et al 2004; Fowler 2008). 

Some of those challenges, which are not unique to 

environmental engineering, included discontinuous 

optimization landscapes, low amplitude noise, and 

multiple local minima. Specifically, in (Fowler, Kelley 

et al 2004), a comparison of derivative-free methods on 

the hydrology applications showed that a genetic 

algorithm (GA) performed well in terms of identifying 

the correct integer variables but then failed to achieve 

sufficient accuracy for the real variables. On the other 

hand, given a reasonable initial iterate with respect to 

the integer variables, the local search methods showed 

fast convergence. These observations motivated the 

pairing of the GA with a generating set search approach, 

referred to as Evolutionary Algorithms Guiding Local 

Search (EAGLS). The resulting algorithm pairs the 

binary mapping of the genetic algorithm to handle 

integer variables with asynchronous, parallel local 

searches on only the real variables. The new method has 

strong global search aspects and can still maintain high 

accuracy from the local search phase.  

 Previous studies focused on the ability of EAGLS 

to solve a variety of MINLPs with varying difficulties 
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in constraint formulations and problem size. In (Griffin, 

Fowler, Gray, Hemker, and Parno), EAGLS was able to 

solve a water supply hydrology application that 

previously could not be solved without significant 

parameter tuning of either of the two software tools that 

were merged to create the hybrid. Little work has been 

done to understand how the asynchronous parallelism 

that is inherent in the implementation impacts the search 

phase of the algorithm. This work is a first attempt at 

using parallel performance measures to understand the 

algorithms strengths and weaknesses. 

 For this work, we consider objective functions of 

the form               and mixed-integer nonlinear 

optimization problems of the form 

 

       ( ).                  (1) 

 

Here    and    denote the number of real and integer 

variables and,       ,      . In practice,   may be 

comprised of component-wise bound constraints on the 

decision variable in combination with linear and 

nonlinear equality or inequality constraints. Often, 

  may be further defined in terms of state variables 

determined by simulation output. We proceed by first 

reviewing the genetic algorithm, the generating set 

search method, and software that are hybridized to form 

the new algorithm. We then present numerical results 

and outline future directions. 

 

2. EAGLS 

2.1. Genetic Algorithms 

The EAGLS approach combines a genetic algorithm 

and a generating set search approach. GAs (Goldberg 

1989; Holland 1975; Holland SIAM) are one of the 

most widely-used DFO methods and are part of a larger 

class of evolutionary algorithms called population-

based, global search, heuristic methods (Goldberg 

1989). GAs are based on biological processes  

such as survival of the fittest, natural selection, 

inheritance, mutation, or reproduction.  Design points 

are coded as “individuals” or “chromosomes”, typically 

as binary strings, in a population and then undergo the 

above operations to evolve towards a better fitness 

(objective function value). 

 A simple GA can be outlined with: 

1. Generate a random/seeded initial population of 

size    

2. Evaluate the fitness of individuals in initial 

population 

3. Iterate through the specified number of 

generations: 

a. Rank fitness of individuals 

b. Perform selection 

c. Perform crossover and mutation 

d. Evaluate fitness of newly-generated 

individuals 

e. Replace non-elite members of 

population with new individuals 

During the selection phase, better fit individuals are 

arranged randomly to form a mating pool on which 

further operations are performed. Crossover attempts to 

exchange information between two design points to 

produce a new point that preserves the best features of 

both „parent points‟. Mutation is used to promote a 

global search and prevent stagnation at a local 

minimum. Termination of the algorithm is typically 

based on a function evaluation budget that is exhausted 

as the population evolves through generations. 

 Often, GAs are criticized for their computational 

complexity and dependence on optimization parameter 

settings, which are not known a priori (Dejong and 

Spears 1990; Grefenstette 1986; Lobo, Lima, and 

Michalewicz 2007). Parameters like the population size, 

number of generations, as well as the probabilities and 

distribution indices chosen for the crossover and 

mutation operators affect the performance of a GA 

(Reed, Minsker et al. 2000; Mayer, Kelley, et al. 2002). 

Also, since the GA incorporates a randomness to the 

search phase, multiple optimizations are often useful to 

exhaustively search the design space. However, if the 

user is willing to spend a large number of function 

evaluations, a GA can help provide insight into the 

design space and locate initial points for fast, local, 

single search methods. The GA has many alternate 

forms and has been applied to a wide range of 

engineering design as shown in references such as (Karr 

and Freeman 1998). Moreover, hybrid GAs have been 

developed at all levels of the algorithm and with a 

variety of other global and local search DFO methods. 

See for example (Blum, Aquilera, et al. 2008; Talbi 

2004; Raidl 2006) and the references therein. 

The EAGLS software package was created using 

the Non-dominated Sorting Genetic Algorithm (NSGA-

II) software, which is described in (Deb, Pratap et al. 

2002; Zitzler, Deb and Thiele 2000; Deb 2000; Deb and 

Goel 2001). Although a variety of genetic algorithms 

exist, the NSGA-II has been applied to both single and 

multi-objective problems for a wide range of 

applications and is well supported. In particular, it is 

deigned to be used “off-the-shelf” which made it a good 

candidate for hybridization.   

 

2.2. Generating Set Search and APPS 

Asynchronous Parallel Pattern Search (APPS) (Hough 

and Kolda 2001; Kolda 2004) is a direct search methods 

which uses a predetermined pattern of points to sample 

a given function domain.  APPS is an example of a 

generating set search (GSS), a class of algorithms for 

bound and linearly constrained optimization that obtain 

conforming search directions from generators of local 

tangent cones (Lewis, Shepherd et al. 2005; Kolda, 

Lewis et al. 2006). In its simplest form, the method 

evaluates the objective function on a stencil of points 

and if a better point is found, the stencil is moved to that 

point, otherwise the size of the stencil is reduced. 

Optimization is terminated either based on a function 

evaluation budget or when the stencil becomes 

sufficiently small. The basic GSS algorithm is: 
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 Let    be the starting point,    be the initial step 

size and  *  +   
    be the set of positive spanning 

directions.  

 While not converged Do: 

1. Generate trial points                                     

   {    ̃   |     +  where  ̃  

,    - denotes the maximum feasible step 

along   . 

2. Evaluate trial points (possibly in parallel). 

3. If        such that  (  )   (  )     
  

Then          (successful iteration) 

Else         (unsuccessful iteration) and 

     
  

 
  (step size reduction) 

 The majority of the computational cost of pattern 

search methods is the     function evaluations, so 

parallel pattern search (PPS) techniques have been 

developed to perform function evaluations 

simultaneously on different processors (Dennis and 

Torczon 1991; Torczon 1992). For example, for a 

simple two-dimensional function, consider the 

illustrations in Figure 1 taken from (Gray and Fowler 

2011).  First, the points        and   in the stencil 

around point   are evaluated. Then, since   results in 

the smallest function value, the second picture shows a 

new stencil around point   .  Finally, in the third 

picture, since none of  the iterates in this new stencil 

result in a new local minima, the step size of the stencil 

is reduced.  

 

 

Figure 1: Illustration of the steps of Parallel Pattern 

Search (PPS) for a simple two-dimensional function.  

On the upper left, an initial PPS stencil around starting 

point   is shown.  In the upper right, a new stencil is 

created after successfully finding a new local min f . On 

the bottom left, PPS shrinks the stencil after failing to 

find a new minimum 

 

 Note that in a basic GSS, after a successful iteration 

(one in which a new best point has been found), the step 

size is either left unchanged or increased.  In contrast, 

when the iteration was unsuccessful, the step size is 

necessarily reduced.  A defining difference between the 

basic GSS and APPS is that the APPS algorithm 

processes the directions independently, and each 

direction may have its own corresponding step size. 

Global convergence to locally optimal points is ensured 

using a sufficient decrease criterion for accepting new 

best points.  A trial point        is considered better 

than the current best point if 

 

 (      )   (  )    
 ,      (2) 

for      . 

 

 Because APPS processes search directions 

independently, it is possible that the current best point is 

improved before all the function evaluations associated 

with a set of trial points    have been completed.  

These results are referred to as orphaned points as they 

are no longer tied to the current search pattern and 

attention must be paid to ensure that the sufficient 

decrease criteria is applied appropriately.  The support 

of these orphan points is a feature of the APPS 

algorithm which makes it naturally amenable to a 

hybrid optimization structure. Iterates generated by 

alternative algorithms can be simply be treated as 

orphans without the loss of favorable theoretical 

properties or local convergence theory of APPS.   

2.3. Why EAGLS works 

EAGLS combines the NSGA-II with the APPSPACK 

software (Gray and Kolda 2006). APPSPACK is written 

in C++ and uses MPI (Gropp, Lusk et al. 1996; Gropp 

and Lusk 1996) for parallelism. Function evaluations 

are performed through system calls to an external 

executable which can write in any computer language.  

This simplifies its execution and also makes it a good 

candidate for inclusion in a hybrid scheme. Moreover, it 

should be noted that the most recent version of 

APPSPACK can handle linear constraints (Kolda, 

Lewis, and Torczon 2006; Griffin, Kolda and Lewis 

2008), while a software package called HOPSPACK 

builds on the APPSPACK software and includes a GSS 

solver that can handle nonlinear constraints (Griffin and 

Kolda 2010a; Plantega 2009). To implement EAGLS, 

as in (Griffin and Kolda 2010b), a preliminary version 

of HOPSPACK was used. 

 The EAGLS algorithm is designed to exploit 

parallelism.  A goal of a parallel program is to ensure 

that all available processors are continuously being 

used.  However, in practice this is often not the case.  

To understand this more fully in our context, consider a 

hypothetical black-box bound constrained optimization 

problem that has two real variables and an objective 

function with an evaluation time of at least one hour; 

further, we assume the user has 128 nodes with 2 

processors each.  There are a number of advantages that 

come from the use of parallelism in this context. 

 Most local search algorithms (even 

asynchronous parallel ones) have a cap on the 
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maximum number of processors they can 

effectively use.  For our example problem, 

APPS will generate at most 4 trial-point per 

iteration.   For the first hour APPS is called 

252 processors will be idle. The user would 

need to start by hand 64 different instances of 

APPS centered at unique starting points, to 

fully exploit the computational power at hand 

with APPS alone.  

 Most algorithms are synchronous by design, 

and parallel versions typically run in a “batch” 

mode. For example, a genetic algorithm 

requires all points in the current generation be 

evaluated before creating the next.  Suppose a 

parallel GA uses a population of size 256 and 

submits all 256 points to be evaluated in 

parallel.  Before the second iteration can 

begin, all 256 points must be evaluated; if all 

evaluations are complete but one, then the 

entire optimization processes is halted until 

this final evaluation is completed, even if this 

remaining evaluation takes hours longer to 

complete.  Thus synchronous parallel 

algorithms necessarily move at the rate of the 

slowest evaluation. 

The downsides described in the preceding bullets are 

actually advantageous for hybrid algorithms. Rather 

than attempt to redesign APPS so that it will submit 

more points in each iteration or invent a new 

asynchronous genetic algorithm that seeks to update 

multiple generations asynchronously, we simply tie 

multiple algorithms together loosely, pooling the 

resources in such a way that any unused resources can 

be shared.  In the case of EAGLS, a single GA is run, 

and remaining idle processors are used to perform local 

searches.  However, because local searches are often 

much faster than a GA at finding a local minimum, 

priority is given each generation to the local searches in 

the evaluation queue until that iterations local search 

evaluation budget has been expended. An immediate 

consequence and benefit of the EAGLS structure is that 

there is virtually no cap on the maximum number of 

processors that can be utilized for a given problem. At 

the same time, even with a few extra processors, 

significant wall-clock gains can be achieved, as the 

local search can be used to quickly find the global 

minimum once the GA is sufficiently near. 

2.4. EAGLS Algorithm 

EAGLS uses the GA's handling of integer and real 

variables for the global search, and APPS's handling of 

real variables in parallel for local search. Note that a 

MINLP could be immediately reduced to an integer 

programming problem if there was an analytic formula 

that provided    where 

           
 
 (   ) 

given an integer variable  . Though for a general 

MINLP, such a formula may not exist, local searches 

can be used (in parallel) to repeatedly 

replace (   ) pairs in the GA population pool with 

( ̂  ), where  ̂  is an improved estimate of    provided 

by a local search. The GA still governs point survival, 

mutation, and merging as an outer iteration, but, during 

an inner iteration, individual points are improved via 

APPS applied to the real variables, with the integer 

variables held fixed.  For simplicity, consider the 

parallel synchronous EAGLS algorithm with k local 

searches:  

1. Evaluate initial population in parallel 

2.  While not converged Do 

a.  Choose a subset   of   points from 

current population for local search 

b. Simultaneously run   instances of 

APPS  centered at points in   

c. Replace respective points with their 

optimized values  

d. Perform selection, mutation, 

crossover 

e. Evaluate new GA points in parallel 

  

 
Figure 2: In EAGLS the genetic algorithm optimizes 

over both integers and real variables, while local search 

instances work solely within a given integer plane 

(Griffin, Fowler, Gray, Hemker, and Parno). 

 

To select points for the local search, EAGLS uses a 

ranking approach that takes into account individual 

proximity to other; better points (see Figure 2).  The 

goal of this step is to choose promising individuals 

representing distinct integer subdomains. The EAGLS 

algorithm allows the local search and the GA to run 

simultaneously using the same pool of evaluation 

processors. For the most part, the GA and each local 

search run asynchronously.  However, after each GA 

generation, a new batch of local searches are created 

and given priority in the evaluation queue.  This implies 

that given an adequate number of local search instances, 

the GA generations and local search generation will 

necessarily be nested, as the number of local search 

trial-points will always be greater than the number of 

available processors in the evaluation queue. This forces 

the GA to wait until the local search generation depletes 

its current evaluation budget prior to proceeding.  Once 

the GA population has been evaluated, the local 
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searches begin and operate asynchronously. To avoid 

re-evaluating points, all function values are stored in 

cache. The external parallel paradigm is nearly identical 

to that used in (Griffin and Kolda 2010b; Gray, Griffin 

et al. 2008). Whenever an improved point is found with 

respect to the real variables, the corresponding 

population member is immediately updated. See Figure 

3 for a short point-flow sketch of this process. 

 

 

 

Figure 3: The EAGLS user can decide the population 

size and the number of local searches in an input file.  

The algorithms are run asynchronously in parallel with 

the local searches periodically inserting new improved 

points into the current GA population. 

 

3. NUMERICAL RESULTS 

3.1. Test Problem 

To evaluate the parallelism of EAGLS we consider two 

studies. In the first, we fix all the optimization 

algorithm parameters and increase the number of 

processors used. In the second, we fix the number of 

processors to 16 and vary only the number of local 

searches while all other optimization parameters are 

held fixed.  We use a classical mixed-integer test 

problem taken from (Kocis and Grossman 1988) that 

was proposed to study process synthesis applications 

with the outer approximation method. While this may 

seem to be simple, it is representative of the MINLPs 

encountered in process design and engineering. Thus, 

understanding how the parallelism and local search 

components of EAGLS affect its solution will aid in our 

ability to more efficiently solve similar MINLPs. The 

decision variables are   (              )
  with 

bound constraints given by  

     *   |         *   +        ,    -+  

 We seek to minimize the objective function  ( ) 
where 

 

 ( )                                 (3) 

 

subject to the following constraints, 

 

  ( )      
            

  ( )      
                   

  ( )                      (4) 
  ( )                       
  ( )                   

 

The constraints on both the integer and real variables 

make this problem challenging. For constraint handling, 

we use the    and the    -smoothed penalty function 

where the constraint violation is incorporated with the 

objective function to form a corresponding merit 

function (Griffin and Kolda 2010b). Although the 

problem is small dimensionally, it is non-convex and 

some of the sub problems obtained by fixing the integer 

variables contain a unique local minimum which is 

challenging for standard MINLP solvers to avoid, as 

shown in (Kocis and Grossman 1988). Thus, this 

problem was ideal for testing the integer capabilities of 

EAGLS (Griffin, Fowler, Gray, Hemker, and Parno) 

and thereby was chosen here to study the asynchronous 

parallel local search capabilities. The known solution 

has a function value of 7.667 and the local minimum 

has a value 7.931. To add computational expense to 

each function evaluation and test the asynchronous 

nature of the algorithm, we add a random pause 

between one and three seconds to each function 

evaluation. This approach was used to test parallel 

optimization approaches in (Hough, Kolda, and Torzan 

2001; Griffin and Kolda 2010b). 

3.2. Algorithmic Parameters and Platform 

Since the solution to the test problem is known, we stop 

when the best point found is within 1% of the known 

solution. We provide the other relevant optimization 

parameters in Table 1. The numerical experiments were 

performed on a 102 processor Beowulf blade cluster 

(IBM e1350) with 3.0 Ghz Intel Xeon processors and 

Myrinet Networking. 

 

Table 1: Optimization Parameters 

Parameter Value 

Population size 40 

Number of Generations 250 

Real Crossover Probability 0.9 

Real Mutation Probability 0.5 

Binary Crossover Probability 0.9 

Binary Mutation Probability 0.0125 

GSS Contraction Factor 0.5 

GSS Sufficient Decrease Factor 1e-9 

GSS Step Tolerance 1e-5 

Maximum Generation Evaluations 840 

Maximum Function Evaluations 3000 
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3.3. Varying Number of Processors 

Since the GA has stochastic optimization parameters 

and APPS is asynchronous, EAGLS is not a 

deterministic method, thus each optimization 

experiment was run five times and average values are 

reported.  This approach has been used in numerous 

studies for APPS (Griffin and Kolda 2010b). Average 

run times and number of function evaluations required 

for convergence are shown in Figure 4 as the number of 

processors doubles from 2 to 64. For these experiments 

EAGLS used 8 local searches. Since there are only 

     real variables, for each local search APPSPACK 

would not see increased speed up beyond       

processors for a total of 32 while the additional 

processors can be used to evaluate the GA population. 

The figure on the left shows the speed-up one would 

expect. The figure on the right is interesting in that the 

number of function evaluations increases with the 

number of processors. This is because as APPSPACK is 

run on more processors, the algorithm may move the 

stencil to a new location if a point is found with a lower 

function value but older points are not deleted from the 

queue if sufficient processors are allocated. So if a point 

from an older stencil does return a lower function value, 

the algorithm would move back to that location and 

continue. Note that because significantly more 

processors are being used, the computational time still 

shows linear speed-up despite the increased number of 

function evaluations. 

 

 

Figure 4: Computational time and number of 

evaluations required as the number of processors varies. 

Run times are shown in the upper picture and number of 

function evaluations are shown in the lower picture. 

 

3.4. Varying Number of Local Searches 

To further understand how the asynchronous nature of 

APPSPACK impacts the search phase of EAGLS, we 

vary the number of local searches. For these 

experiments, 16 processors were used and all 

optimization algorithmic parameters were fixed except 

the number of local searches, which was varied from 4 

to 8. We also consider the case of no local searches, 

which means EAGLS is simply a genetic algorithm with 

function evaluations performed in parallel. Figure 5 

shows the average run times and number of function 

evaluations needed for convergence.  

 

 

Figure 5: Computational time and number of function 

evaluations required as the number local searches 

varies. Run times are shown in the upper picture and 

number of function evaluations are shown in the lower 

picture. 

 

 The local searches have a significant impact on the 

optimization history using roughly one fifth of the 

computational effort of the GA alone. As the number of 

local searches increases, the number of function 

evaluations increases as one would expect but it is not 

significant. This is due in part to the fact that the 

algorithm is terminating based on proximity to a known 

solution. Future work will include exploring the 

behavior on larger dimensional problems which may 

show more dynamic results in terms of the optimal 
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number of local searches, but for this work we are 

staying in the context of simulation-based MINLPs 

which typically are not too large. We should further 

note that this test problem does have a feasible local 

minimum with a function value of roughly 7.931, and 

EAGLS avoided convergence to this suboptimal point 

in all trials.  

4. CONCLUSIONS 

These experiments are the first step in understanding an 

asynchronous hybridization of a genetic algorithm with 

a local search based on a generating set search method 

for mixed-integer problems. This approach has 

extended the APPSPACK software to handle integer 

variables, improved its global search capabilities, and 

added parallelism and a local search to the NSGA-II 

software package. The tests done here are promising in 

showing that using local searches can help accelerate 

the convergence of the GA but also indicate that there is 

a complex interaction among algorithm parameters. The 

GA is well-known to be sensitive to parameter settings 

and the addition of an asynchronous local search with 

additional parameters warrants a more extensive study 

to better guide users. Future work will include a 

sensitivity study similar to that in (Matott, Bartlelt et al. 

2006) to understand the interaction and main effects of 

the optimization settings. 
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