
AN ASYNCHRONOUS PARALLEL HYBRID OPTIMIZATION APPROACH TO

SIMULATION-BASED MIXED-INTEGER NONLINEAR PROBLEMS

K.R. Fowler
(a)

, T. Kopp
(b)

, J. Orsini
(c)

, J.D. Griffin
(d)

, G.A. Gray
(e)

,

(a,b,c)

Department of Mathematics and Computer Science, Clarkson University
(d)

SAS
(e)

Sandia National Labs

(a)

kfowler@clarkson.edu,
(b)

 kopptr@clarkson.edu,
(c)

orsinijw@clarkson.edu,
(d)

joshua.griffin@sas.com,
(e)

gagray@sandia.gov

ABSTRACT

To address simulation-based mixed-integer problems, a

hybrid algorithm was recently proposed that combines

the global search strengths and the natural capability of

a genetic algorithm to handle integer variables with a

local search on the real variables using an

implementation of the generating set search method.

Since optimization is guided only by function values,

the hybrid is designed to run asynchronously on a

parallel platform. The algorithm has already been

shown to perform well on a variety of test problems,

and this work is a first step in understanding how the

parallelism and local search components influence the

search phase of the algorithm. We show that the

hybridization can improve the capabilities of the genetic

algorithm by using less function evaluations to locate

the solution and provide a speed-up analysis on a

standard mixed-integer test problem with equality and

inequality constraints.

Keywords: genetic algorithm, pattern search,

asynchronous, mixed-integer nonlinear programming

1. INTRODUCTION

The need for reliable and efficient optimization

algorithms that do not require derivatives is common

across engineering disciplines. In general, the optimal

design process requires such algorithms to work in

conjunction with simulation tools, resulting in what is

known as black-box optimization. For example, the

simulation may require the solution to a system of

partial differential equations that describes a physical

phenomenon. These problems are challenging in that

optimization must be guided by objective function (and

possibly constraint) values that rely on a computer

simulation, without any additional knowledge other

than the output from the simulation itself. The

simulation may be computationally expensive and add

undesirable features to the underlying problem such as

low amplitude numerical noise, discontinuities, or

hidden constraints (i.e. when the program simply fails to

return a value due to its own internal solver failure).

Derivative-free optimization (DFO) methods have been

developed, analyzed, and demonstrated successfully

over the last several decades on a wide range of

applications (Conn, Scheinber, and Vincente 2009).

Because DFO methods only rely on function values,

parallelism is often straightforward and, in the case of

expensive simulation calls, can make otherwise

intractable problems solvable. .

 Hybrid DFO algorithms have emerged to overcome

inherent weaknesses and exploit strengths of the

methods being paired (Talbi 2004; Raidl 2006; Alba

2005). Often, the hybrid algorithms are designed to

address problems that could not otherwise be solved. In

this work, we focus on the parallelism of a hybrid

evolutionary algorithm with a local search that was

designed for simulation-based mixed-integer problems

with nonlinear constraints (Griffin, Fowler, Gray,

Hemker, and Parno). The performance of the hybrid

was demonstrated on a suite of standard test problems

and on two applications from hydrology (Gray, Fowler,

and Griffin 2009; Gray, Fowler, and Griffin 2010;

Griffin, Fowler, Gray, Hemker, and Parno) that were

known to be challenging for a wide range of DFO

methods (Fowler, Kelley et al 2004; Fowler 2008).

Some of those challenges, which are not unique to

environmental engineering, included discontinuous

optimization landscapes, low amplitude noise, and

multiple local minima. Specifically, in (Fowler, Kelley

et al 2004), a comparison of derivative-free methods on

the hydrology applications showed that a genetic

algorithm (GA) performed well in terms of identifying

the correct integer variables but then failed to achieve

sufficient accuracy for the real variables. On the other

hand, given a reasonable initial iterate with respect to

the integer variables, the local search methods showed

fast convergence. These observations motivated the

pairing of the GA with a generating set search approach,

referred to as Evolutionary Algorithms Guiding Local

Search (EAGLS). The resulting algorithm pairs the

binary mapping of the genetic algorithm to handle

integer variables with asynchronous, parallel local

searches on only the real variables. The new method has

strong global search aspects and can still maintain high

accuracy from the local search phase.

 Previous studies focused on the ability of EAGLS

to solve a variety of MINLPs with varying difficulties

264

mailto:kfowler@clarkson.edu
mailto:kopptr@clarkson.edu
mailto:orsinijw@clarkson.edu
mailto:joshua.griffin@sas.com
mailto:gagray@sandia.gov

in constraint formulations and problem size. In (Griffin,

Fowler, Gray, Hemker, and Parno), EAGLS was able to

solve a water supply hydrology application that

previously could not be solved without significant

parameter tuning of either of the two software tools that

were merged to create the hybrid. Little work has been

done to understand how the asynchronous parallelism

that is inherent in the implementation impacts the search

phase of the algorithm. This work is a first attempt at

using parallel performance measures to understand the

algorithms strengths and weaknesses.

 For this work, we consider objective functions of

the form and mixed-integer nonlinear

optimization problems of the form

 (). (1)

Here and denote the number of real and integer

variables and, , . In practice, may be

comprised of component-wise bound constraints on the

decision variable in combination with linear and

nonlinear equality or inequality constraints. Often,

 may be further defined in terms of state variables

determined by simulation output. We proceed by first

reviewing the genetic algorithm, the generating set

search method, and software that are hybridized to form

the new algorithm. We then present numerical results

and outline future directions.

2. EAGLS

2.1. Genetic Algorithms

The EAGLS approach combines a genetic algorithm

and a generating set search approach. GAs (Goldberg

1989; Holland 1975; Holland SIAM) are one of the

most widely-used DFO methods and are part of a larger

class of evolutionary algorithms called population-

based, global search, heuristic methods (Goldberg

1989). GAs are based on biological processes

such as survival of the fittest, natural selection,

inheritance, mutation, or reproduction. Design points

are coded as “individuals” or “chromosomes”, typically

as binary strings, in a population and then undergo the

above operations to evolve towards a better fitness

(objective function value).

 A simple GA can be outlined with:

1. Generate a random/seeded initial population of

size

2. Evaluate the fitness of individuals in initial

population

3. Iterate through the specified number of

generations:

a. Rank fitness of individuals

b. Perform selection

c. Perform crossover and mutation

d. Evaluate fitness of newly-generated

individuals

e. Replace non-elite members of

population with new individuals

During the selection phase, better fit individuals are

arranged randomly to form a mating pool on which

further operations are performed. Crossover attempts to

exchange information between two design points to

produce a new point that preserves the best features of

both „parent points‟. Mutation is used to promote a

global search and prevent stagnation at a local

minimum. Termination of the algorithm is typically

based on a function evaluation budget that is exhausted

as the population evolves through generations.

 Often, GAs are criticized for their computational

complexity and dependence on optimization parameter

settings, which are not known a priori (Dejong and

Spears 1990; Grefenstette 1986; Lobo, Lima, and

Michalewicz 2007). Parameters like the population size,

number of generations, as well as the probabilities and

distribution indices chosen for the crossover and

mutation operators affect the performance of a GA

(Reed, Minsker et al. 2000; Mayer, Kelley, et al. 2002).

Also, since the GA incorporates a randomness to the

search phase, multiple optimizations are often useful to

exhaustively search the design space. However, if the

user is willing to spend a large number of function

evaluations, a GA can help provide insight into the

design space and locate initial points for fast, local,

single search methods. The GA has many alternate

forms and has been applied to a wide range of

engineering design as shown in references such as (Karr

and Freeman 1998). Moreover, hybrid GAs have been

developed at all levels of the algorithm and with a

variety of other global and local search DFO methods.

See for example (Blum, Aquilera, et al. 2008; Talbi

2004; Raidl 2006) and the references therein.

The EAGLS software package was created using

the Non-dominated Sorting Genetic Algorithm (NSGA-

II) software, which is described in (Deb, Pratap et al.

2002; Zitzler, Deb and Thiele 2000; Deb 2000; Deb and

Goel 2001). Although a variety of genetic algorithms

exist, the NSGA-II has been applied to both single and

multi-objective problems for a wide range of

applications and is well supported. In particular, it is

deigned to be used “off-the-shelf” which made it a good

candidate for hybridization.

2.2. Generating Set Search and APPS

Asynchronous Parallel Pattern Search (APPS) (Hough

and Kolda 2001; Kolda 2004) is a direct search methods

which uses a predetermined pattern of points to sample

a given function domain. APPS is an example of a

generating set search (GSS), a class of algorithms for

bound and linearly constrained optimization that obtain

conforming search directions from generators of local

tangent cones (Lewis, Shepherd et al. 2005; Kolda,

Lewis et al. 2006). In its simplest form, the method

evaluates the objective function on a stencil of points

and if a better point is found, the stencil is moved to that

point, otherwise the size of the stencil is reduced.

Optimization is terminated either based on a function

evaluation budget or when the stencil becomes

sufficiently small. The basic GSS algorithm is:

265

 Let be the starting point, be the initial step

size and * +
 be the set of positive spanning

directions.

 While not converged Do:

1. Generate trial points

 { ̃ | + where ̃

, - denotes the maximum feasible step

along .

2. Evaluate trial points (possibly in parallel).

3. If such that () ()

Then (successful iteration)

Else (unsuccessful iteration) and

 (step size reduction)

 The majority of the computational cost of pattern

search methods is the function evaluations, so

parallel pattern search (PPS) techniques have been

developed to perform function evaluations

simultaneously on different processors (Dennis and

Torczon 1991; Torczon 1992). For example, for a

simple two-dimensional function, consider the

illustrations in Figure 1 taken from (Gray and Fowler

2011). First, the points and in the stencil

around point are evaluated. Then, since results in

the smallest function value, the second picture shows a

new stencil around point . Finally, in the third

picture, since none of the iterates in this new stencil

result in a new local minima, the step size of the stencil

is reduced.

Figure 1: Illustration of the steps of Parallel Pattern

Search (PPS) for a simple two-dimensional function.

On the upper left, an initial PPS stencil around starting

point is shown. In the upper right, a new stencil is

created after successfully finding a new local min f . On

the bottom left, PPS shrinks the stencil after failing to

find a new minimum

 Note that in a basic GSS, after a successful iteration

(one in which a new best point has been found), the step

size is either left unchanged or increased. In contrast,

when the iteration was unsuccessful, the step size is

necessarily reduced. A defining difference between the

basic GSS and APPS is that the APPS algorithm

processes the directions independently, and each

direction may have its own corresponding step size.

Global convergence to locally optimal points is ensured

using a sufficient decrease criterion for accepting new

best points. A trial point is considered better

than the current best point if

 () ()
 , (2)

for .

 Because APPS processes search directions

independently, it is possible that the current best point is

improved before all the function evaluations associated

with a set of trial points have been completed.

These results are referred to as orphaned points as they

are no longer tied to the current search pattern and

attention must be paid to ensure that the sufficient

decrease criteria is applied appropriately. The support

of these orphan points is a feature of the APPS

algorithm which makes it naturally amenable to a

hybrid optimization structure. Iterates generated by

alternative algorithms can be simply be treated as

orphans without the loss of favorable theoretical

properties or local convergence theory of APPS.

2.3. Why EAGLS works

EAGLS combines the NSGA-II with the APPSPACK

software (Gray and Kolda 2006). APPSPACK is written

in C++ and uses MPI (Gropp, Lusk et al. 1996; Gropp

and Lusk 1996) for parallelism. Function evaluations

are performed through system calls to an external

executable which can write in any computer language.

This simplifies its execution and also makes it a good

candidate for inclusion in a hybrid scheme. Moreover, it

should be noted that the most recent version of

APPSPACK can handle linear constraints (Kolda,

Lewis, and Torczon 2006; Griffin, Kolda and Lewis

2008), while a software package called HOPSPACK

builds on the APPSPACK software and includes a GSS

solver that can handle nonlinear constraints (Griffin and

Kolda 2010a; Plantega 2009). To implement EAGLS,

as in (Griffin and Kolda 2010b), a preliminary version

of HOPSPACK was used.

 The EAGLS algorithm is designed to exploit

parallelism. A goal of a parallel program is to ensure

that all available processors are continuously being

used. However, in practice this is often not the case.

To understand this more fully in our context, consider a

hypothetical black-box bound constrained optimization

problem that has two real variables and an objective

function with an evaluation time of at least one hour;

further, we assume the user has 128 nodes with 2

processors each. There are a number of advantages that

come from the use of parallelism in this context.

 Most local search algorithms (even

asynchronous parallel ones) have a cap on the

266

maximum number of processors they can

effectively use. For our example problem,

APPS will generate at most 4 trial-point per

iteration. For the first hour APPS is called

252 processors will be idle. The user would

need to start by hand 64 different instances of

APPS centered at unique starting points, to

fully exploit the computational power at hand

with APPS alone.

 Most algorithms are synchronous by design,

and parallel versions typically run in a “batch”

mode. For example, a genetic algorithm

requires all points in the current generation be

evaluated before creating the next. Suppose a

parallel GA uses a population of size 256 and

submits all 256 points to be evaluated in

parallel. Before the second iteration can

begin, all 256 points must be evaluated; if all

evaluations are complete but one, then the

entire optimization processes is halted until

this final evaluation is completed, even if this

remaining evaluation takes hours longer to

complete. Thus synchronous parallel

algorithms necessarily move at the rate of the

slowest evaluation.

The downsides described in the preceding bullets are

actually advantageous for hybrid algorithms. Rather

than attempt to redesign APPS so that it will submit

more points in each iteration or invent a new

asynchronous genetic algorithm that seeks to update

multiple generations asynchronously, we simply tie

multiple algorithms together loosely, pooling the

resources in such a way that any unused resources can

be shared. In the case of EAGLS, a single GA is run,

and remaining idle processors are used to perform local

searches. However, because local searches are often

much faster than a GA at finding a local minimum,

priority is given each generation to the local searches in

the evaluation queue until that iterations local search

evaluation budget has been expended. An immediate

consequence and benefit of the EAGLS structure is that

there is virtually no cap on the maximum number of

processors that can be utilized for a given problem. At

the same time, even with a few extra processors,

significant wall-clock gains can be achieved, as the

local search can be used to quickly find the global

minimum once the GA is sufficiently near.

2.4. EAGLS Algorithm

EAGLS uses the GA's handling of integer and real

variables for the global search, and APPS's handling of

real variables in parallel for local search. Note that a

MINLP could be immediately reduced to an integer

programming problem if there was an analytic formula

that provided where

 ()

given an integer variable . Though for a general

MINLP, such a formula may not exist, local searches

can be used (in parallel) to repeatedly

replace () pairs in the GA population pool with

(̂), where ̂ is an improved estimate of provided

by a local search. The GA still governs point survival,

mutation, and merging as an outer iteration, but, during

an inner iteration, individual points are improved via

APPS applied to the real variables, with the integer

variables held fixed. For simplicity, consider the

parallel synchronous EAGLS algorithm with k local

searches:

1. Evaluate initial population in parallel

2. While not converged Do

a. Choose a subset of points from

current population for local search

b. Simultaneously run instances of

APPS centered at points in

c. Replace respective points with their

optimized values

d. Perform selection, mutation,

crossover

e. Evaluate new GA points in parallel

Figure 2: In EAGLS the genetic algorithm optimizes

over both integers and real variables, while local search

instances work solely within a given integer plane

(Griffin, Fowler, Gray, Hemker, and Parno).

To select points for the local search, EAGLS uses a

ranking approach that takes into account individual

proximity to other; better points (see Figure 2). The

goal of this step is to choose promising individuals

representing distinct integer subdomains. The EAGLS

algorithm allows the local search and the GA to run

simultaneously using the same pool of evaluation

processors. For the most part, the GA and each local

search run asynchronously. However, after each GA

generation, a new batch of local searches are created

and given priority in the evaluation queue. This implies

that given an adequate number of local search instances,

the GA generations and local search generation will

necessarily be nested, as the number of local search

trial-points will always be greater than the number of

available processors in the evaluation queue. This forces

the GA to wait until the local search generation depletes

its current evaluation budget prior to proceeding. Once

the GA population has been evaluated, the local

267

searches begin and operate asynchronously. To avoid

re-evaluating points, all function values are stored in

cache. The external parallel paradigm is nearly identical

to that used in (Griffin and Kolda 2010b; Gray, Griffin

et al. 2008). Whenever an improved point is found with

respect to the real variables, the corresponding

population member is immediately updated. See Figure

3 for a short point-flow sketch of this process.

Figure 3: The EAGLS user can decide the population

size and the number of local searches in an input file.

The algorithms are run asynchronously in parallel with

the local searches periodically inserting new improved

points into the current GA population.

3. NUMERICAL RESULTS

3.1. Test Problem

To evaluate the parallelism of EAGLS we consider two

studies. In the first, we fix all the optimization

algorithm parameters and increase the number of

processors used. In the second, we fix the number of

processors to 16 and vary only the number of local

searches while all other optimization parameters are

held fixed. We use a classical mixed-integer test

problem taken from (Kocis and Grossman 1988) that

was proposed to study process synthesis applications

with the outer approximation method. While this may

seem to be simple, it is representative of the MINLPs

encountered in process design and engineering. Thus,

understanding how the parallelism and local search

components of EAGLS affect its solution will aid in our

ability to more efficiently solve similar MINLPs. The

decision variables are ()
 with

bound constraints given by

 * | * + , -+

 We seek to minimize the objective function ()
where

 () (3)

subject to the following constraints,

 ()

 ()

 () (4)
 ()
 ()

The constraints on both the integer and real variables

make this problem challenging. For constraint handling,

we use the and the -smoothed penalty function

where the constraint violation is incorporated with the

objective function to form a corresponding merit

function (Griffin and Kolda 2010b). Although the

problem is small dimensionally, it is non-convex and

some of the sub problems obtained by fixing the integer

variables contain a unique local minimum which is

challenging for standard MINLP solvers to avoid, as

shown in (Kocis and Grossman 1988). Thus, this

problem was ideal for testing the integer capabilities of

EAGLS (Griffin, Fowler, Gray, Hemker, and Parno)

and thereby was chosen here to study the asynchronous

parallel local search capabilities. The known solution

has a function value of 7.667 and the local minimum

has a value 7.931. To add computational expense to

each function evaluation and test the asynchronous

nature of the algorithm, we add a random pause

between one and three seconds to each function

evaluation. This approach was used to test parallel

optimization approaches in (Hough, Kolda, and Torzan

2001; Griffin and Kolda 2010b).

3.2. Algorithmic Parameters and Platform

Since the solution to the test problem is known, we stop

when the best point found is within 1% of the known

solution. We provide the other relevant optimization

parameters in Table 1. The numerical experiments were

performed on a 102 processor Beowulf blade cluster

(IBM e1350) with 3.0 Ghz Intel Xeon processors and

Myrinet Networking.

Table 1: Optimization Parameters

Parameter Value

Population size 40

Number of Generations 250

Real Crossover Probability 0.9

Real Mutation Probability 0.5

Binary Crossover Probability 0.9

Binary Mutation Probability 0.0125

GSS Contraction Factor 0.5

GSS Sufficient Decrease Factor 1e-9

GSS Step Tolerance 1e-5

Maximum Generation Evaluations 840

Maximum Function Evaluations 3000

268

3.3. Varying Number of Processors

Since the GA has stochastic optimization parameters

and APPS is asynchronous, EAGLS is not a

deterministic method, thus each optimization

experiment was run five times and average values are

reported. This approach has been used in numerous

studies for APPS (Griffin and Kolda 2010b). Average

run times and number of function evaluations required

for convergence are shown in Figure 4 as the number of

processors doubles from 2 to 64. For these experiments

EAGLS used 8 local searches. Since there are only

 real variables, for each local search APPSPACK

would not see increased speed up beyond

processors for a total of 32 while the additional

processors can be used to evaluate the GA population.

The figure on the left shows the speed-up one would

expect. The figure on the right is interesting in that the

number of function evaluations increases with the

number of processors. This is because as APPSPACK is

run on more processors, the algorithm may move the

stencil to a new location if a point is found with a lower

function value but older points are not deleted from the

queue if sufficient processors are allocated. So if a point

from an older stencil does return a lower function value,

the algorithm would move back to that location and

continue. Note that because significantly more

processors are being used, the computational time still

shows linear speed-up despite the increased number of

function evaluations.

Figure 4: Computational time and number of

evaluations required as the number of processors varies.

Run times are shown in the upper picture and number of

function evaluations are shown in the lower picture.

3.4. Varying Number of Local Searches

To further understand how the asynchronous nature of

APPSPACK impacts the search phase of EAGLS, we

vary the number of local searches. For these

experiments, 16 processors were used and all

optimization algorithmic parameters were fixed except

the number of local searches, which was varied from 4

to 8. We also consider the case of no local searches,

which means EAGLS is simply a genetic algorithm with

function evaluations performed in parallel. Figure 5

shows the average run times and number of function

evaluations needed for convergence.

Figure 5: Computational time and number of function

evaluations required as the number local searches

varies. Run times are shown in the upper picture and

number of function evaluations are shown in the lower

picture.

 The local searches have a significant impact on the

optimization history using roughly one fifth of the

computational effort of the GA alone. As the number of

local searches increases, the number of function

evaluations increases as one would expect but it is not

significant. This is due in part to the fact that the

algorithm is terminating based on proximity to a known

solution. Future work will include exploring the

behavior on larger dimensional problems which may

show more dynamic results in terms of the optimal

269

number of local searches, but for this work we are

staying in the context of simulation-based MINLPs

which typically are not too large. We should further

note that this test problem does have a feasible local

minimum with a function value of roughly 7.931, and

EAGLS avoided convergence to this suboptimal point

in all trials.

4. CONCLUSIONS

These experiments are the first step in understanding an

asynchronous hybridization of a genetic algorithm with

a local search based on a generating set search method

for mixed-integer problems. This approach has

extended the APPSPACK software to handle integer

variables, improved its global search capabilities, and

added parallelism and a local search to the NSGA-II

software package. The tests done here are promising in

showing that using local searches can help accelerate

the convergence of the GA but also indicate that there is

a complex interaction among algorithm parameters. The

GA is well-known to be sensitive to parameter settings

and the addition of an asynchronous local search with

additional parameters warrants a more extensive study

to better guide users. Future work will include a

sensitivity study similar to that in (Matott, Bartlelt et al.

2006) to understand the interaction and main effects of

the optimization settings.

ACKNOWLEDGMENTS

This work was made possible by support from the

American Institute of Mathematics.

REFERENCES

Alba, E. (2005). Parallel Metaheuristics. John Wiley &

Sons, Inc.

Blum, C., Blesa Aquilera, M. J., Roli, A., & M., S.

(2008). Hybrid Metaheuristics. Springer.

Conn, A., Scheinberg, K., & Vincente, L. N. (2009).

Introduction to Derivative Free Optimization.

SIAM.

Deb, K. (2000). An efficient constraint handling method

for genetic algorithms. Computer Methods in

Applied Mechanics and Engineering.

Deb, K., & Goel, T. (2001). Controlled Elitist Non-

dominated sorting genetic algorithms for better

convergence. Proceedings of the First

International Conference on Evolutionary

Multi-Criterion Optimization {EMO} 2001.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T.

(2002). A Fast and Elitist Multi-Objective

Genetic Algorithm: {NSGA-II}. {IEEE}

Transactions on Evolutionary Computation.

Dejong, K., & Spears, W. (1990). An Analysis of the

Interacting Roles of Population Size and

Crossover in Genetic Algorithms. First

Workshop Parallel Problem Solving from

Nature. Springer-Verlag, Berlin.

Dennis, J. E., & Torczon, V. (1991). Direct search

methods on parallel machines. SIAM J. Optim.

Fowler, K. e. (2008). A Comparison of Derivative-free

Optimization Methods for Water Supply and

Hydraulic Capture Community Problems. Adv.

Water Resourc., 743-757.

Fowler, K., & C.T., K. (2004). Solution of a Well-Field

Design Problem with Implicit Filtering. Opt.

Eng.

Goldberg, D. (1989). Genetic algorithms in search,

optimization, and machine learning. Addison

Wesley.

Gray, G., & Fowler, K. (2011). Traditional and Hybrid

Derivative-free Optimization Approaches for

Black-box Optimization. In Computational

Optimization and Applications in Engineering

and Industry. Springer.

Gray, G., & Griffin, J. (2008). HOPSPACK: Hybrid

optimization parallel search package.

Livermore, CA: Sandia National Labs.

Gray, G., & Kolda, T. (2006). Algorithm 856:

APPSPACK 4.0: Asynchronous Parallel

Pattern Search for Derivative-Free

Optimization. ACM TOMS.

Gray, G., Fowler, K., & Griffin, J. (2010). Hybrid

Optimization Schemes for Simulation Based

Problems. Procedia Comp. Sci., 1343-1351.

Grefenstette, J. (1986). Optimization of Control

Parameters for Genetic Algorithms. IEEE

Trans. Sys. Man Cybernetics.

Griffin, J., & Kolda, T. (2010). Asynchronous parallel

hybrid optimization combining DIRECT and

GSS. Optim. Meth. Software.

Griffin, J., & Kolda, T. (2010). Nonlinearly-constrained

optimization using heuristic penalty methods

and asynchronous parallel generating set

search. Appl. Math. Res. eXpress.

Griffin, J., Fowler, K., Gray, G., Hemker, T., & Parno,

M. (n.d.). Derivative-free Optimization via

Evolutinary Algorithms Guiding Local Search

(EAGLS) for MINLP. Pacific Journal of

Optimization.

Griffin, J., Kolda, T., & R., L. (2008). Asynchronous

Parallel Generating Set Search For Linearly-

Constrained Optimization. SIAM J. Sci. Comp.

Gropp, W., & Lusk, E. (1996). User's Guide for mpich,

a Portable Implementation of MPI.

Mathematics and Computer Science Division,

Argonne National Lab.

Gropp, W., Lusk, E., Doss, N., & Skjellum, A. (1996).

A high-performance, portable implementation

of the MPI message passing interface standard.

Parallel Comput.

Holland, J. (1975). Adaption in Natural and Artificial

Systems. University of Michigan Press.

Holland, J. (1975). Genetic algorithms and the optimal

allocation of trials. SIAM J. Comput.

Hough, P., T.G, K., & Torczon, V. (n.d.). Asynchronous

Parallel Pattern Search for Nonlinear

Optimization. SIAM J. Sci. Comput., 2001.

Karr, C., & Freeman, L. (1998). Industrial Applications

of Genetic Algorithms. CRC Press.

Kocis, G., & Grossman, I. (1988). Global Optimization

of Nonconvex Mixed-Integer Nonlinear

270

Programming (MINLP) Problems in Process

Synthesis. Ind. Eng. Chem. Res.

Kolda, T. (2004). Revisiting Asynchronous Parallel

Pattern Search. Livermore, CA: Sandia

National Labs.

Kolda, T., Lewis, R. M., & Torczon, V. (2006).

Stationarity results for generating set search for

linearly constrained optimization. SIAM J.

Optim.

Lewis, R., Shepherd, A., & Torczon, V. (2005).

Implementing generating set search methods

for linearly constrained minimization.

Williamsburg, VA: Department of Computer

Science, College of William & Mary.

Lobo, F., Lima, C., & Michalewicz, Z. (Eds.). (2007).

Parameter settings in evolutionary algorithms.

Springer.

Matott, L., Bartlelt-Hunt, S., & Rabideau, A. F. (2006).

Application of Heuristic Techniques and

Algorithm Tuning to a multilayered sorptive

barrier system. Environmental Science \&

Technology.

Mayer, A., Kelley, C., & Miller, C. (2002). Optimal

design for problems involving flow and

transport phenonmena in saturated subsurface

systems. Advances in Water Resources.

Plantega, T. (2009). HOPSPACK 2.0 User Manual (v

2.0.1). Livermore, CA: Sandia National Labs.

Raidl, G. R. (2006). A unified view on hybrid

metaheuristics. {HM06:} Third International

Workshop on Hybrid Metaheuristics.

Reed, P., Minsker, B., & Goldberg, D. (2000).

Designing a competent simple genetic

algorithm for search and optimization. Water

Resources Research.

Talbi, E. (2004). A taxonomy of hybrid metaheurtistics.

J. Heuristics 8, 541-564.

Torczon, V. (1992). PDS:Direct Search Methods for

Unconstrained Optimization on Either

Sequential or Parallel Machines. Houston,

TX: Rice Univ.

Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of

Multiobjective Evolutionary Algorithms:

Empirical Results. Evolutionary Computation

Journal.

271

