A PRACTICAL GUIDE FOR THE

INITIALISATION OF MULTI-A

GENT SYSTEMS

WITH RANDOM NUMBER SEQUENCES FROM AGGREGATED CORREL ATION DATA

Volker Nisser®, Danilo Saft®

@ ®)1lImenau Technical University, Faculty of Economitsstitute for Commercial Information Technology,
Chair of Information Systems for Services (WI 2),
Postfach 100565, 98684 limenau, Germany

@yolker.nissen@tu-ilmenau.d®danilo.saft@tu-ilmenau.de

ABSTRACT

This article describes a scalable way to initialese
simulation model with correlated random numberse Th
focus is on the nontrivial issue of creating préuksd
multidimensional correlations amongst those numbers
A multi-agent model serves as a basis for practical
demonstrations in this paper, while the methodifitse
may be interesting for an even wider audience withi
the modelling and simulation community beyond the
field of agent-based modelling. In particular, wew

how researchers can create streams of correlated
random numbers for different empirically-based niode
parameters when just given aggregated statistithen
form of a correlation matrix. An example initialisan
procedure is demonstrated using the open source
statistical computing software “R” as well as thgen
source multi-agent simulation software “Repast
Simphony”.

Keywords: MAS Parameterisation, Correlated Random
Numbers, R-Project, Repast

1. INTRODUCTION

The simulation of a model may sometimes require a
large amount of parameters, which influence its
outcome (significantly). In a subset of these cat®s
parameters may be interdependent in such a way that
the initialisation of a model needs two or more
parameters to correlate in a predefined manner. A
procedure to generate and utilise such numbersbeill
explained in the following. We use the example of a
agent-based model, since one of our main reseagels a

is the field of agent-based economics. In this aede

we regularly find illustrative scenarios to whichet
concept presented in this paper is applicable. hwie
while the statements here will be kept limited ¢eat-
based models for scientific validity, these expteare

can easily be transfered to the initialisation tfien
types of simulation models.

In a variety of multi-agents systems, the model to
be simulated may consist of a large number of
heterogeneous agents. Heterogeneity can come in the
form of different spatial positions of individuagents,
different network connections, opinions, etc. Imgml,
each of these agents possesses a set of paramiters

235

different initialisation values. Researchers mayta
relay data acquired from the real world (e.g. tigtou
measurement series, questionnaires or statistical
archives) to initialise their agents with according
parameter values for reasons of testing, prognasis,
simply for validity.

In the case of social or economic simulations, an
agent may possess variables such as income, reputat
job satisfaction, household size, etc. Scientistsy m
however not in all cases be lucky enough to final-re
world-data at a level that is as detailed as ttesired
simulation setup may require. They, therefore, may
need to evade to more aggregated forms of simulatio
matching the aggregation level of the empiricaladat
available. This option can be unsatisfactory asoirigmt
details of the micro-level to be simulated and/e t
emerging micro-macro-links within such a simulation
might need to stay unaddressed.

One alternative is testing different random number
distributions where detailed data is missing. Thtter
approach holds chances, but also challenges, suittea
possible availability of empirical data that canigite
numbers on a detailed level, but gives aggregated
distributions and correlations of different variedl
found in an empirical study. Table 1 (Oreg, 200838)
shows an instance of the results such empiricalesgr
yield. The values shown in table 1 were put forth b
Oreg in 2006 and will serve as a data example
throughout this paper. Table 1 gives descriptive
statistics and correlations between parameters ripo
to individual behaviour in the context of organisaal
change. The statistics were extracted from a safes
guestionnaires given to individuals within a compan
undergoing several organisational adjustments. The
researches recorded variables thought to be impdda
an individual's opinion formation about an
organisational change. They derived a static $izis
model of interdependencies of individual properfibs
1, variables 1 to 9), the resistance an individual
develops towards an organisational change (tb. 1,
variables 10 to 12) and the behavioural outcome its
opinion has on its specific job (tb. 1, variabl&std 15).

From a multi-agent modelling perspective, it
becomes possible to analyse tlymamicbehaviour of a
simulated company as a whole by modelling individua

Table 1: Exemplary descriptive statistics and datiens for the variables of an empirical study@neg (2006, p. 88)

Variable Mean SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1. Age 45 12 1

2. Manager 0.54 050 .17* 1

3. Dispositional resistance to change 319 075 19* —.04 1

4. Improvement in power-prestige 291 0.74 11 09 05 1

S. Improvement in job security 281 0.68 .20%*% .11 .02 A8%*]

6. Improvement in intrinsic rewards 312 0.67 .10 A4 18*% 68%* 30%* |

7. Trust in management 382 139 —.01 .09 —.03 S 25 0=]

8. Information 393 1.34 13 A9% .04 J3 .05 .08 A5% 1

9. Social influence (against the change) 3.71 144 —01 —.13 —.05 —27%*—06 —.09 —.15 —-.03 1

10. Affective resistance 3.02 LIS —.09 —.01 31%%— 43%k_ 3%k 32%*_ 33%k _ ()2 33%* |

11. Behavioural resistance 230 L1901 A7F 120 = 30%*F—19% —24%*%— 30%* 03 .26%* .60** |

12. Cognitive resistance 421 111 03 —.04 —.03 —.55%*—24%*_ 52%*_ 52%* _ (9 23%* 46*%* S0** |

13. Job satisfaction 574 092 15 —.04 .00 A7% .06 2% 17 19* —17% —.15% —.18% —.02 1

14. Intention to quit 242 126 —.15 03 —.06 —.17* —.16% —.16% —.24*%* — 19* 13 23%* 15 5% — 49%* |
15. Continuance commitment 3.71 1.09 —01 —.15 .33** 10 —.03 .10 02 —-.04 .02 -.01 A1 =12 =11 .10

*p < .05, **p < Ol.

with heterogeneous specific opinions and the (tlioec
indirect) influence individuals have on each otheg.
through social interactions and information exchleng
(cmp. tb. 1, variables 8 and 9) or other behaviour
affecting organisational “neighbours”. In this exae

the goal of researchers in the field of multi-ageased
simulation (MABS) would be to better understand the
process of organisational change or analyse tleeteff
certain formal and informal hierarchies and network
structures on company performance. In fact, such
investigations are taking place within our own MABS
research of which a first part has already beetighéxl
(Nissen and Saft, 2010). We utilise the real-watladly

of “resistance to change” behaviour in organisatitm
initialise our own multi-agent simulation of a widl
organisation in order to better understand how
resistance to change spreads and can be infludnced
management. This requires (here: agent-based)
modelling at a more detailed level than the aggexha
statistical data in table 1 provides. To this ersl aan
however use the values in table 1 to yield specific
initialisation data for a (large) number of simeldt
members of a virtual organisation. To initialiseclea
agent in our simulation model with its own persdtgal
values, it is necessary to extract sequences wéhific
random numbers while accounting for
multidimensional correlations given in table 1 irder
to yield correct number sequences. This challersge i
trivial only when one needs to generate two coteela
series of random numbers, i.e. when the agenthdn t
simulation only possess pairs of two correlated
properties.

the

2. ALITTLE BIT OF MATH

For only two numbers (parameters) to be correlated,
there is a simple approach to retrieve two coreelat
random numbers from a set of uncorrelated random
numbers:

(1a)

Y1 =01 %X

Vo, =C*x0y ++/(1—c?) %0, * X, (1b)

236

wherex; andx, are two uncorrelated random numbers
from a given distributiong; ando, are their standard
deviations, anct is the desired correlation coefficient
betweeny,andy,; i.e. the resulting correlated random
numbers.

With more than two sequences of correlated
random numbers to generate, one can use a vaffiety o
mathematical approaches that are more or lessuliffi
to go through manually. In our case, an Eigenvector
decomposition was employed as we found it to be a
process that is robust and offers good performance.
There also is the option of using the so-calledI€ig/-
decomposition (Lloyd and Trefethen, 1997, pp. 172 -
178) which will however not be explained furtherdée
Given a correlation matri (see columns “1” through
“14” in table 1) one can define a matrix

V = E;Diag(\/A) 2

where E; are the eigenvectors df and 4, are the
eigenvalues of.

With a matrix I, consisting of formerly
uncorrelated random numbers, we can derive a matrix

I, = IuVT (3
whereV T is the transpose f

I. then contains random numbers with correct
correlations.

I, can consist of any number of random values
where each line can represent the initialisatiolues
for a single agent and each column stands for itieeo
correlated parameters of an agent. This offerstgrea
flexibility since one only needs to choose the namiif
rows in the original matrix, as big as the number of
agents one wishes to instantiate/simuldte.should
already include the general distribution propertash
as — in our case - the mean and standard deviations
given in table 1.

3. A PRACTICAL GUIDE FOR THE
UTILISATION OF CORRELATED RANDOM
NUMBER SEQUENCES USING “R” AND
“REPAST”

While the pattern to generate correlated random

numbers shown in section 2 can be time-consuming to

do by hand, it is a very easy process once oneaspl
supporting software. The popular and well-documente
open source program “R” (Hrishikesh, 2010; Jones,

2009) is able to make the necessary calculatiarsaff

practical purposes implied here) in just a fractaima

second. The tool, along with many additional paelsag
can be downloaded freely for a variety of platforms

(The R Project, 2010).

Below, we will present exemplary step-by-step R
code to generate random number sequences forrée th
correlated parameters ‘“improvement in power-
prestige”, “improvement in job security”, and “ttus
management” listed in table 1. The code is to garer
correctly correlated random numbers for 2500 agasits
virtual “employees” of a simulated organisation.té&lo
that the code pattern is scalable to a large nurober
parameters and agents.

The first step is to generate a matrix of unceutes
random numbers for each agent, already taking into
account the correct mean and standard deviation
properties (in this case assuming the Gaussian
distribution from table 1):

/lcreate a matrix with 3 columns for 3
/lparameters and 2500 rows for 2500
/lagents:

lu <- matrix(, ncol=3, nrow=2500)

/ffill in random values for “power and
llprestige”,...:
Iu[,1] <- rnorm(2500, 2.91, 0.74)

/l...then “job security”,...:
Iu[,2] <- rnorm(2500, 2.81, 0.68)

/l... and finally “trust in management”:
Iu[,3] <- rnorm(2500, 3.82, 1.39)

Next, the correlations for these parameters need t
be filled into another matri:

/lcreate a squared matrix and fill in the
llcorrelations for each of the three
llcorrelated parameters, using the order
/["power-prestige”, “job satisfaction”,
/land “trust in management”:

C <- matrix(, ncol=3, nrow=3)

C[1,] <-c(1, 0.48, 0.32)

C[2,] <- ¢(0.48, 1, 0.25)

C[3,] <-¢(0.32, 0.25, 1)

R offers a simple command to calculate both the
eigenvalues and eigenvectors of a matrix. We vailles
the result of this operation in an obj&ctThe parameter
“symmetric” refers toC being a symmetrical matrix so
that only the lower triangle of the matrix needsb®
used in the calculations:

237

E <- eigen(C, symmetric=TRUE)

The call to E$vectors will then give us the
eigenvectors of C and E$values will return the
eigenvalues accordingly. We use the command “diag”
to construct a fictive matrix diagonal from the acg
roots of the three eigenvalues &. This call is
necessary for a valid multiplication. Note that fbe
calculation of the square roots to be valid, all
eigenvalues ofZ must be positive. This will however
implicitly be the case for valid correlation mag& We
can then create the matrix V according to equafion
given in section 2:

V <- E$vectors %*% diag(sqrt(E$values))

Finally, we can multiply our formerly uncorrelated
random number matrix, with the transpose o¥ in
order to receive a matrix, with 2500 rows each
containing three correctly correlated values ine¢hr
columns, where (in our example) the first colurmansis
for the parameter “power and prestige”, the sedond
“job security”, and the last one for “trust in
management”:

Ic <- 1u %*9% t(V)

The result of this code can be saved in a CSV-File
In order to do this, we can use the “write.table”
command included in R. “write.table” takes several
parameters of which the first is the matrix to wiitto a
file and the second is the file's name on disk. The
parameter “sep” defines a character by which theesa
of the matrix are to be separated in the outpat fiVe
use “col.names=FALSE” and “row.names=FALSE” to
specify that we do not wish to export any column or
row names. In order to not put any values of thé&rima
in quotes, we set “quote=FALSE". In case a valueois
set in the matrix (which, following the aforememtaa
steps, ought to be irrelevant in our case), wespetify
a string value written to the file in its place. reefor
instance, we could use the Java-compatible “NaN”
string for “not a number” by setting the paramétaa”
accordingly:

write.table(lc, "C:ffilename.csv", sep="",
col.names=FALSE, row.names=FALSE, quote=FALSE,
na="NaN")

We can now use the random number sequences in
this file for use in any external program, in oase the
“Recursive Porous Agent Simulation Toolkit” Repast
Simphony (North et al., 2006). It is a Java-baspdno
source software with seemingly growing popularity i
the MABS-research community (Barnes, 2010) and is
available as a free download (REPAST, 2010).

Repast employs a so-called Context Creator to
initialise simulations. Within this class, agen&ncbe

created and parameters may be set before the siomula
begins. Skipping over most of the code of our
initialisation routine, we will again present exdany
code to assign the generated correlated valueadb e
agent using the Context Creator. In our example, we
wish to create a virtual organisation with 2500
employees, each having different, but correlated
parameters as explained above. We utilise a CSterea
class that simply returns the matrix saved by R &go-
dimensional Java Double arfay

Double[][] correlatedRandomNumbers =
CSV_Reader.readFile(“C:/filename.csv”);

All we then need to do is to create our agents and
read out the correlated random values in the cbrrec
order:

/Istylised iteration:

for (int i=0; i<2500; i++) {
EmployeeAgent ea = new EmployeeAgent();
ea.powerPrestige =
correlatedRandomNumbersi,0];
ea.jobSecurity =
correlatedRandomNumbersi,1];
ea.trustinMgmt =
correlatedRandomNumbersi,2];

=

The approach itself is very flexible and scalable
a large number of agents and correlated parameters.
Performance tests were conducted on an Intel Core2-
Duo pc with 4GB memory and a hard disk spinning at
5400rpm. Figure 1 shows a 3D-mesh-plot portraying
the execution times for the generation of 10.000 to
50.000 correlated vectors (i.e. agents) for respelgt
10 to 100 parameters for each individual. The upaer
of figure 1 displays execution times for the cadtigns
themselves without disk output to a CSV file. The
bottom plot shows execution times including thekdis
output. The data shows that even for the calculaifo
100 correlated parameters for 50.000 agents it only
takes slightly over two seconds to retrieve allassary
values using a code analogous to the example code
listed above. Also, the computation complexity seem
to rise only linearly with a rising number of ageand
parameters which makes this approach interesting fo
large scale simulations with either a large nundfer
agents or parameters in one simulation, or a large
number of simulations running in parallel (e.g. for
parameter optimisation purposes). Note that trere i
however, a performance-bottleneck where the fitegin
to be written to disk. Therefore, using many parianse
or agents, one should refer to Lang (2005) or 2B1{)
for a way to directly call R-functions from withitava-

! Several similar Java-based CSV-readers are also
available online.

238

[souwnL

’%,;10000
4530000

9
’“752{(:000

100

80
60
ers
Number of correlated paramet!

(with file output)

Figure 1. Computation Time of Generating Random
Correlated Number Sequences for Varying Numbers of
Agents and Parameters with (bottom) and withoyt)(to

Disk Output to a CSV File.

based applications such as Repast. We will explam
process briefly in the following.

The so-called Java-R-Interface (JRI, 2011),
amongst other interfaces available, is able to send
commands to an instance of R running in the
background of a Java-based application. Since
simulations in the MAS-tool Repast Simphony can be
programmed in the Java language, JRI can be easily
implemented for use in such multi-agent-simulations

JRI is available as part of a package-extensioR of
called “rJava”, which was originally designed tmdge
data and commands in the opposite direction, ficanf
R to Java. The quickest method to utilise only the
functionality of the Java-R-Interface, neverthelésgo
install the complete “rJava” package within R. Once
installed, the downloaded folders within R’s own
extension library will contain the JRI Java-archiee
implementation as a library in any Java project. to
Note that the subsequent setup of the JRI librdeg f
can be difficult. For a step by step guide based on

Eclipse/Repast, please refer to Shah (2009). ORtésJ
available for use in Repast, one can extend thee@bn
Creator class of a simulation analogously to thee aaf
CSV files described above. However, here one would
directly initialise agents using the calculationada in

R. For our example case, the necessary code &l list
below:

As a first step, it is important to make the JRI
library available to the Repast simulation projecd
include it in the import statements of the simalatpart
needing to access R, i.e. the ContextCreator.jtass c
file in our case:

import org.rosuda.JRI.REXP;
import org.rosuda.JRI.Rengine;

import org.rosuda.REngine.*;

We are then using the initialisation routine oé th
Context Creator class (e.g. théuild()” method) to
access R routines. Here, we first create an objfeype
Renginewhich is the main instance passing commands
and data between Java and R. The constructor ®f thi
class can pass various arguments to the instanRet@f
be used. Please refer to the JRI documentation, (JRI
2011) at this point in order to adjust this step your
requirements. In all cases, theditForR()' function of
the newly createdRkengineobject should be called to
make sure that the R thread finished its prograart st
sequence before calculations can begin. Not inctudi
call to this method may lead to Java exceptionagei
raised at this step and the failure of Repast'st€dn
Creator initialisation routine:

/lcreating a new instance of R for
/lcalculations:

Rengine re = new Rengine(new
String[[{""}, false, null);

/limportant: waiting for the R instance
/Ito finish loading:

if ('re.waitForR()) {

System.out.printin("Cannot load R");

}

The Rengine type now offers the method
“eval(String commanti{amongst numerous others) to
execute and evaluate a command passed over tthR in
form of a simple string parameter. This method metu
an object of typeREXP (R expression), which can
subsequently be used to output or further interpret
results of the command sent viaval. The following
code listing demonstrates several calls to send
commands to R analogous to the example R-code
already given above. We retrieve the final caléatabf
matrix |, within the objecexof typeREXP

239

/[creating instance for return values:
REXP ex;

/lexecuting R example code as stated in
//beginning of section 3 of this paper:

re.eval("lu <- matrix(, ncol=3,
nrow=2500)");

re.eval("lu[,1] <- rnorm(2500, 2.91,
0.74)");

re.eval("lu[,2] <- rnorm(2500, 2.81,
0.68)");

re.eval("lu[,3] <- rnorm(2500, 3.82,
1.39)");

re.eval("C <- matrix(, ncol=3,
nrow=3)");

re.eval("C[1,] <- ¢(1, 0.48, 0.32)");
re.eval("C[2,] <- ¢(0.48, 1, 0.25)");
re.eval("C[3,] <- ¢(0.32, 0.25, 1)");

re.eval("E <- eigen(C,
symmetric=TRUE)");

re.eval("V <- E$vectors %*%
diag(sqrt(E$values))");

/[catching the final result of Ic in
/["ex” for further handling:

ex =re.eval("lc <- lu %*% t(V)");

Now we only need to create an array just as one
would when using CSV files. Th&®EXP type has
several routines for formatting the results, e.9. a
“asString(J method for outputting its contents to the
Java console. Here, we use thesMatrix() method
that interprets the results as a two-dimensionayaof
Double values. We can then again use this array to
iterate through it, assigning the parameter valaesach
of our agents:

Double[][] correlatedRandomNumbers =
ex.asMatrix()

/Istylised iteration:

for (int i=0; i<2500; i++) {
EmployeeAgent ea = new
EmployeeAgent();
ea.powerPrestige =
correlatedRandomNumbers[i,0];
ea.jobSecurity =
correlatedRandomNumbers[i,1];
ea.trustinMgmt =
correlatedRandomNumbers[i,2];

Accessing R through the JRI library is a very
efficient method to compute the necessary calanati
for the initialisation of a Repast simulation. Haat

performance tests using this method have shown that

there is no loss of performance present when uditig
rather than R itself to create large numbers ofetated
random values. Performance results are comparable t
those shown in the top part of fig. 1.

4. CONCLUSIONS AND EXTENSIONS

This article dealt with the question of how to gete
scalable sets of correlated random numbers for the
initialisation of agent-based simulations. The awh
found this to be a question both important andalift

as many empirical studies provide aggregated
descriptive statistics, including correlations, lehhere

is also a necessity for detailed simulations atekel of
single and interacting individuals to explore certa
issues especially when dealing with complex and/or
emergent systems (Nissen and Saft, 2010, p. 11&). T
process of extracting correctly correlated sequerufe
random numbers for each agent is nontrivial and
literature on this topic, especially in the form of
practical guides for researchers in the (multi-agen
simulation community without a deep mathematical
background, is scarce. The reader therefore was
provided with a step-by-step guide for how to czeat
matrix containing MAS initialisation data in therfo of
correlated random number sets for each agent dasvel
with a stylised example code for the wide-spreapgd’e
simulation software in order to access those values
indirectly via file output or directly using the -salled
JRI-package. This paper
demonstrative guide for a wide audience of reseasch

in the simulation community. It provides a time-isay
way as well as a quick access for newcomers to the
creation of correlated random number sequences for
MAS parameterisation.

The steps shown here can further be enhanced by

using additional packages, e.g. the R-Commander
package for R, providing quick and easy accesasich

R operations via a graphical user interface (F@4,02.
There are also other options to call R directlyrfrdava
and Java-based software (Lang, 2005), eliminatiy t
need to use CSV Files for storage. Such approaatees
beneficial since one is not only able to outsource
initialisation calculations, but any complex set of
calculations that should rather be executed in a
professional environment such as R.

REFERENCES

Barnes, D. J.; Chu, D., 2010. ABMs Using Repast and
Java, Introductio to Modeling for Biosciences
Springer London, 79-130.

Fox, J., 2010,The R Commander: A Basic-Statistics
GUI for R Available from:
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
[accessed 01 May 2011]

240

therefore serves as a

Hrishikesh D., 2010. Advances in Social Science
Research Using RLecture Notes in Statistics
Springer.

Jones, O.; Maillardet, R., Robinson, A.:;, 2009.
Introduction to Scientific Programming and
Simulation Using RChapman & Hall/CRC, Boca
Raton (Florida, USA).

JRI (without date), JRI Available from:
http://www.rforge.net/JRI/ [accessed 01 May
2011]

Lang, D.T., 2005Calling R from JavaAvailable from:
http://www.omegahat.org/RSJava/RFromJava.pdf
[accessed 01 May 2011]

Lloyd N., Trefethen, D.B., 1997Numerical Linear
Algebra. Society for Industrial and Applied
Mathematics

Nissen, V.; Saft, D., 2010. Social Emergence in
Organisational Contexts: Benefits from Multi-
Agent Simulations. In: Madey, G.R.; Sierhuis, M.;
Zhang, Y. (Eds.):Proceedings of the Agent-
Directed Simulation Symposiur8an Diego: SCS,
2010, 106 — 113 (CD).

North, M.J.; Collier, N.T.; Vos, J.R., 2006. Exparces
creating three implementations of the repast agent
modeling toolkit. ACM Trans. Model. Comput.
Simul, 16(1), 1-25

Oreg, S., 2006. Personality, context, and resistdnc
organisational changelhe European journal of
work and organisational psychologil5), 73-101

REPAST Developers Group, (2010Repast Home
Page,Available from: http://repast.sourceforge.net
[accessed 01 May 2011]

Shah, M., 2009,R and Java - JRI using eclipse
Available from: http://mithil-
tech.blogspot.com/2009/11/r-and-java-jri-via-
eclipse.html [accessed 01 May 2011].

The R Project for Statstical Computing, (2010he R
Project for Statistical ComputincAvailable from:
http://www.r-project.org/ [accessed 01 May 2011]

