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ABSTRACT 
This article describes a scalable way to initialise a 
simulation model with correlated random numbers. The 
focus is on the nontrivial issue of creating predefined 
multidimensional correlations amongst those numbers. 
A multi-agent model serves as a basis for practical 
demonstrations in this paper, while the method itself 
may be interesting for an even wider audience within 
the modelling and simulation community beyond the 
field of agent-based modelling. In particular, we show 
how researchers can create streams of correlated 
random numbers for different empirically-based model 
parameters when just given aggregated statistics in the 
form of a correlation matrix. An example initialisation 
procedure is demonstrated using the open source 
statistical computing software “R” as well as the open 
source multi-agent simulation software “Repast 
Simphony”. 
 
Keywords: MAS Parameterisation, Correlated Random 
Numbers, R-Project, Repast 

 
1. INTRODUCTION 
The simulation of a model may sometimes require a 
large amount of parameters, which influence its 
outcome (significantly). In a subset of these cases, the 
parameters may be interdependent in such a way that 
the initialisation of a model needs two or more 
parameters to correlate in a predefined manner. A 
procedure to generate and utilise such numbers will be 
explained in the following. We use the example of an 
agent-based model, since one of our main research areas 
is the field of agent-based economics. In this research, 
we regularly find illustrative scenarios to which the 
concept presented in this paper is applicable. Note that 
while the statements here will be kept limited to agent-
based models for scientific validity, these explanations 
can easily be transfered to the initialisation of other 
types of simulation models. 
 In a variety of multi-agents systems, the model to 
be simulated may consist of a large number of 
heterogeneous agents. Heterogeneity can come in the 
form of different spatial positions of individual agents, 
different network connections, opinions, etc. In general, 
each of these agents possesses a set of parameters with 

different initialisation values. Researchers may want to 
relay data acquired from the real world (e.g. through 
measurement series, questionnaires or statistical 
archives) to initialise their agents with according 
parameter values for reasons of testing, prognosis, or 
simply for validity.  
 In the case of social or economic simulations, an 
agent may possess variables such as income, reputation, 
job satisfaction, household size, etc. Scientists may 
however not in all cases be lucky enough to find real-
world-data at a level that is as detailed as their desired 
simulation setup may require. They, therefore, may 
need to evade to more aggregated forms of simulation, 
matching the aggregation level of the empirical data 
available. This option can be unsatisfactory as important 
details of the micro-level to be simulated and/or the 
emerging micro-macro-links within such a simulation 
might need to stay unaddressed.  

One alternative is testing different random number 
distributions where detailed data is missing. This latter 
approach holds chances, but also challenges, such as the 
possible availability of empirical data that cannot give 
numbers on a detailed level, but gives aggregated 
distributions and correlations of different variables 
found in an empirical study. Table 1 (Oreg, 2006, p. 88) 
shows an instance of the results such empirical surveys 
yield. The values shown in table 1 were put forth by 
Oreg in 2006 and will serve as a data example 
throughout this paper. Table 1 gives descriptive 
statistics and correlations between parameters important 
to individual behaviour in the context of organisational 
change. The statistics were extracted from a series of 
questionnaires given to individuals within a company 
undergoing several organisational adjustments. The 
researches recorded variables thought to be important to 
an individual’s opinion formation about an 
organisational change. They derived a static statistical 
model of interdependencies of individual properties (tb. 
1, variables 1 to 9), the resistance an individual 
develops towards an organisational change (tb. 1, 
variables 10 to 12) and the behavioural outcome its 
opinion has on its specific job (tb. 1, variables 13 to 15). 

From a multi-agent modelling perspective, it 
becomes possible to analyse the dynamic behaviour of a 
simulated company as a whole by modelling individuals 
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with heterogeneous specific opinions and the (direct or 
indirect) influence individuals have on each other, e.g. 
through social interactions and information exchange 
(cmp. tb. 1, variables 8 and 9) or other behaviour 
affecting organisational “neighbours”. In this example, 
the goal of researchers in the field of multi-agent-based 
simulation (MABS) would be to better understand the 
process of organisational change or analyse the effect of 
certain formal and informal hierarchies and network 
structures on company performance. In fact, such 
investigations are taking place within our own MABS 
research of which a first part has already been published 
(Nissen and Saft, 2010). We utilise the real-world study 
of “resistance to change” behaviour in organisations to 
initialise our own multi-agent simulation of a virtual 
organisation in order to better understand how 
resistance to change spreads and can be influenced by 
management. This requires (here: agent-based) 
modelling at a more detailed level than the aggregated 
statistical data in table 1 provides. To this end we can 
however use the values in table 1 to yield specific 
initialisation data for a (large) number of simulated 
members of a virtual organisation. To initialise each 
agent in our simulation model with its own personality 
values, it is necessary to extract sequences with specific 
random numbers while accounting for the 
multidimensional correlations given in table 1 in order 
to yield correct number sequences. This challenge is 
trivial only when one needs to generate two correlated 
series of random numbers, i.e. when the agents in the 
simulation only possess pairs of two correlated 
properties. 
 

2. A LITTLE BIT OF MATH 
For only two numbers (parameters) to be correlated, 
there is a simple approach to retrieve two correlated 
random numbers from a set of uncorrelated random 
numbers: 

 

�� � �� ∗ �� (1a) 

�� � � ∗ �� � �	1 � ��� ∗ �� ∗ �� (1b) 

 

where x1 and x2 are two uncorrelated random numbers 
from a given distribution, �� and �� are their standard 
deviations, and c is the desired correlation coefficient 
between ��and ��; i.e. the resulting correlated random 
numbers. 
 With more than two sequences of correlated 
random numbers to generate, one can use a variety of 
mathematical approaches that are more or less difficult 
to go through manually. In our case, an Eigenvector-
decomposition was employed as we found it to be a 
process that is robust and offers good performance. 
There also is the option of using the so-called Cholesky-
decomposition (Lloyd and Trefethen, 1997, pp. 172 -
178) which will however not be explained further here. 
Given a correlation matrix C (see columns “1” through 
“14” in table 1) one can define a matrix 

 


 � ������	�λ�� (2) 
 

where Ei are the eigenvectors of C and λi are the 
eigenvalues of C.  
 With a matrix Iu consisting of formerly 
uncorrelated random numbers, we can derive a matrix  

 

�� � ��
� (3) 
 

where 
� is the transpose of 
 . 
�� then contains random numbers with correct 

correlations.  
 Iu can consist of any number of random values 
where each line can represent the initialisation values 
for a single agent and each column stands for one of the 
correlated parameters of an agent. This offers great 
flexibility since one only needs to choose the number of 
rows in the original matrix Iu as big as the number of 
agents one wishes to instantiate/simulate. Iu should 
already include the general distribution properties such 
as – in our case - the mean and standard deviations 
given in table 1.  

Table 2: Exemplary descriptive statistics and correlations for the variables of an empirical study by Oreg [2, p. 88] 
Table 1: Exemplary descriptive statistics and correlations for the variables of an empirical study by Oreg (2006, p. 88) 
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3. A  PRACTICAL GUIDE FOR THE 
UTILISATION OF CORRELATED RANDOM 
NUMBER SEQUENCES USING “R” AND 
“REPAST” 

While the pattern to generate correlated random 
numbers shown in section 2 can be time-consuming to 
do by hand, it is a very easy process once one employs 
supporting software. The popular and well-documented 
open source program “R” (Hrishikesh, 2010; Jones, 
2009) is able to make the necessary calculations (for all 
practical purposes implied here) in just a fraction of a 
second. The tool, along with many additional packages, 
can be downloaded freely for a variety of platforms 
(The R Project, 2010). 
 Below, we will present exemplary step-by-step R 
code to generate random number sequences for the three 
correlated parameters “improvement in power-
prestige”, “improvement in job security”, and “trust in 
management” listed in table 1. The code is to generate 
correctly correlated random numbers for 2500 agents as 
virtual “employees” of a simulated organisation. Note 
that the code pattern is scalable to a large number of 
parameters and agents.  
 The first step is to generate a matrix of uncorrelated 
random numbers for each agent, already taking into 
account the correct mean and standard deviation 
properties (in this case assuming the Gaussian 
distribution from table 1): 

 
//create a matrix with 3 columns for 3 
//parameters and 2500 rows for 2500 
//agents: 
Iu <- matrix(, ncol=3, nrow=2500) 
 
//fill in random values for “power and 
//prestige”,…: 
Iu[,1] <- rnorm(2500, 2.91, 0.74)  
 
//…then “job security”,…: 
Iu[,2] <- rnorm(2500, 2.81, 0.68)  
 
//… and finally “trust in management”: 
Iu[,3] <- rnorm(2500, 3.82, 1.39) 
 
 Next, the correlations for these parameters need to 
be filled into another matrix C: 
 
//create a squared matrix and fill in the 
//correlations for each of the three 
//correlated parameters, using the order 
//“power-prestige”, “job satisfaction”, 
//and “trust in management”: 
C <- matrix(, ncol=3, nrow=3) 
C[1,] <- c(1, 0.48, 0.32)  
C[2,] <- c(0.48, 1, 0.25) 
C[3,] <- c(0.32, 0.25, 1)  
 
 R offers a simple command to calculate both the 
eigenvalues and eigenvectors of a matrix. We will save 
the result of this operation in an object E. The parameter 
“symmetric” refers to C being a symmetrical matrix so 
that only the lower triangle of the matrix needs to be 
used in the calculations: 

 
E <- eigen(C, symmetric=TRUE) 
 
 The call to E$vectors will then give us the 
eigenvectors of C and E$values will return the 
eigenvalues accordingly. We use the command “diag” 
to construct a fictive matrix diagonal from the square 
roots of the three eigenvalues of C. This call is 
necessary for a valid multiplication. Note that for the 
calculation of the square roots to be valid, all 
eigenvalues of C must be positive. This will however 
implicitly be the case for valid correlation matrices. We 
can then create the matrix V according to equation 2 
given in section 2: 
 
V <- E$vectors %*% diag(sqrt(E$values)) 
 
 Finally, we can multiply our formerly uncorrelated 
random number matrix Iu with the transpose of V in 
order to receive a matrix Ic with 2500 rows each 
containing three correctly correlated values in three 
columns, where (in our example) the first column stands 
for the parameter “power and prestige”, the second for 
“job security”, and the last one for “trust in 
management”: 
 
Ic <- Iu %*% t(V) 
 
 The result of this code can be saved in a CSV-File. 
In order to do this, we can use the “write.table” 
command included in R. “write.table” takes several 
parameters of which the first is the matrix to write into a 
file and the second is the file’s name on disk. The 
parameter “sep” defines a character by which the values 
of the matrix are to be separated in the output file. We 
use “col.names=FALSE” and “row.names=FALSE” to 
specify that we do not wish to export any column or 
row names. In order to not put any values of the matrix 
in quotes, we set “quote=FALSE”. In case a value is not 
set in the matrix (which, following the aforementioned 
steps, ought to be irrelevant in our case), we can specify 
a string value written to the file in its place. Here, for 
instance, we could use the Java-compatible “NaN” 
string for “not a number” by setting the parameter “na” 
accordingly: 
 

write.table(Ic, "C:/filename.csv", sep=",", 
col.names=FALSE, row.names=FALSE, quote=FALSE, 
na="NaN") 

 

 We can now use the random number sequences in 
this file for use in any external program, in our case the 
“Recursive Porous Agent Simulation Toolkit” Repast 
Simphony (North et al., 2006). It is a Java-based open 
source software with seemingly growing popularity in 
the MABS-research community (Barnes, 2010) and is 
available as a free download (REPAST, 2010). 
 Repast employs a so-called Context Creator to 
initialise simulations. Within this class, agents can be 
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created and parameters may be set before the simulation 
begins. Skipping over most of the code of our 
initialisation routine, we will again present exemplary 
code to assign the generated correlated values to each 
agent using the Context Creator. In our example, we 
wish to create a virtual organisation with 2500 
employees, each having different, but correlated 
parameters as explained above. We utilise a CSV-reader 
class that simply returns the matrix saved by R as a two-
dimensional Java Double array1.  
 

Double[][] correlatedRandomNumbers = 
CSV_Reader.readFile(“C:/filename.csv”);  

 

 All we then need to do is to create our agents and 
read out the correlated random values in the correct 
order: 
 

//stylised iteration: 

for (int i=0; i<2500; i++) { 
  EmployeeAgent ea = new EmployeeAgent(); 
  ea.powerPrestige = 
correlatedRandomNumbers[i,0]; 
  ea.jobSecurity = 
correlatedRandomNumbers[i,1]; 
  ea.trustInMgmt = 
correlatedRandomNumbers[i,2]; 
  … 
} 
 

   
 The approach itself is very flexible and scalable to 

a large number of agents and correlated parameters. 
Performance tests were conducted on an Intel Core2-
Duo pc with 4GB memory and a hard disk spinning at 
5400rpm. Figure 1 shows a 3D-mesh-plot portraying 
the execution times for the generation of 10.000 to 

50.000 correlated vectors (i.e. agents) for respectively 
10 to 100 parameters for each individual. The upper part 
of figure 1 displays execution times for the calculations 

themselves without disk output to a CSV file. The 
bottom plot shows execution times including the disk 
output. The data shows that even for the calculation of 

100 correlated parameters for 50.000 agents it only 
takes slightly over two seconds to retrieve all necessary 

values using a code analogous to the example code 
listed above. Also, the computation complexity seems 
to rise only linearly with a rising number of agents and 
parameters which makes this approach interesting for 
large scale simulations with either a large number of 

agents or parameters in one simulation, or a large 
number of simulations running in parallel (e.g. for 

parameter optimisation purposes). Note that there is, 
however, a performance-bottleneck where the files need 
to be written to disk. Therefore, using many parameters 
or agents, one should refer to Lang (2005) or JRI (2011) 
for a way to directly call R-functions from within Java-

                                                           
1 Several similar Java-based CSV-readers are also 
available online. 

 Figure 1: Computation Time of Generating Random 
Correlated Number Sequences for Varying Numbers of 
Agents and Parameters with (bottom) and without (top) 

Disk Output to a CSV File. 

 

based applications such as Repast. We will explain this 
process briefly in the following. 
 The so-called Java-R-Interface (JRI, 2011), 
amongst other interfaces available, is able to send 
commands to an instance of R running in the 
background of a Java-based application. Since 
simulations in the MAS-tool Repast Simphony can be 
programmed in the Java language, JRI can be easily 
implemented for use in such multi-agent-simulations. 
 JRI is available as part of a package-extension of R 
called “rJava”, which was originally designed to send 
data and commands in the opposite direction, i.e. from 
R to Java. The quickest method to utilise only the 
functionality of the Java-R-Interface, nevertheless, is to 
install the complete “rJava” package within R. Once 
installed, the downloaded folders within R’s own 
extension library will contain the JRI Java-archive for 
implementation as a library in any Java project, too. 
Note that the subsequent setup of the JRI library files 
can be difficult. For a step by step guide based on 
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Eclipse/Repast, please refer to Shah (2009). Once JRI is 
available for use in Repast, one can extend the Context 
Creator class of a simulation analogously to the case of 
CSV files described above. However, here one would 
directly initialise agents using the calculations made in 
R. For our example case, the necessary code is listed 
below: 
 As a first step, it is important to make the JRI 
library available to the Repast simulation project and 
include it in the import statements of the simulation part 
needing to access R, i.e. the ContextCreator.java class 
file in our case: 

  

import org.rosuda.JRI.REXP; 

import org.rosuda.JRI.Rengine; 

import org.rosuda.REngine.*; 

 

 We are then using the initialisation routine of the 
Context Creator class (e.g. the “build()” method) to 
access R routines. Here, we first create an object of type 
Rengine which is the main instance passing commands 
and data between Java and R. The constructor of this 
class can pass various arguments to the instance of R to 
be used. Please refer to the JRI documentation (JRI, 
2011) at this point in order to adjust this step for your 
requirements. In all cases, the “waitForR()” function of 
the newly created Rengine object should be called to 
make sure that the R thread finished its program start 
sequence before calculations can begin. Not including a 
call to this method may lead to Java exceptions being 
raised at this step and the failure of Repast’s Context 
Creator initialisation routine: 

 

//creating a new instance of R for 
//calculations:  

Rengine re = new Rengine(new 
String[]{""}, false, null); 

//important: waiting for the R instance 
//to finish loading: 

if (!re.waitForR()) { 

  System.out.println("Cannot load R"); 

} 

   

 The Rengine type now offers the method 
“eval(String command)” (amongst numerous others) to 
execute and evaluate a command passed over to R in the 
form of a simple string parameter. This method returns 
an object of type REXP (R expression), which can 
subsequently be used to output or further interpret 
results of the command sent via “eval”. The following 
code listing demonstrates several calls to send 
commands to R analogous to the example R-code 
already given above. We retrieve the final calculation of 
matrix Ic within the object ex of type REXP: 

 

  //creating instance for return values: 

  REXP ex; 

  //executing R example code as stated in  

  //beginning of section 3 of this paper: 

  re.eval("Iu <- matrix(, ncol=3,                                     
  nrow=2500)"); 

  re.eval("Iu[,1] <- rnorm(2500, 2.91,  
  0.74)"); 

  re.eval("Iu[,2] <- rnorm(2500, 2.81,  
  0.68)"); 

  re.eval("Iu[,3] <- rnorm(2500, 3.82,  
  1.39)"); 

  re.eval("C <- matrix(, ncol=3,  
  nrow=3)"); 

  re.eval("C[1,] <- c(1, 0.48, 0.32)"); 

  re.eval("C[2,] <- c(0.48, 1, 0.25)"); 

  re.eval("C[3,] <- c(0.32, 0.25, 1)"); 

  re.eval("E <- eigen(C,  
  symmetric=TRUE)"); 

  re.eval("V <- E$vectors %*%     
  diag(sqrt(E$values))"); 

   

  //catching the final result of Ic in  
  //“ex” for further handling: 

  ex =re.eval("Ic <- Iu %*% t(V)"); 

 

 Now we only need to create an array just as one 
would when using CSV files. The REXP type has 
several routines for formatting the results, e.g. an 
“asString()” method for outputting its contents to the 
Java console. Here, we use the “asMatrix()” method 
that interprets the results as a two-dimensional array of 
Double values. We can then again use this array to 
iterate through it, assigning the parameter values to each 
of our agents: 

 

  Double[][] correlatedRandomNumbers =  
  ex.asMatrix() 

  //stylised iteration: 

  for (int i=0; i<2500; i++) { 
    EmployeeAgent ea = new  
    EmployeeAgent(); 
    ea.powerPrestige =    
    correlatedRandomNumbers[i,0]; 
    ea.jobSecurity =  
    correlatedRandomNumbers[i,1]; 
    ea.trustInMgmt =  
    correlatedRandomNumbers[i,2]; 
    … 
  } 
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 Accessing R through the JRI library is a very 
efficient method to compute the necessary calculations 
for the initialisation of a Repast simulation. Further 
performance tests using this method have shown that 
there is no loss of performance present when using JRI 
rather than R itself to create large numbers of correlated 
random values. Performance results are comparable to 
those shown in the top part of fig. 1.   

 

4. CONCLUSIONS AND EXTENSIONS 
This article dealt with the question of how to generate 
scalable sets of correlated random numbers for the 
initialisation of agent-based simulations. The authors 
found this to be a question both important and difficult 
as many empirical studies provide aggregated 
descriptive statistics, including correlations, while there 
is also a necessity for detailed simulations at the level of 
single and interacting individuals to explore certain 
issues especially when dealing with complex and/or 
emergent systems (Nissen and Saft, 2010, p. 113). The 
process of extracting correctly correlated sequences of 
random numbers for each agent is nontrivial and 
literature on this topic, especially in the form of 
practical guides for researchers in the (multi-agent) 
simulation community without a deep mathematical 
background, is scarce. The reader therefore was 
provided with a step-by-step guide for how to create a 
matrix containing MAS initialisation data in the form of 
correlated random number sets for each agent as well as 
with a stylised example code for the wide-spread Repast 
simulation software in order to access those values 
indirectly via file output or directly using the so-called 
JRI-package. This paper therefore serves as a 
demonstrative guide for a wide audience of researchers 
in the simulation community. It provides a time-saving 
way as well as a quick access for newcomers to the 
creation of correlated random number sequences for 
MAS parameterisation.  
 The steps shown here can further be enhanced by 
using additional packages, e.g. the R-Commander 
package for R, providing quick and easy access to basic 
R operations via a graphical user interface (Fox, 2010). 
There are also other options to call R directly from Java 
and Java-based software (Lang, 2005), eliminating the 
need to use CSV Files for storage. Such approaches are 
beneficial since one is not only able to outsource 
initialisation calculations, but any complex set of 
calculations that should rather be executed in a 
professional environment such as R.  
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