
A PRACTICAL GUIDE FOR THE INITIALISATION OF MULTI-A GENT SYSTEMS
WITH RANDOM NUMBER SEQUENCES FROM AGGREGATED CORREL ATION DATA

Volker Nissen(a), Danilo Saft(b)

(a) (b) Ilmenau Technical University, Faculty of Economics, Institute for Commercial Information Technology,
Chair of Information Systems for Services (WI 2),

Postfach 100565, 98684 Ilmenau, Germany

(a)volker.nissen@tu-ilmenau.de, (b)danilo.saft@tu-ilmenau.de

ABSTRACT
This article describes a scalable way to initialise a
simulation model with correlated random numbers. The
focus is on the nontrivial issue of creating predefined
multidimensional correlations amongst those numbers.
A multi-agent model serves as a basis for practical
demonstrations in this paper, while the method itself
may be interesting for an even wider audience within
the modelling and simulation community beyond the
field of agent-based modelling. In particular, we show
how researchers can create streams of correlated
random numbers for different empirically-based model
parameters when just given aggregated statistics in the
form of a correlation matrix. An example initialisation
procedure is demonstrated using the open source
statistical computing software “R” as well as the open
source multi-agent simulation software “Repast
Simphony”.

Keywords: MAS Parameterisation, Correlated Random
Numbers, R-Project, Repast

1. INTRODUCTION
The simulation of a model may sometimes require a
large amount of parameters, which influence its
outcome (significantly). In a subset of these cases, the
parameters may be interdependent in such a way that
the initialisation of a model needs two or more
parameters to correlate in a predefined manner. A
procedure to generate and utilise such numbers will be
explained in the following. We use the example of an
agent-based model, since one of our main research areas
is the field of agent-based economics. In this research,
we regularly find illustrative scenarios to which the
concept presented in this paper is applicable. Note that
while the statements here will be kept limited to agent-
based models for scientific validity, these explanations
can easily be transfered to the initialisation of other
types of simulation models.
 In a variety of multi-agents systems, the model to
be simulated may consist of a large number of
heterogeneous agents. Heterogeneity can come in the
form of different spatial positions of individual agents,
different network connections, opinions, etc. In general,
each of these agents possesses a set of parameters with

different initialisation values. Researchers may want to
relay data acquired from the real world (e.g. through
measurement series, questionnaires or statistical
archives) to initialise their agents with according
parameter values for reasons of testing, prognosis, or
simply for validity.
 In the case of social or economic simulations, an
agent may possess variables such as income, reputation,
job satisfaction, household size, etc. Scientists may
however not in all cases be lucky enough to find real-
world-data at a level that is as detailed as their desired
simulation setup may require. They, therefore, may
need to evade to more aggregated forms of simulation,
matching the aggregation level of the empirical data
available. This option can be unsatisfactory as important
details of the micro-level to be simulated and/or the
emerging micro-macro-links within such a simulation
might need to stay unaddressed.

One alternative is testing different random number
distributions where detailed data is missing. This latter
approach holds chances, but also challenges, such as the
possible availability of empirical data that cannot give
numbers on a detailed level, but gives aggregated
distributions and correlations of different variables
found in an empirical study. Table 1 (Oreg, 2006, p. 88)
shows an instance of the results such empirical surveys
yield. The values shown in table 1 were put forth by
Oreg in 2006 and will serve as a data example
throughout this paper. Table 1 gives descriptive
statistics and correlations between parameters important
to individual behaviour in the context of organisational
change. The statistics were extracted from a series of
questionnaires given to individuals within a company
undergoing several organisational adjustments. The
researches recorded variables thought to be important to
an individual’s opinion formation about an
organisational change. They derived a static statistical
model of interdependencies of individual properties (tb.
1, variables 1 to 9), the resistance an individual
develops towards an organisational change (tb. 1,
variables 10 to 12) and the behavioural outcome its
opinion has on its specific job (tb. 1, variables 13 to 15).

From a multi-agent modelling perspective, it
becomes possible to analyse the dynamic behaviour of a
simulated company as a whole by modelling individuals

235

with heterogeneous specific opinions and the (direct or
indirect) influence individuals have on each other, e.g.
through social interactions and information exchange
(cmp. tb. 1, variables 8 and 9) or other behaviour
affecting organisational “neighbours”. In this example,
the goal of researchers in the field of multi-agent-based
simulation (MABS) would be to better understand the
process of organisational change or analyse the effect of
certain formal and informal hierarchies and network
structures on company performance. In fact, such
investigations are taking place within our own MABS
research of which a first part has already been published
(Nissen and Saft, 2010). We utilise the real-world study
of “resistance to change” behaviour in organisations to
initialise our own multi-agent simulation of a virtual
organisation in order to better understand how
resistance to change spreads and can be influenced by
management. This requires (here: agent-based)
modelling at a more detailed level than the aggregated
statistical data in table 1 provides. To this end we can
however use the values in table 1 to yield specific
initialisation data for a (large) number of simulated
members of a virtual organisation. To initialise each
agent in our simulation model with its own personality
values, it is necessary to extract sequences with specific
random numbers while accounting for the
multidimensional correlations given in table 1 in order
to yield correct number sequences. This challenge is
trivial only when one needs to generate two correlated
series of random numbers, i.e. when the agents in the
simulation only possess pairs of two correlated
properties.

2. A LITTLE BIT OF MATH
For only two numbers (parameters) to be correlated,
there is a simple approach to retrieve two correlated
random numbers from a set of uncorrelated random
numbers:

�� � �� ∗ �� (1a)

�� � � ∗ �� � �	1 � ��� ∗ �� ∗ �� (1b)

where x1 and x2 are two uncorrelated random numbers
from a given distribution, �� and �� are their standard
deviations, and c is the desired correlation coefficient
between ��and ��; i.e. the resulting correlated random
numbers.
 With more than two sequences of correlated
random numbers to generate, one can use a variety of
mathematical approaches that are more or less difficult
to go through manually. In our case, an Eigenvector-
decomposition was employed as we found it to be a
process that is robust and offers good performance.
There also is the option of using the so-called Cholesky-
decomposition (Lloyd and Trefethen, 1997, pp. 172 -
178) which will however not be explained further here.
Given a correlation matrix C (see columns “1” through
“14” in table 1) one can define a matrix

 � ������	�λ�� (2)

where Ei are the eigenvectors of C and λi are the
eigenvalues of C.
 With a matrix Iu consisting of formerly
uncorrelated random numbers, we can derive a matrix

�� � ��
� (3)

where
� is the transpose of
 .
�� then contains random numbers with correct

correlations.
 Iu can consist of any number of random values
where each line can represent the initialisation values
for a single agent and each column stands for one of the
correlated parameters of an agent. This offers great
flexibility since one only needs to choose the number of
rows in the original matrix Iu as big as the number of
agents one wishes to instantiate/simulate. Iu should
already include the general distribution properties such
as – in our case - the mean and standard deviations
given in table 1.

Table 2: Exemplary descriptive statistics and correlations for the variables of an empirical study by Oreg [2, p. 88]
Table 1: Exemplary descriptive statistics and correlations for the variables of an empirical study by Oreg (2006, p. 88)

236

3. A PRACTICAL GUIDE FOR THE
UTILISATION OF CORRELATED RANDOM
NUMBER SEQUENCES USING “R” AND
“REPAST”

While the pattern to generate correlated random
numbers shown in section 2 can be time-consuming to
do by hand, it is a very easy process once one employs
supporting software. The popular and well-documented
open source program “R” (Hrishikesh, 2010; Jones,
2009) is able to make the necessary calculations (for all
practical purposes implied here) in just a fraction of a
second. The tool, along with many additional packages,
can be downloaded freely for a variety of platforms
(The R Project, 2010).
 Below, we will present exemplary step-by-step R
code to generate random number sequences for the three
correlated parameters “improvement in power-
prestige”, “improvement in job security”, and “trust in
management” listed in table 1. The code is to generate
correctly correlated random numbers for 2500 agents as
virtual “employees” of a simulated organisation. Note
that the code pattern is scalable to a large number of
parameters and agents.
 The first step is to generate a matrix of uncorrelated
random numbers for each agent, already taking into
account the correct mean and standard deviation
properties (in this case assuming the Gaussian
distribution from table 1):

//create a matrix with 3 columns for 3
//parameters and 2500 rows for 2500
//agents:
Iu <- matrix(, ncol=3, nrow=2500)

//fill in random values for “power and
//prestige”,…:
Iu[,1] <- rnorm(2500, 2.91, 0.74)

//…then “job security”,…:
Iu[,2] <- rnorm(2500, 2.81, 0.68)

//… and finally “trust in management”:
Iu[,3] <- rnorm(2500, 3.82, 1.39)

 Next, the correlations for these parameters need to
be filled into another matrix C:

//create a squared matrix and fill in the
//correlations for each of the three
//correlated parameters, using the order
//“power-prestige”, “job satisfaction”,
//and “trust in management”:
C <- matrix(, ncol=3, nrow=3)
C[1,] <- c(1, 0.48, 0.32)
C[2,] <- c(0.48, 1, 0.25)
C[3,] <- c(0.32, 0.25, 1)

 R offers a simple command to calculate both the
eigenvalues and eigenvectors of a matrix. We will save
the result of this operation in an object E. The parameter
“symmetric” refers to C being a symmetrical matrix so
that only the lower triangle of the matrix needs to be
used in the calculations:

E <- eigen(C, symmetric=TRUE)

 The call to E$vectors will then give us the
eigenvectors of C and E$values will return the
eigenvalues accordingly. We use the command “diag”
to construct a fictive matrix diagonal from the square
roots of the three eigenvalues of C. This call is
necessary for a valid multiplication. Note that for the
calculation of the square roots to be valid, all
eigenvalues of C must be positive. This will however
implicitly be the case for valid correlation matrices. We
can then create the matrix V according to equation 2
given in section 2:

V <- E$vectors %*% diag(sqrt(E$values))

 Finally, we can multiply our formerly uncorrelated
random number matrix Iu with the transpose of V in
order to receive a matrix Ic with 2500 rows each
containing three correctly correlated values in three
columns, where (in our example) the first column stands
for the parameter “power and prestige”, the second for
“job security”, and the last one for “trust in
management”:

Ic <- Iu %*% t(V)

 The result of this code can be saved in a CSV-File.
In order to do this, we can use the “write.table”
command included in R. “write.table” takes several
parameters of which the first is the matrix to write into a
file and the second is the file’s name on disk. The
parameter “sep” defines a character by which the values
of the matrix are to be separated in the output file. We
use “col.names=FALSE” and “row.names=FALSE” to
specify that we do not wish to export any column or
row names. In order to not put any values of the matrix
in quotes, we set “quote=FALSE”. In case a value is not
set in the matrix (which, following the aforementioned
steps, ought to be irrelevant in our case), we can specify
a string value written to the file in its place. Here, for
instance, we could use the Java-compatible “NaN”
string for “not a number” by setting the parameter “na”
accordingly:

write.table(Ic, "C:/filename.csv", sep=",",
col.names=FALSE, row.names=FALSE, quote=FALSE,
na="NaN")

 We can now use the random number sequences in
this file for use in any external program, in our case the
“Recursive Porous Agent Simulation Toolkit” Repast
Simphony (North et al., 2006). It is a Java-based open
source software with seemingly growing popularity in
the MABS-research community (Barnes, 2010) and is
available as a free download (REPAST, 2010).
 Repast employs a so-called Context Creator to
initialise simulations. Within this class, agents can be

237

created and parameters may be set before the simulation
begins. Skipping over most of the code of our
initialisation routine, we will again present exemplary
code to assign the generated correlated values to each
agent using the Context Creator. In our example, we
wish to create a virtual organisation with 2500
employees, each having different, but correlated
parameters as explained above. We utilise a CSV-reader
class that simply returns the matrix saved by R as a two-
dimensional Java Double array1.

Double[][] correlatedRandomNumbers =
CSV_Reader.readFile(“C:/filename.csv”);

 All we then need to do is to create our agents and
read out the correlated random values in the correct
order:

//stylised iteration:

for (int i=0; i<2500; i++) {
 EmployeeAgent ea = new EmployeeAgent();
 ea.powerPrestige =
correlatedRandomNumbers[i,0];
 ea.jobSecurity =
correlatedRandomNumbers[i,1];
 ea.trustInMgmt =
correlatedRandomNumbers[i,2];
 …
}

 The approach itself is very flexible and scalable to

a large number of agents and correlated parameters.
Performance tests were conducted on an Intel Core2-
Duo pc with 4GB memory and a hard disk spinning at
5400rpm. Figure 1 shows a 3D-mesh-plot portraying
the execution times for the generation of 10.000 to

50.000 correlated vectors (i.e. agents) for respectively
10 to 100 parameters for each individual. The upper part
of figure 1 displays execution times for the calculations

themselves without disk output to a CSV file. The
bottom plot shows execution times including the disk
output. The data shows that even for the calculation of

100 correlated parameters for 50.000 agents it only
takes slightly over two seconds to retrieve all necessary

values using a code analogous to the example code
listed above. Also, the computation complexity seems
to rise only linearly with a rising number of agents and
parameters which makes this approach interesting for
large scale simulations with either a large number of

agents or parameters in one simulation, or a large
number of simulations running in parallel (e.g. for

parameter optimisation purposes). Note that there is,
however, a performance-bottleneck where the files need
to be written to disk. Therefore, using many parameters
or agents, one should refer to Lang (2005) or JRI (2011)
for a way to directly call R-functions from within Java-

1 Several similar Java-based CSV-readers are also
available online.

 Figure 1: Computation Time of Generating Random
Correlated Number Sequences for Varying Numbers of
Agents and Parameters with (bottom) and without (top)

Disk Output to a CSV File.

based applications such as Repast. We will explain this
process briefly in the following.
 The so-called Java-R-Interface (JRI, 2011),
amongst other interfaces available, is able to send
commands to an instance of R running in the
background of a Java-based application. Since
simulations in the MAS-tool Repast Simphony can be
programmed in the Java language, JRI can be easily
implemented for use in such multi-agent-simulations.
 JRI is available as part of a package-extension of R
called “rJava”, which was originally designed to send
data and commands in the opposite direction, i.e. from
R to Java. The quickest method to utilise only the
functionality of the Java-R-Interface, nevertheless, is to
install the complete “rJava” package within R. Once
installed, the downloaded folders within R’s own
extension library will contain the JRI Java-archive for
implementation as a library in any Java project, too.
Note that the subsequent setup of the JRI library files
can be difficult. For a step by step guide based on

Number of correlated Parameters20 40 60 80 100
Num

ber of Agents10000

20000

30000
40000

50000

T
im

e [s]

1

2

(without file output)

Number of correlated Parameters20 40 60 80 100

Num
ber of Agents10000

20000

30000
40000

50000

T
im

e [s]

10

20

30

40

(with file output)

238

Eclipse/Repast, please refer to Shah (2009). Once JRI is
available for use in Repast, one can extend the Context
Creator class of a simulation analogously to the case of
CSV files described above. However, here one would
directly initialise agents using the calculations made in
R. For our example case, the necessary code is listed
below:
 As a first step, it is important to make the JRI
library available to the Repast simulation project and
include it in the import statements of the simulation part
needing to access R, i.e. the ContextCreator.java class
file in our case:

import org.rosuda.JRI.REXP;

import org.rosuda.JRI.Rengine;

import org.rosuda.REngine.*;

 We are then using the initialisation routine of the
Context Creator class (e.g. the “build()” method) to
access R routines. Here, we first create an object of type
Rengine which is the main instance passing commands
and data between Java and R. The constructor of this
class can pass various arguments to the instance of R to
be used. Please refer to the JRI documentation (JRI,
2011) at this point in order to adjust this step for your
requirements. In all cases, the “waitForR()” function of
the newly created Rengine object should be called to
make sure that the R thread finished its program start
sequence before calculations can begin. Not including a
call to this method may lead to Java exceptions being
raised at this step and the failure of Repast’s Context
Creator initialisation routine:

//creating a new instance of R for
//calculations:

Rengine re = new Rengine(new
String[]{""}, false, null);

//important: waiting for the R instance
//to finish loading:

if (!re.waitForR()) {

 System.out.println("Cannot load R");

}

 The Rengine type now offers the method
“eval(String command)” (amongst numerous others) to
execute and evaluate a command passed over to R in the
form of a simple string parameter. This method returns
an object of type REXP (R expression), which can
subsequently be used to output or further interpret
results of the command sent via “eval”. The following
code listing demonstrates several calls to send
commands to R analogous to the example R-code
already given above. We retrieve the final calculation of
matrix Ic within the object ex of type REXP:

 //creating instance for return values:

 REXP ex;

 //executing R example code as stated in

 //beginning of section 3 of this paper:

 re.eval("Iu <- matrix(, ncol=3,
 nrow=2500)");

 re.eval("Iu[,1] <- rnorm(2500, 2.91,
 0.74)");

 re.eval("Iu[,2] <- rnorm(2500, 2.81,
 0.68)");

 re.eval("Iu[,3] <- rnorm(2500, 3.82,
 1.39)");

 re.eval("C <- matrix(, ncol=3,
 nrow=3)");

 re.eval("C[1,] <- c(1, 0.48, 0.32)");

 re.eval("C[2,] <- c(0.48, 1, 0.25)");

 re.eval("C[3,] <- c(0.32, 0.25, 1)");

 re.eval("E <- eigen(C,
 symmetric=TRUE)");

 re.eval("V <- E$vectors %*%
 diag(sqrt(E$values))");

 //catching the final result of Ic in
 //“ex” for further handling:

 ex =re.eval("Ic <- Iu %*% t(V)");

 Now we only need to create an array just as one
would when using CSV files. The REXP type has
several routines for formatting the results, e.g. an
“asString()” method for outputting its contents to the
Java console. Here, we use the “asMatrix()” method
that interprets the results as a two-dimensional array of
Double values. We can then again use this array to
iterate through it, assigning the parameter values to each
of our agents:

 Double[][] correlatedRandomNumbers =
 ex.asMatrix()

 //stylised iteration:

 for (int i=0; i<2500; i++) {
 EmployeeAgent ea = new
 EmployeeAgent();
 ea.powerPrestige =
 correlatedRandomNumbers[i,0];
 ea.jobSecurity =
 correlatedRandomNumbers[i,1];
 ea.trustInMgmt =
 correlatedRandomNumbers[i,2];
 …
 }

239

 Accessing R through the JRI library is a very
efficient method to compute the necessary calculations
for the initialisation of a Repast simulation. Further
performance tests using this method have shown that
there is no loss of performance present when using JRI
rather than R itself to create large numbers of correlated
random values. Performance results are comparable to
those shown in the top part of fig. 1.

4. CONCLUSIONS AND EXTENSIONS
This article dealt with the question of how to generate
scalable sets of correlated random numbers for the
initialisation of agent-based simulations. The authors
found this to be a question both important and difficult
as many empirical studies provide aggregated
descriptive statistics, including correlations, while there
is also a necessity for detailed simulations at the level of
single and interacting individuals to explore certain
issues especially when dealing with complex and/or
emergent systems (Nissen and Saft, 2010, p. 113). The
process of extracting correctly correlated sequences of
random numbers for each agent is nontrivial and
literature on this topic, especially in the form of
practical guides for researchers in the (multi-agent)
simulation community without a deep mathematical
background, is scarce. The reader therefore was
provided with a step-by-step guide for how to create a
matrix containing MAS initialisation data in the form of
correlated random number sets for each agent as well as
with a stylised example code for the wide-spread Repast
simulation software in order to access those values
indirectly via file output or directly using the so-called
JRI-package. This paper therefore serves as a
demonstrative guide for a wide audience of researchers
in the simulation community. It provides a time-saving
way as well as a quick access for newcomers to the
creation of correlated random number sequences for
MAS parameterisation.
 The steps shown here can further be enhanced by
using additional packages, e.g. the R-Commander
package for R, providing quick and easy access to basic
R operations via a graphical user interface (Fox, 2010).
There are also other options to call R directly from Java
and Java-based software (Lang, 2005), eliminating the
need to use CSV Files for storage. Such approaches are
beneficial since one is not only able to outsource
initialisation calculations, but any complex set of
calculations that should rather be executed in a
professional environment such as R.

REFERENCES

Barnes, D. J.; Chu, D., 2010. ABMs Using Repast and
Java, Introductio to Modeling for Biosciences,
Springer London, 79-130.

Fox, J., 2010, The R Commander: A Basic-Statistics
GUI for R, Available from:
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
[accessed 01 May 2011]

Hrishikesh D., 2010. Advances in Social Science
Research Using R. Lecture Notes in Statistics.
Springer.

Jones, O.; Maillardet, R., Robinson, A.:, 2009.
Introduction to Scientific Programming and
Simulation Using R. Chapman & Hall/CRC, Boca
Raton (Florida, USA).

JRI (without date), JRI Available from:
http://www.rforge.net/JRI/ [accessed 01 May
2011]

Lang, D.T., 2005, Calling R from Java, Available from:
http://www.omegahat.org/RSJava/RFromJava.pdf
[accessed 01 May 2011]

Lloyd N., Trefethen, D.B., 1997. Numerical Linear
Algebra. Society for Industrial and Applied
Mathematics

 Nissen, V.; Saft, D., 2010. Social Emergence in
Organisational Contexts: Benefits from Multi-
Agent Simulations. In: Madey, G.R.; Sierhuis, M.;
Zhang, Y. (Eds.): Proceedings of the Agent-
Directed Simulation Symposium, San Diego: SCS,
2010, 106 – 113 (CD).

North, M.J.; Collier, N.T.; Vos, J.R., 2006. Experiences
creating three implementations of the repast agent
modeling toolkit. ACM Trans. Model. Comput.
Simul., 16(1), 1-25

Oreg, S., 2006. Personality, context, and resistance to
organisational change. The European journal of
work and organisational psychology, (15), 73-101

REPAST Developers Group, (2010), Repast Home
Page, Available from: http://repast.sourceforge.net
[accessed 01 May 2011]

Shah, M., 2009, R and Java – JRI using eclipse,
Available from: http://mithil-
tech.blogspot.com/2009/11/r-and-java-jri-via-
eclipse.html [accessed 01 May 2011].

The R Project for Statstical Computing, (2010), The R
Project for Statistical Computing, Available from:
http://www.r-project.org/ [accessed 01 May 2011]

240

