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ABSTRACT 
Computer experimental designs are used to generate 
data in metamodeling of multiresponse engineering 
systems.  Metamodels, which are also called surrogate 
models, offer more efficient prediction of system 
responses but add errors when used as surrogates for the 
simulators.  Error sizes depend on computer 
experimental designs.  Only bias errors are incurred in 
deterministic computer experiments; however, the 
majority of experiments reported in the literature are not 
optimized for minimum bias.  Box and Draper–the 
pioneers of the response surface methodology–
originated the work on minimum bias designs in the late 
1950's. Space-filling designs such as the Latin 
hypercubes are mainly in current use; sometimes even 
in response surface models.  This work is a practical 
study via a number of analytical and electronic circuit 
examples on the use of minimum bias designs for 
response surface metamodels.  Some minimum bias 
designs in hypercuboidal spaces are also introduced. 
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1. INTRODUCTION 
Computer experimental designs are sampling 
techniques used to determine combinations of design 
variables to generate metamodels (also known as 
surrogate models) of complex engineering systems 
responses. Different sampling techniques are used to 
generate metamodels using simulation output for 
system responses for points in the experimental design. 
For deterministic simulations, errors introduced by the 
metamodels are systematic, or bias, errors caused by the 
deficiency of the metamodel in truly representing the 
response. Contrary to data in practical experiments, no 
variance-related error components are present in 
computer experiments.  

Experimental designs can be categorized into 
classical designs and the more recent space-filling 
designs (Chen et. al 2006).  Classical designs such as 
factorial designs (Myers and Montgomery 1995) and 
central composite designs (Box and Wilson 1951) are 
primarily used in response surface modeling methods. 

Space-filling designs such as the Latin hypercube 
designs (Mckay, Beckman, and Conover 1979) aim at 
uniformly scattering the points over the design variables 
space.  

 Different system response complexities require 
different metamodel types in order to adequately 
accommodate the underlying behavior and reduce bias 
errors. Hence, different metamodel types exist 
depending on the underlying response. Response 
surface models and kriging metamodel types receive 
much coverage in the current literature on the design 
and analysis of computer experiments. Other types, 
considered to be equally competitive in current usage 
according to (Simpson et al. 2008) include multivariate 
adaptive splines, radial basis functions, neural networks, 
and support vector regressors. The study in (Chen et al. 
2006) concludes that no one metamodel type stands out. 
A similar conclusion is made in (Wang 2003), stating 
that no one metamodel type is definitely superior to 
others.  According to (Goel et. al 2007), the consensus 
among researchers is that no single metamodel type can 
be considered the most effective for all responses. 
Nonetheless, (Wang 2003) also concludes that kriging 
and second-order polynomial response surfaces are the 
most intensively investigated metamodels.   Based on a 
Google Scholar search, the work in (Simpson et al. 
2008) concludes that response surface models are the 
favorite methods in structural optimization disciplines.  
While (Viana and Haftka 2008) conclude in a Google 
Scholar search that the distinction between metamodels 
diminished after an initial popularity for response 
surface and artificial neural networks techniques; they 
nonetheless acknowledge that response surface models 
are the favorite techniques in structural optimization. 

The review in (Chen et. al, 2006) on the design and 
modeling of computer experiments investigated 
experimental design methods and their relation to the 
various types of metamodels used in computer 
experiments.  The review presented conclusions from 
attempts by many researches to determine the most 
appropriate experimental design for the selected 
metamodel type.  Based on their own computational 
study tests on the available options, (Chen et. al, 2006) 
conclude that response surface model designs such as 
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the central composite designs and the Box-Behnken 
designs are "good only" for response surface models, 
while all other experimental designs (space-filling 
designs such as the Latin hypercube samples) are 
appropriate for all metamodels other than the response 
surface models.  It is noteworthy to mention here that 
minimum bias designs were not included in the review 
by (Chen et. al 2006). 

A Google Scholar search similar to those in 
(Simpson et al. 2008) and (Viana and Hafka 2008) was 
conducted in this work in April, 2011.  The results are 
shown in Table 1 for response surface models and in 
Table 2 for kriging metamodels. 

 
Table 1: Search Results Related to Response Surface 
Models Using Google Scholar  

Search Phrase 

Number of 
Publications 

2000-
2011 

2005-
2011 

approximation OR metamodel OR 
surrogate AND "response surface" 12800 9090 

"experimental design" AND 
"response surface" 15400 12400 

"minimum bias design" AND 
"response surface" 24 14 

"Latin hypercube" AND  
"response surface" 2210 1720 

 
 
Table 2: Search Results Related to Kriging Metamodels 
Using Google Scholar  

Search Phrase 

Number of 
Publications 

2000-
2011 

2005-
2011 

approximation OR metamodel OR 
surrogate AND "kriging" 9360 6790 

"experimental design" AND 
"kriging" 1830 1340 

"Latin hypercube" AND "kriging" 1370 1130 
 
The results in Tables 1-2 lead to the following 

general possible interpretations with regard to 
experimental designs and metamodeling methods: 

 
• Response surface models of the 1950's still 

compete with the more recent metamodels 
such as the kriging type.  As seen in Table 1, 
the number of publications with "response 
surface" in combination with any of the words 
approximation, metamodel, or surrogate since 
2000 is about 12,800.  The majority of these 
publications (9,090) appeared in the last half of 
the last decade from 2005 to 2011.  The 
corresponding statistics for "kriging" 
metamodels are 9,360 for the period 2000-
2011, with 6,790 of these publications 
appearing in the period 2005-2011. 

• From the other tables entries, of the 15,400 
papers since 2000 having the phrase "response 
surface" AND "experimental design", only 24 
papers mention "minimum bias designs" while 
2,210 papers talk about "Latin hypercube" 
designs. What are the reasons for the 
unpopularity of minimum bias computer 
designs?  During the times minimum bias 
designs were presented in articles in the late 
1950's and early 1960's (Box and Draper 1959; 
Draper and Lawrence 1965), experiments were 
conducted in the laboratories, and hence the 
reasons for avoiding large experimental 
designs are obvious. However, the recent 
space-filling designs used in computer 
experiments of today can have larger sizes than 
most of minimum bias designs, so reasons 
attributed to size for ignoring these designs are 
ruled out. 
 

There are two main objectives for the work 
presented in this paper:  

 
• To show that minimum bias computer 

experimental designs can potentially give more 
accurate response surface models than the 
widely used space-filling designs of 
comparable size. This is demonstrated via 
analytical functions and electronic circuits. 

• To introduce some minimum bias computer 
experimental designs for hypercuboidal spaces 
of dimensions 2 to 6. 
 

        The remainder of this paper is organized as 
follows: section 2 demonstrates through analytical 
examples the motives for using minimum bias designs.  
Section 3 deals with error types due to variance and 
bias, presenting basis which are subsequently applied to 
cuboidal design spaces to construct minimum bias 
designs.  Some of these designs are then used in the 
electronic circuit examples of section 4.  Conclusions 
are given in section 5.  

 
2. MOTIVATION 
Sample points in a minimum bias experimental design 
are located in the design region such that the design's 
moments satisfy certain conditions as outlined in the 
next section.  In this section, analytic examples are used 
to demonstrate the superiority vis-à-vis prediction 
accuracy of metamodels based on minimum bias 
designs (MBD) in comparison to models derived using 
other experimental designs such as the Latin hypercube 
(LHC) designs.   
 Figure 1 shows four experimental designs used to 
derive a first-order response surface for the response 
given in Equation (1):  
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(b) 

 

 
(c) 

 
(d) 

 
Figure 1: Experimental Designs (a) MBD 1 (b) MBD 2 
(c) FAC (d) LHC  
 
 Two MBDs are shown in parts (a) and (b); part (c) 
depicts the standard response surface model design 
known as factorial design (FAC), and a LHC design is 
shown in part (d). 

Metamodels built using these designs are validated 
using a 21x21 sample. See Table 3.  

 
Table 3: Validation Results Corresponding to the Four 
Experimental Designs in Figure 1 

Experimental Design Figure 1 Part RMSE 
MBD 1 a 1.160 
MBD 2 b 1.160 

FAC c 1.243 
LHC d 1.381 

 
 As shown in the table, the lowest root mean square 
error (RMSE) is obtained using any of the two MBDs. 
To demonstrate the relation between RMSEs for MBDs 
and LHCs, 100 metamodels are fitted using 100 
different LHC samples.  RMSEs for these metamodels 
are compared to the RMSE obtained if a MBD is used; 
see Figure 2. In the figure, the RMSEs shown are 
normalized to the RMSE for the MBD (the dotted line 
at 1.0). 
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Figure 2: Normalized RMSEs for 100 LHC Designs. 

The results depicted in the figure clearly 
demonstrate the superiority of MBDs.  Unfortunately, 

this is not always the case. To illustrate, the above 
metamodeling activities are repeated for the response in 
Equation (2) (see Figure (3) for function plot):  
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Figure 3: Function Plot for )(xy  in Equation (2) for:  
(a) [905,995]∈x  (b) [915,945]∈x    
  
 In Figure (4) RMSEs for 100 different metamodels 
built using 100 different LHC samples are compared to 
the RMSE for the metamodel derived using a MBD 
(each LHC sample has the same size as the MBD). 
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Figure 4: Normalized RMSEs for 100 LHC Designs for 
the Function in Figure 3(a). 
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at 1.0 corresponding to the normalized RMSE for the 
MBD).  However, for most of the 100 LHC samples, 
their RMSEs are worse by comparison to the MBD 
sample.  The reason for the discrepancy between results 
of the similar metamodeling activities summarized by 
Figures 2 and 4 are attributed to the underlying response 
being modeled. As it will be shown, MBDs result in 
least errors provided the underlying assumptions for 
deriving MBDs are satisfied.  Usually, the derivation 
assumes that the complexity of the response is such that 
it is higher than the response surface metamodel that fits 
it by one order; e.g., the response follows a third-order 
polynomial if the metamodel fitted is a second-order 
polynomial.  Obviously, as the design variables space 
narrows down, such assumption about orders becomes 
more valid (see Figure 3). This is demonstrated in 
Figure 5, which is similar to Figure 4 except now the 
design space for the response is narrowed down to 

[915,945]∈x  from [905,995]∈x  in Equation (2).  
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Figure 5: Validation Results for the Function in Figure 
3(b). 
 
3. MINIMUM BIAS DESIGNS 
There are two sources for errors in metamodels: (i) 
noise in the experimental design data used to fit the 
metamodel; and (ii) inadequacy of the metamodel.  
Accordingly, errors are categorized as: (i) variance, and 
(ii) bias errors, respectively.  In practical experiments, 
variance errors are the assumed error source while bias 
errors are the only source of errors in computer 
experiments. 
 Standard response surface designs such as the 
central composite designs are derived ignoring bias 
errors; i.e., derivations in this case assume that the fitted 
metamodel adequately represents the response.  In 
minimum bias designs, however, it is customary to 
assume that the true response is a one-order higher 
polynomial than the metamodel.  Thus, if the 
metamodel is a second-order polynomial then the MBD 
is derived assuming a third-order polynomial response. 
 There is no intention in this paper to provide 
rigorous mathematical treatment for MBD derivations.  
Such derivations originated in the pioneering work by 
Box and Drapper in 1950's (Box and Draper 1959), with 
more recent treatment in (Goel et. al 2008) and 
(Abdelbasit and Butler 2006).  The results are presented 
in terms of satisfying the necessary and sufficient 

conditions for MBD derivation in terms of the so-called 
design moments. 
 (Draper and Lawrence 1965) applied the above 
mathematical conditions in (Box and Draper 1959) to 
derive MBDs for cuboidal regions.  They used 
parameterized experimental design sets to build first 
and second-order MBDs. However, many of the 
tabulated results involve sets with parameters outside 
the assumed coded design space boundaries.  This may 
be inappropriate in many practical engineering system 
design problems; for example, negative transistor 
widths cannot be implemented in practice.  
 Our work (also for cuboidal design spaces) 
involves the parameterized experimental design sets 
mentioned shortly later on in this section.  However, 
solutions for the parameters resulting in practical MBD 
sets (i.e., with none of the parameters outside the design 
space) are taken when the mathematical conditions 
related to design moments are applied.  The sets are 
used to construct second and third-order MBDs. 

Consider a k -dimensional space with design 
(input) variables kxxx ,...,, 21 .  It is assumed that the 
space is coded such that 1,...,,1 21 +≤≤− kxxx .  Second 
and third-order MBDs in our work are constructed 
using combinations of the following sets: )0( kC , 

)( kF α , and ),( akaS −βα .  Explanation for this notation 
is provided in Table 4.  

 
Table 4: Notation Used 

Notation Meaning #points Notes 

)0( kC  a design point at 
the center  1 0...1 === kxx  

)( kF α  factorial design k2  
See Table 5 
for 3=k  

),( akaS −βα
 

All k  
permutations of 
factorial designs 

with  
a variables at 

α and 
ak − variables 
at β  

kk2  
See Table 6 
for 3=k  

 
 
 
 

Table 5: )( kF α Factorial Design for 3=k  
α±=1x  α±=2x  α±=3x  

α− α−  α−  
α− α−  α+  
α− α+  α−  
α− α+  α+  
α+ α−  α−  
α+ α−  α+  
α+ α+  α−  
α+ α+  α+  
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Table 6: ),( akaS −βα Design for 3=k with 1=a  

α±=1x  
β±=2x  
β±=3x  

β±=1x  
α±=2x  
β±=3x  

β±=1x  
β±=2x  
α±=3x  

1x  2x  3x  1x  2x  3x  1x  2x  3x  
α−  β−  β−  β−  α−  β−  β−  β− α−
α−  β−  β+  β−  α−  β+  β−  β− α+
α−  β+  β−  β−  α+  β−  β−  β+ α−
α−  β+  β+  β−  α+  β+  β−  β+ α+
α+  β−  β−  β+  α−  β−  β+  β− α−
α+  β−  β+  β+  α−  β+  β+  β− α+
α+  β+  β−  β+  α+  β−  β+  β+ α−

α+  β+  β+  β+  α+  β+  β+  β+ α+  
 

 MBDs for 62 −=k  (generated by applying the 
sufficient and necessary conditions in the references 
mentioned at the beginning of this section to the above 
design sets) are given in Table 7 for second-order 
MBDs and in Table 8 for third-order designs.  Add one 
center point )0( kC  for each row in the tables to 
complete the MBD. 

 
Table 7: Second-Order MBDs 

k  )( kF α  
α  

),( akaS −βα  
α  β  a  

2 - 0.418 0.759 1 
3 - 0.816 0.434 1 
4 - 0.868 0.448 1 
5 - 0.913 0.460 1 
6 0.620 0.973 0.450 1 

 
Table 8: Third-Order MBDs 

k  )( kF α  
α  

),(1
akaS −βα  ),(2

akaS −βα  
α  β  a  α  β a

2 0.685 0.255 0.741 1 - - - 
3 - 0.775 0.252 1 0.378 0.763 1 
4 - 0.844 0.305 1 0.202 0.743 1 
5 0.724 0.801 0.311 1 - - - 
6 - 0.951 0.287 1 0.194 0.742 1 

 
 
 Note that the size of second-order MBDs in Table 7 

is kk21+  points for 5≤k . 
 

4. APPLICATION TO ELECTRONIC CIRCUIT 
MODELING 

In this section two electronic circuits are modeled using 
MBDs and the results are compared to LHC designs.  
The two circuits are the amplifier and filter in Figure 6.   
 

 

Figure 6: Two Electronic Circuits: (a) Amplifier  
(b) Filter.  
 
 The gain (the ratio of output signal to the input 
signal) amplifierA   of the amplifier, and the maximum gain 

filterA  and bandwidth filterBW  of the filter are modeled 
using the appropriate MBDs in Table 7, with 2=k  for 
the amplifier and 5=k  for the filter.  Figure 7(a) shows 
RMSE comparisons for amplifierA  for the region 

[2,200]1 ∈W  and [2,200]2 ∈W , where 1W  and 2W  are 
the width of the two amplifier transistors M1 and M2 in 
Figure 6(a).  When the space is narrowed down to 

[2,20]2 ∈W  for 2W , RMSEs become worse (by 
comparison to RMSE for the MBD) for more of the 100 
LHC samples as demonstrated in part (b) of Figure 7.  
This is expected as demonstrated earlier for the function 
in Figure (3).  
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Figure 7: Results for the Amplifier Circuit: (a) for the 
Region [2,200]1 ∈W  and [2,200]2 ∈W  (b) for the 
Narrower Region [2,200]1 ∈W  and [2,20]2 ∈W . 
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 Results for RMSEs for the filter circuit are shown 
in Figure 8.  Note that while the results give advantage 
for the MBD for filterA  as shown in part (a); however, 
part (b) of the figure shows that RMSEs for the LHC 
samples are lower for filterBW .  This is the worst case 
obtained in our work.  Nonetheless, even for this case 
the RMSE for all 100 LHC samples is nearly 90% on 
average of the RMSE obtained using MBD as can be 
inferred from Figure 8(b).  
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Figure 8: Results for the Filter Circuit: (a) filterA  
 (b) filterBW .  
  
5. CONCLUSIONS 
Metamodels are appropriate surrogates for simulators in 
the design of complex engineering systems provided 
that the errors incurred are acceptable.  Bias errors due 
to metamodel inadequacy result in inaccurate 
metamodels when computer experimental data are used 
to construct these metamodels.  This paper 
demonstrated that minimum bias computer 
experimental designs are potentially superior in 
response surfaces by comparison to space-filling 
designs such as the popular Latin hypercube samples.  
Also, the paper introduced minimum bias designs for 
normalized hypercuboidal spaces.  The list of these 
designs is by no means exhaustive, and more work is 
needed to expand the list for higher-dimension spaces 
and higher-order minimum bias designs.  
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