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ABSTRACT 
The paper presents some numerical results for supply 
networks modeled by a fluid dynamic approach. A 
mixed continuum-discrete model is examined: the 
dynamics on each arch is described by a conservation 
law for the goods density, and an evolution equation for 
the processing rate. For solving dynamics at nodes, two 
routing algorithms are considered, maximizing the flux 
with possible adjustments of the processing rate. 
Simulations of a supply network have been made 
assigning a constant input profile with one 
discontinuity. A functional is defined to locate the 
discontinuity point in order to maximize the overall 
production. Parameters dependence is shown solving 
Riemann Problems with different rules. 

 
Keywords: conservation laws, supply networks, 
simulation. 

 
1. INTRODUCTION 
Control production processes aiming to improve 
performance in supply networks through the optimal 
choice of input flow, reduction of dead times and 
bottlenecks, etc, are of great interest. 

Different models have been proposed for supply 
systems. Most of them are discrete and based on 
individual parts considerations; others are continuous 
dealing with ordinary differential equations (see 
Armbruster et al. 2006a, Armbruster et al. 2006b, 
Armbruster et al 2004, Daganzo 2003), or/and partial 
differential equations. 

The first paper, that relies on continuous equations, 
is Armbruster et al. 2006a, where the authors, following 
a limit procedure on the number of parts and suppliers, 
have obtained a conservation law, whose flux involves 
either the goods density or the maximal processing rate.  

Due to the difficulties in finding solutions to the 
general equation proposed in it, other continuous 
models have been introduced for sequential supply 
chains (see Bretti et al. 2007, D’Apice et al. 2006, 
Göttlich et al. 2005), with extensions to networks 
(Göttlich et al. 2006, D’Apice et al. 2009, Helbing et al. 
2004, Helbing et al. 2005).  
 In this paper, we focus the attention on a discrete-
continuous model for supply networks defined in 
D’Apice et al. 2009. According to it each arch is 

modeled by a system of two equations: a conservation 
law for the goods density, and an evolution equation for 
the processing rate.  

The evolution at a node with one incoming arc and 
more outgoing ones or with more incoming arcs and 
one outgoing arc is interpreted thinking of it as a 
Riemann Problem (RP), a Cauchy Problem with 
constant initial data on each arc, for the density equation 
with processing rate data as parameters. RPs are solved 
using two different “routing” algorithms: the first one 
allows the redirection of goods to outgoing sub-chains 
maximizing the flux over incoming sub-chains; the 
second one is based on the maximization of goods both 
on incoming and outgoing sub-chains.  

Goods flux is maximized for both algorithms also 
considering two additional rules:  

• objects are processed in order to maximize the 
flux with the minimal value of the processing 
rate;  

• objects are processed in order to maximize the 
flux: if a solution with only waves in the 
density exists, then such a solution is taken; 
otherwise the minimal processing rate wave is 
produced.  

The first rule tends to make adjustments of the 
processing rate more than the second one, even when it 
is not necessary for purpose of flux maximization. 

Such last rule is more appropriate to reproduce the 
“Bullwhip effect”, see Daganzo 2003: under certain 
conditions (delays in adaptation of production or 
delivery rates), the oscillations in delivery and in the 
resulting inventories (stock level of the products) grow 
from one producer to the next upstream one, leading to 
instability with respect to perturbation in the production 
rate. 

The model can be used to study situations 
characterized by the possibility to reorganize the supply 
system: in particular, the processing rate can be 
readapted for some contingent necessity.  

Using some ad hoc numerical schemes (see  Bretti 
et al. 2007), based on the classical Godunov method 
(Godunov, 1959), simulation results have been obtained 
for a supply network modeling the chips production. In 
particular, a piecewise constant function with one 
discontinuity, namely a function of Heavyside type, has 
been chosen as input profile. In fact, as it happens in 
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real processes, goods are injected inside supply 
networks at almost constant levels in different time 
intervals. The obtained results present some expected 
features and some unexpected ones: the production, 
measured by the density on the last arc of the chain, is 
strongly influenced by the discontinuity point of the 
input profile; unexpectedly, analysis on the final 
product flow indicates that final goods start to be 
produced always at the same temporal instant, 
independently from the choice of the discontinuity in 
the input profile. Moreover, discontinuity shifts do not 
imply simply temporal translations of final product 
flows, hence indicating the presence of a strong non 
linearity for the whole system. Finally, a numerical 
study of the temporal integral of the final product flow 
(representing the number of produced goods) shows the 
existence of a time instant at which the discontinuity 
point of the input profile has to be placed for the 
maximization of the overall production. This value does 
not depend on the rules used to solve the dynamics at 
nodes. 

The outline of the paper is the following. Section 2 
deals with the mathematical model for supply networks. 
Riemann Solvers at nodes are described considering 
different routing algorithms, and finally an example is 
reported. In Section 3, the numerical results obtained for 
a supply network are considered and discussed. Finally, 
the paper ends with conclusions in Section 4. 
 
2. MATHEMATICAL MODEL 
A supply network is a finite connected graph consisting 
of a finite set of arcs (sub-chains) 

{ }: 1,..., 1kI I k N= = +  and a finite set of junctions P.  
On each sub-chain kI  (see D’Apice et al. 2009) we 

consider the system:  
 
( )
( ) ( )

( , ) 0,
0,

k
k ε k k xt

k kt x

ρ f ρ μ
μ μ

⎧ + =⎪
⎨ − =⎪⎩

                                           (1) 

 
where ( ),kρ t x  and ( ),kμ t x  are, respectively, the 
density of the processed objects on kI  and the 
production rate of kI , while k

εf  is the flux, defined as 
follows: 

 

( ) max

, 0 ,
,

( ), ,
k k kk

ε k k
k k k k k k

ρ ρ μ
f ρ μ

μ ε ρ μ μ ρ ρ
≤ ≤⎧

= ⎨ + − ≤ ≤⎩
        (2)  

 
or, alternatively, 
  

( ) max

(1 ) , 0 ,
,

, ,
k k k kk

ε k k
k k k k

ερ ε μ μ ρ
f ρ μ

ρ ρ μ μ
+ − ≤ ≤⎧

= ⎨ ≤ ≤⎩
         (3) 

 
where max

kρ  and max
kμ  are, respectively, the maximum 

density and processing rate. From now on, we assume 

that ε  is fixed and, for simplicity, we drop the indices, 
thus indicating the flux by ( , )k kf ρ μ . 
  
Remark  We can consider different fluxes  k

kε
f   for each 

sub-chain kI  (also choosing ε  dependent on k ), or 
different slopes km  for each sub-chain kI : 
  

( )
max

, 0 ,
,

( ), ,

k
k k k

kk
ε k k

k
k k k k k k

k

μ
m ρ ρ

m
f ρ μ

μ
μ ε m ρ μ ρ ρ

m

⎧ ≤ ≤⎪⎪= ⎨
⎪ + − ≤ ≤
⎪⎩

  (4) 

 
where 0km ≥  represents the velocity of each processor 
and is given by: 
 

,k
k

k

L
m

T
=                                                                      (5) 

 
with kL  and kT , respectively, fixed length and 
processing time of processor kI  . 
 

Sub-chains are connected by junctions P, each one 
having a finite number of incoming sub-chains and 
outgoing ones. Hence, we identify P with  
( ) ( )( )1 1,..., , ,...n mi i j j  where the first n − tuple indicates 

the set of incoming sub-chains and the second m − tuple 
the set of outgoing sub-chains. Each sub-chain can be 
incoming sub-chain at most for one junction and 
outgoing at most for one junction. 

 

 
Figure 1: Junction P with n incoming sub-chains and m 
outgoing ones 

 
The supply network evolution is described on each 

arc kI  by a finite set of functions ( ),k kρ μ  defined on 

[ [0, kI+∞ × . Dynamics at a junction is obtained solving 
RPs. 
 
Definition A Riemann Solver (RS) for the junction P  
with n  incoming sub-chains and m  outgoing ones (of 
n m×  type) is a map that associates to a Riemann data  

0 0 1,0 1,0 ,0 ,0( , ) ( , ,..., , )n m n mρ μ ρ μ ρ μ+ +=  at P  a vector  

0 0 1 1ˆ ˆ ˆˆ ˆ ˆ( , ) ( , ,..., , )n m n mρ μ ρ μ ρ μ+ +=  so that the solution is 
given by the waves , 0 ˆ( , )i iρ ρ  and , 0 ˆ( , )i iμ μ  on the sub-
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chain , 1,...,iI i n=  and by the waves , 0ˆ( , )j jρ ρ  on the 
sub-chain , 1,...,jI j n n m= + + . We require the 
consistency condition 0 0 0 0( (( , ))) (( , )).RS RS ρ μ RS ρ μ=  

 
2.1. Riemann Solvers for suppliers 
We discuss RSs for two types of nodes, according to the 
real case we examine here (for more detail refer to 
Bretti et al. 2007 and D’Apice et al. 2009): 

1. a node with two incoming sub-chains and one 
outgoing one ( 2 1× ); 

2. a node with one incoming sub-chain and two 
outgoing ones (1 2× ). 

 For a given arc kI , (1) is a system of conservation 
laws in the variables ( , )U ρ μ= , namely: 
 

( ) 0,t xU F U+ =                                                           (6) 
 
with flux function  
 

( ) ( ( , ), )F U f ρ μ μ= − .                                                 (7) 
 
Eigenvalues and eigenvectors are: 
 

1 1 1
1

0
, ,

1
( , ) 1, ( , )

, ,
1

ε
ε

ρ μ
λ ρ μ r ρ μ

ρ μ
−
+

⎧ ⎛ ⎞
<⎪ ⎜ ⎟

⎝ ⎠⎪≡ − = ⎨
−⎛ ⎞⎪ >⎜ ⎟⎪⎝ ⎠⎩

            (8) 

 

2 2

1, , 1
( , ) ( , ) .

, , 0
ρ μ

λ ρ μ r ρ μ
ε ρ μ

<⎧ ⎛ ⎞
= =⎨ ⎜ ⎟>⎩ ⎝ ⎠

                   (9) 

 
Hence the Hugoniot curves for the first family are 
vertical lines above the secant ρ μ=  and lines with 
slope close to 1/ 2−  below the same secant. The 
Hugoniot curves for the second family are just 
horizontal lines. Since we consider positive and 
bounded values for the variables, we fix the invariant 
region: 
 

max max{( , ) : 0 , 0 ,D ρ μ ρ ρ μ μ= ≤ ≤ ≤ ≤                              

max max0 (1 ) (1 ) (1 ) 2 }.ε ρ ε μ ε ρ μ≤ + + − ≤ + =              (10) 
 

Observe that: 

 

max max
2 .

1
ρ μ

ε
=

+
                                                       (11) 

 
We consider a node P  of n m×  type and a 

Riemann initial datum 1,0 1,0 ,0 ,0( , ,..., , )n m n mρ μ ρ μ+ + . The 
following Lemma holds: 
 

Lemma  On the incoming sub-chains, only waves of the 
first family may be produced, while on the outgoing 
sub-chains only waves of the second family may be 
produced. 
 

From such Lemma, given the initial datum, for 
every RS it follows that: 
 

,0

ˆ ˆ( ), 1,..., ,
ˆ , 1,..., ,

i i

j j

ρ φ μ i n
μ μ j n n m
= =
= = + +

                                 (12) 

 
where the function ( )φ ⋅  describes the first family curve 
through ,0 ,0( , )k kρ μ  as function of ˆkμ : 
 

( ) ( )

( )( ),0

,0
,0 ,0

,0 ,0 ,0
ˆ1

1

ˆ, ,

ˆ1 2ˆ ˆ, , ,
1

ˆ, , ,k k

k k k

k k
k k k k k

k k k k k
ε μ μ

ε

μ μ μ

ε μ ρφ μ μ μ ρ μ
ε

ρ μ μ ρ μ
− −

+

≥⎧
⎪
⎪
⎪ − += ⎨ < ≤

+⎪
⎪
⎪ + < >
⎩

                                   

           

  

                                                                                   (13) 
 
where kμ  is the point at which the first family curve 
changes:  
 

,0 ,0 ,0
1 1

,0 ,0 ,0 ,02 2

, ,
, .

k k k
k ε ε

k k k k

ρ ρ μ
μ

ρ μ ρ μ+ −

≤⎧⎪= ⎨ + >⎪⎩
                       (14) 

 
We define two different RSs at a junction to 

represent two different routing algorithms: 
RA1.  We assume that: 

(A) the flow from incoming sub-chains is 
distributed on outgoing ones according to 
fixed coefficients; 

(B) respecting (A), the processor chooses to 
process goods in order to maximize fluxes 
(i.e., the number of goods which are 
processed) on incoming sub-chains. 

RA2. We assume that the number of goods through 
the junction is maximized both over incoming and 
outgoing sub-chains. 

For both routing algorithms we can maximize the 
flux of goods considering one of the two additional 
rules: 
SC2. The objects are processed in order to maximize 
the flux with the minimal value of the processing rate. 
SC3. The objects are processed in order to maximize 
the flux. If a solution with only waves in the density ρ  
exists, then such solution is taken, otherwise the 
minimal μ  wave is produced. 

To define RPs according to rules RA1 and RA2, 
we introduce the notation: 
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( , ),k k kf f ρ μ=                                                           (15) 
 
and define the maximum flux that can be obtained by a 
wave solution on each production sub-chain: 
 

max
max max

,0 max ,0 ,0
max

, 1,..., ,

( ), 1,..., .

k

k
k k k

μ k n
f ρ μ

μ ε ρ μ μ k n n m
μ

=⎧
⎪= −⎨ + − − = + +⎪
⎩

                                                                                   (16) 
 

It is possible to prove that a necessary and 
sufficient condition for the solvability of RPs at nodes is  
 

min max max
,0 max ,0 ,0

1 1 max

( ) ,
n n m

i j j j
i j n

ρ μ
f μ ε ρ μ μ

μ

+

= = +

⎡ ⎤−
≤ + − −⎢ ⎥

⎣ ⎦
∑ ∑  

                                                                                   (17) 
 

where 
 

( )( ) ( )
0 0 0

min
0 0

0 0 0 0

2 , ,
1,

1
, .

1

i

ε ρ ρ μ
εf ρ μ
ε ε

ερ μ ρ μ
ε

⎧ ≤⎪ +⎪= ⎨ −⎪ + >⎪ +⎩

              

 
            (18) 

 
2.1.1. One outgoing sub-chain 
In this case, algorithms RA1 and RA2 coincide since 
there is only one outgoing sub-chain. 

We fix a node P  with 2  incoming arcs (labelled 
by 1 and 2) and 1  outgoing one (indicated by 3) and a 
Riemann initial datum given by 

0 0 1,0 1,0 2,0 2,0 3,0 3,0( , ) ( , , , , , )ρ μ ρ μ ρ μ ρ μ= . Let us denote 
with 1 1 2 2 3 3ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( , ) ( , , , , , )ρ μ ρ μ ρ μ ρ μ=  the solution of the 
RP at P. We introduce a priority parameter ]0,1[q∈ , 
that indicates a level of priority at the junction of 
incoming sub-chains. We define: 

 
min{ , },inc outΓ = Γ Γ                                                    (19) 

 
where  
 

2
max max

3
1

, . inc i out
i

f f
=

Γ = Γ =∑                                        (20) 

 
First, we compute îf , 1, 2,3i =  according to rules 

(SC2) and (SC3). Introduce the conditions:  
  (A1) max max

3 1 ;qf f<  

  (A2) ( ) max max
3 21 .q f f− <  

If incΓ = Γ , we get that max
î if f= , 1, 2i = , 

max max
3 1 2f̂ f f= + .  

If incΓ < Γ , we have that: 

• ( )max max max
1 3 2 3 3 3
ˆ ˆ ˆ,  1 ,  f qf f q f f f= = − =  when 

A1 and A2 are both satisfied; 

• max max max max
1 3 2 2 2 3 3
ˆ ˆ ˆ,  ,  f f f f f f f= − = =  when 

A1 holds and A2 is not satisfied; 
• max max max max

1 1 2 3 1 3 3
ˆ ˆ ˆ,  ,  f f f f f f f= = − =  when 

A1 is not satisfied and A2 holds. 
The case of both A1 and A2 false is not possible, 

since it would be max
3 incf > Γ .  

Now, we compute ˆkρ  and ˆ , 1, 2,3 kμ k = . On the 
incoming sub-chains , 1, 2,i i =  we have to distinguish 
two subcases. 

If max
î if f= , according to rules SC2 and SC3, we 

get: 
 

,0

ˆ ,ˆ ,
2 : 3 :

ˆ max{ , }.ˆ ,
i ii i

i i ii i

ρ μρ μ
SC SC

μ μ μμ μ
==
==

             (21) 

 
If max

î if f< , for both SC2 and SC3 rules, we get that 
ˆ , 1,2, iμ i =  solves the equation: 

 
ˆˆ ˆ ˆ( ( ) )i i i iμ ε φ μ μ f+ − = ,                                               (22) 

 
while  
 
ˆ ˆ( ), 1,2. i iρ φ μ i= =                                                     (23) 

 
On the outgoing sub-chain we have, for both rules SC2 
and SC3: 
 

3 3,0ˆ ,μ μ=                                                                    (24) 
 
while 3ρ̂  is the unique value solving the equation 

3 3,0 3 3̂ˆ( , ) ,f μ ρ f=  namely: 
 

3 3 3,0

3
3 3,0

3,0 3 3,0

ˆ ˆ, ,
ˆ ˆ

ˆ, .

                      

    

f f μ
ρ f μ

μ f μ
ε

⎧ ≤
⎪

= ⎨ −
⎪ + >
⎩

                              (25) 

 
2.1.2. One incoming sub-chain 
Consider a node P  with 1  incoming arc, labelled by 1, 
and 2  outgoing ones, indicated by 2 and 3 and an initial 
datum 0 0 1,0 1,0 2,0 2,0 3,0 3,0( , ) ( , , , , , )ρ μ ρ μ ρ μ ρ μ= . 

We introduce a distribution parameter ] [0,1α∈ , 
that indicates the percentage of goods, which, from the 
incoming arc 1, is directed to the outgoing arc 2 
(obviously, the arc 3 is interested by a percentage of 
goods equal to 1 α− ). We have different solutions for 
algorithms RA1 and RA2. In what follows, the 
asymptotic solution is reported only for the RA1 
algorithm, since RA2 is solved as for the node with one 
outgoing sub-chain.  

As usual, we first compute the fluxes solutions. 
Following rules (A) and (B) of the algorithm RA1, we 
get that: 
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( )
maxmax

max 32
1 1 2 1 3 1
ˆ ˆ ˆ ˆ ˆmin , , , , 1 .

1
  

ff
f f f αf f α f

α α
⎧ ⎫

= = = −⎨ ⎬
−⎩ ⎭

                                                                             (26) 

 
Densities and processing rates, ˆ ,iρ  and ˆ , 1, 2,3,iμ i =  are 
obtained as follows.  
If max

1 1f̂ f= , we get: 
 

1 11 1

1 1 1,01 1

ˆ ,ˆ ,
2 : 3 : ˆ max{ , }.ˆ ,

ρ μρ μ
SC SC

μ μ μμ μ
==
==

              (27) 

 
If max

1 1f̂ f< , 1μ̂ , either for rule SC2 or SC3, satisfies 
the equation: 
 

1 1 1 1̂ˆ ˆ ˆ( ( ) )μ ε φ μ μ f+ − = ,                                           (28) 
 
while: 
 

1 1ˆ ˆ( ).ρ φ μ=                                                                  (29) 
 
On the outgoing sub-chain j, 2,3,j =  for both rules 
SC2 and SC3, we have that: 
 

,0ˆ ,j jμ μ=                                                                   (30) 
 
while ˆ jρ  solves the equation ,0

ˆˆ( , ) ,j j j jf μ ρ f=  namely: 
 

,0

,0
,0 ,0

ˆ ˆ, ,
ˆ ˆ

ˆ, .

                     

  

j j j

j
j j

j j j

f f μ
ρ f μ

μ f μ
ε

⎧ ≤
⎪

= ⎨ −
⎪ + >
⎩

                               (31) 

 
Remark  For sequential sub-chains (one incoming arc, 
1, and one outgoing arc, 2), the fluxes solutions are 

{ }max max
1 2 1 2
ˆ ˆ min ,f f f f= =  while ˆ ,iρ  and ˆ , 1,2, iμ i =  

are obtained for rules SC2 and SC3 as before.  
 
2.2. Example 
In what follows we report densities and production rates 
at the instant 0t =  and after some times (at 1t = ) for 
different initial data using different routing algorithms.  

We consider a node of type 2 x 1, assuming the 
following data: 
 

max0.25, 0.8, 1,2,3,  iε μ i= = =

1,0 2,0 3,0( , , ) (0.35,0.2,0.6),ρ ρ ρ =                               (32) 

1,0 2,0 3,0( , , ) (0.95,0.55,0.3).μ μ μ =                              
 
As there is only one outgoing sub-chain, 

algorithms RA1 and RA2 coincide and the choice 

0.6q =  indicates that 60% of goods flow is directed 
from arc 1 to the outgoing one. In Table 1, numerical 
results for asymptotic fluxes, densities and production 
rates are reported while Figures 1 and 2 show the 
behaviour of density and production rate waves. For 
both rules SC2 and SC3, the results are the same, with 
the exception of values 1μ̂  and 2μ̂  for rule SC3. For 
sub-chain 3, a shock wave in the density connect the 
initial and the asymptotic state while, for sub-chain 1 
and 2, there is no waves formation (Figure 2). A similar 
situation happens for production rates (Figure 3): in the 
case SC2, only sub-chains 1 and 2 are interested by 
waves formation. For rule SC3, shock formations do not 
occurs, as all sub-chains have asymptotic states equal to 
the initial ones. In fact SC2 tends to make adjustments 
of the processing rate more than SC3. 
 

Table 1: Numerical results for a node of 2 x 1 type 
RA1 = RA2 

 SC2 SC3 
f̂  (0.35, 0.2, 0.55) (0.35, 0.2, 0.55) 

ρ̂  (0.35, 0.2, 1.01) (0.35, 0.2, 1.01) 

μ̂  (0.35, 0.2, 0.3) (0.95, 0.55, 0.3) 
 

rt = 0

x

r 1,0

r 2,0

r 2,0

rt > 0

x

r̀ 1

r 1,0

r̀ 2

r 2,0

r̀ 3

r 3,0

 
Figure 2: Densities at t = 0 and t = 1 on sub-chains for 
rules SC2 and SC3 
 

mt =0

x

m1 ,0

m2 ,0

m3 ,0

mt > 0

x

m̀1

m1 ,0

m̀2m2 ,0

m3 ,0

 
Figure 3: Production rates at t = 0 and t = 1 on sub-
chains for rule SC2 
 
3. SIMULATIONS 
In this section, we present some simulation results to 
foresee the behaviour of goods fluxes on a supply 
network. In particular, we study how to choose the 
injection times of different goods levels to increase the 
production. 
 
3.1. Numerical methods 
We refer to a Godunov method for a 2 2×  system 
(details are in Bretti et al. 2007, Godunov 1959), which 
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is described as follows. Define a discrete grid in the 
plane ( ),x t , whose points are ( ) ( ), , ,n

jx t j x n t= Δ Δ  

j∈� , n∈ � , and indicate by k n
jρ  and k n

jμ , 
respectively, the approximations of density and 
production rate of the arc kI  in the point ( ), .n

jx t  An 

approximation scheme for the system (1) reads as: 
 

( ) ( )( )

( )
1 1

1

1

1

, , ,

,

n n n n
j j j j

n n
j j

k n k n k k k k
j j

k n k n k k
j j

g g
t
x
t
x

+ −

+

+

+

−

−

Δ⎧ = −⎪⎪ Δ
⎨ Δ⎪ = +
⎪ Δ⎩

ρ ρ ρ ρ

μ μ

ρ ρ

μ μ
(33) 

 
where the Godunov numerical flux g is found solving 
RPs among the states ( ),ρ μ− −  on the left and 

( ),ρ μ+ +  on the right: 
 
( )
( )

( )

,

1 2
,

1 1

1 1
,

2 2

1
,

1

, , ,

, ,

, ,

, ,

, ,

, 

, 

, 

, 

g

− +

+ − +

− − +

+ − − +

− − + +

− − − +

− − − +

− − +

− − +

−

−
+ −

+ +

+ −
+ −

−
+ + −

+

=

< ≤⎧
⎪
⎛ ⎞⎪ < >⎜ ⎟⎪⎝ ⎠
⎪= ⎨⎛ ⎞ ≥ >⎜ ⎟⎪⎝ ⎠⎪
⎪⎛ ⎞ ≥ ≤⎜ ⎟⎪⎝ ⎠⎩

%

%

ρ μ

ε ε
μ ρ μ

ε ε

ε ε
ρ μ μ

ε
μ εμ ερ μ

ε

ρ μ ρ μ

ρ μ ρ μ

ρ μ ρ μ

ρ μ μ μ

ρ μ μ μ

                                                                                     

                                                                                   (34) 
 
with 
 

( )1
2
εμ μ ρ μ− − −

+
= + −% .                                          (35) 

 
 We need to introduce the boundary data value, 
given by the term 1

k n
j−ρ . For the first arc of the supply 

network, 1
k n

j−ρ  is defined by an assigned input profile; 

otherwise, 1
k n

j−ρ  is determined by the solution to RPs at 
nodes. 

 
Remark. The construction of the Godunov method is 
based on the exact solution to the RP in the cell 

1
1, ,n n

j jx x t t +
− ⎤ ⎡⎤ ⎡×⎦ ⎣ ⎦ ⎣ . To avoid the interaction of waves 

in two neighbouring cells before time tΔ , we impose a 
CFL condition like: 
 

{ }0 1
1max ,
2

t
x

λ λΔ
≤

Δ
,                                               (36) 

 
where 0λ  and 1λ  are the eigenvalues of system (1). 
Since, in this case, the eigenvalues are such that 

0 1λ = , 1 1λ ≤ , the CFL condition reads as: 

 
1
2

t
x
Δ

≤
Δ

.                                                                     (37) 

 
3.2. A complex network 
We present some simulation results for a supply 
network, whose topology is in Figure 4. 
 

 
Figure 4: Network with 8 nodes and 10 arcs 

 
Such a network can model the chips production. 

First, potatoes are washed (arc 1I ) and then they are 
skinned off (arc 2I ). Assuming that two different types 
of fried potatoes are produced (classical and stick, for 
example), node 2 is a diverging point: a percentage α  
of potatoes are sent to arc 3I  for stick chips production, 
and a percentage 1 α−  to arc 4I  for the classical 
potatoes production. On arcs 5I  and 6I , potatoes are 
fried and on arcs 7I  and 8I  they are salted. Node 7 is a 
merging point: considering a certain priority level q, 
potatoes are directed to arc 9I  where they are put in 
envelope; on arc 10I , the obtained packets are sealed. 

The goods evolution inside the supply network is 
simulated in a time interval [ ]0,T , with T = 1000 min, 

using the approximation scheme (33) with 1
2

t
x
Δ

=
Δ

. 

The dynamics at node 2 is solved using the RA1 
algorithm. In fact, the redirection of potatoes in order to 
maximize the production on both incoming and 
outgoing sub-chains is not possible, since classical and 
stick potatoes have different shapes. Moreover, at node 
2, we use rule SC2 and a distribution coefficient 

0.3α =  for arc 3I . At node 7, dynamics is solved using 
the RA1 algorithm with rule SC3 and priority level 

0.4q =  for arc 7I  (notice that, for such last node, 
algorithm RA1 and RA2 coincide).  

We assume that, at the beginning of the simulation 
(t = 0), all arcs are empty. Moreover, in Table 2, initial 
conditions for processing rates, maximal processing 
rates, lengths and processing times, are reported for 
each arc , 1,...,10 kI k = .  
 

Table 2: Parameters for the supply network 
kI  ,0kμ  max

kμ  kL  kT  

1 10 15 15 15 

2 7 10 30 30 

3 7 10 20 20 
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4 15 20 15 15 

5 5 8 20 20 

6 5 10 20 20 

7 12 12 20 20 

8 10 10 25 25 

9 15 15 15 15 

10 10 10 10 10 

 
Maximal densities on arcs are obtained using 

equation (11), where we consider 0.2ε = . Boundary 
data are also needed: for arc 1, it represents the amount 
of goods, that have to be processed inside the supply 
network; for arc 8, it is a sort of wished production.  

The input profile for arc 1 is chosen as a constant 
piecewise function with one discontinuity, namely a 
Heavyside function. In fact, during production 
processes, goods are injected inside supply networks at 
almost constant levels in different time intervals: 
 

( )1,

30, 0 ,
,0

5, ,b

t t
t

t t T
≤ ≤⎧

= ⎨ < ≤⎩
ρ                                       (38) 

 
where t  is the time instant at which the injection levels 
inside the supply network abruptly change. Notice that 
levels 30 and 5 of 1,bρ  have been chosen according to 
the following criterion: when 0 ,t t≤ ≤  the arcs of the 
supply network process a great amount of goods and 
often reach the maximal density; when ,t t T< ≤  the 
arcs process goods whose density is always less than the 
maximal one. 

For arc 8, we assume a boundary datum equal to 
max

10 16.667ρ � , hence we require a possible wished 
output near to the maximal density processed by arc 10.  

The aim is to choose some t value, that guarantees 
maximal production. First we examine the behaviour of 

( )10 ,ρ t x , for 100t =  and 500t = . The overall system 
is completely influenced by t . In Figure 5, we notice 
one production peak at time, approximately, 400t = , 
but the average level of density is quite low (about 0.6). 
Such phenomenon is not present in Figure 6, where 
there is one peak production, and, after it, the 
production decreases slowly until it reaches a fixed 
constant level.  
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Figure 5: ( )10 ,ρ t x  for 100t =  
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Figure 6: ( )10 ,ρ t x  for 500t =  

 
In Figure 7 and 8, fixing 500t =  we show how 

the dynamics of the supply network is influenced by 
different choices of RSs at nodes 2 and 7. 
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Figure 7: ( )7 ,μ t x  for 500t =  using rule SC2 at node 2 
and SC3 at node 7 
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Figure 8: ( )7 ,μ t x  for 500t =  using rule SC3 at node 2 
and SC2 at node 7 
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The function ( ) ( )( )10 10 10 10, , ,f ρ t L μ t L , namely the 
flux on the last point of arc 10, in the case of rules SC2 
- SC3, is depicted in Figure 9 for different choices of t  
to understand the final product flows. The obtained 
results present some interesting features: first, although 
different values of t  are used, the flux starts to be 
different from zero always at the same temporal instant 
( 350t � ), indicating that the input flow does not 
influence the production dynamics, that depends only 
on network characteristics (initial conditions, maximal 
processing rates, arcs length, and so on); second, shifts 
of the input flow discontinuity do not foresee 
translations of ( ) ( )( )10 10 10 10, , ,f ρ t L μ t L . Such 
phenomenon indicates that, also using a conservation 
law with a linear function and a transport equation for 
the production rates, the dynamics on the whole 
network is strongly not linear.  
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Figure 9: ( ) ( )( )10 10 10 10, , ,f ρ t L μ t L  evaluated for 
different values of the discontinuity instant: 

100t = (continuous line), 200t = (dashed line) and 
500t = (dot-dashed line) 

 
The area described by ( ) ( )( )10 10 10 10, , ,f ρ t L μ t L , 

that can have strong variations for different t , 
represents the number of goods produced at the end of 
the simulation. In particular, we could ask if there exists 
a value t  for which  
 

( ) ( )( )10 10 10 10
0

, , ,
T

J f ρ t L μ t L dt= ∫                              (39) 

 
is maximum.  

In Figure 10, ( )J t  is reported for the following 
combination of rules at nodes 2 and 7: SC2 – SC2, SC2 
– SC3, SC3 – SC2, and SC3 – SC3. We observe that 
( )J t  almost increases linearly for a wide range of 

values of t  (precisely if [ ]200,700t ∈ ), until it 

reaches a maximum maxt , and then it almost decreases 
in a constant way.   
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Figure 10: behaviour of ( )J t  for different 
combinations of rules at nodes 2 and 7: SC2 – SC2 (dot 
dashed line); SC2 – SC3 (continuous line); SC3 – SC2 
(dashed line); SC3 – SC3 (dot dot dashed line)  
 

We get that maxt  is almost insensible to rules at 
nodes 2 and 7 and its numerical approximation is 

max 830t � . The just made analysis strictly depends on 
the input flow characteristics and network parameters. 
In general, the behaviour depicted in Figure 8 is a priori 
unpredictable due to the non linearity of supply 
networks, as confirmed by other similar simulation. 

In Figures 11 and 12, ( )10 ,ρ t x  and ( )10 ,μ t x  are 
represented for 830t �  in the case of SC2 – SC3 rules: 

( )10 ,ρ t x  is higher with respect to other cases already 

examined in Figure 5 and 6; ( )10 ,μ t x  is constant and 
equal to 10. Such result is not surprising since, 
according to RSs at nodes, the production rates are kept 
equal to the initial ones on outgoing sub-chains. 
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Figure 11: ( )10 ,ρ t x  for 830t �  
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Figure 12: ( )10 ,μ t x  for 830t �  
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A further remark can be done on the dependence of  

( )J t  by the distribution coefficient α  at node 2. In 

Figure 13, we represent different pictures of ( )J t , 
evaluated using rules SC2 – SC3, for different values of 
α . It is evident that, if α  grows, ( )J t  becomes higher 
but the value of t at which it attains its maximum point 
has no meaningful variations.  
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Figure 13: behaviour of ( )J t  using SC2 – SC3 for 
different values of α : 0.1α =  (dashed line); 0.3α =  
(continuous line);  0.5α = (dot dot dashed line) and 

0.8α =  (dot dashed line)  
 
4. CONCLUSIONS 
In this paper, starting from the model proposed in 
D’Apice et al. 2009, goods flows on a supply network 
have been studied.  

An input flow of piecewise constant type with only 
one discontinuity has been chosen for simulating the 
behaviour of a supply network for chips production.  

Recent studies on experimental data seems to 
confirm the correctness of the assumptions underlying 
the model. In particular, the real flow profiles on each 
arc are consistent with the shapes of the flux functions. 

For such a network it has been proven that an 
accurate choice of the discontinuity point allows to 
maximize the total final production. The influence of 
the supply evolution on RSs at nodes and on the 
distribution parameter is analyzed.  

In future we aim to develop numerical schemes to 
solve the optimal control problem of choosing an input 
flow of piecewise constant type in order to obtain an 
expected pre-assigned network outflow. The idea is to 
find the minimum of a cost functional measuring the 
network outflow evaluating its derivative with respect 
to the switching times (the controls) of the input flows  
through the evolution of generalized tangent vectors to 
the control and to the solution of the supply chain 
model.   
 
REFERENCES 
Armbruster, D., Degond, P., Ringhofer, C., 2006. A 

model for the dynamics of large queueing 
networks and supply chains, SIAM Journal on 
Applied Mathematics, 66 (3), pp. 896-920. 

Armbruster, D., Degond, P., Ringhofer, C., 2006. 
Kinetic and fluid models for supply chains 
supporting policy attributes, Transportation 
Theory Statist. Phys. 

Armbruster, D., Marthaler, D., Ringhofer, C., 2004. 
Kinetic and fluid model hierarchies for supply 
chains, SIAM J. on Multiscale Modeling, 2 (1), pp. 
43-61. 

Bretti, G., D’Apice, C., Manzo, R., Piccoli, B., 2007. A 
continuum - discrete model for supply chains 
dynamics, Networks and Heterogeneous Media 
(NHM), 2 (4), pp. 661-694. 

Daganzo, C., 2003. A Theory of Supply Chains, 
Springer Verlag, New York, Berlin, Heidelberg. 

D’Apice, C., Manzo, R., 2006. A fluid dynamic model 
for supply chains, Networks and Heterogeneous 
Media (NHM), 1 (3), pp. 379-398. 

D’Apice, C., Manzo, R., Piccoli, B., 2009. Modelling 
supply networks with partial differential equations, 
Quarterly of Applied Mathematics, 67 (3), pp. 
419-440. 

Helbing, D., Lammer, S., Seidel, P., Seba, T., 
Platkowski, T., 2004. Physics, stability and 
dynamics of supply networks, Physical Review E 
70, 066116. 

Helbing, D., Lammer, S., 2005. Supply and production 
networks: from the bullwhip effect to business 
cycles, in D. Armbruster, A. S. Mikhailov, and K. 
Kaneko (eds.) Networks of Interacting Machines: 
Production Organization in Complex Industrial 
Systems and Biological Cells, World Scientific, 
Singapore, pp. 33-66. 

Godunov, S. K., 1959. A finite difference method for 
the numerical computation of discontinuous 
solutions of the equations of fluid dynamics, Mat. 
Sb. 47, pp. 271-290. 

Göttlich, S., Herty, M., Klar, A., 2005. Network models 
for supply chains, Communication in 
Mathematical Sciences, 3 (4), pp. 545-559. 

Göttlich, S., Herty, M., Klar, A., 2006. Modelling and 
optimization of Supply Chains on Complex 
Networks, Communication in Mathematical 
Sciences, 4 (2), pp. 315-330. 
 

AUTHORS BIOGRAPHY 
 
CARMINE DE NICOLA was born in Salerno, Italy, 
in 1972. He graduated in Electronic Engineering in 
2002 with a thesis on simulations of processor IAPX 
86. He obtained a PhD in Mathematics at the University 
of Salerno in 2011 discussing a thesis about supply 
networks modelling and optimization techniques. He is 
actually a research assistant at the University of 
Salerno. His scientific interests are about fluid – 
dynamic models for the analysis of traffic flows on 
networks, operational research models in airport 
management, and queueing theory.  
His e-mail address is denicola@diima.unisa.it. 
 

209



ROSANNA MANZO was born in Polla, Salerno, Italy. 
She graduated cum laude in Mathematics in 1996 and 
obtained PhD in Information Engineering in 2007 at the 
University of Salerno. She is a researcher in 
Mathematical Analysis at the Department of Electronic 
and Information Engineering University of Salerno. Her 
research areas include fluid – dynamic models for 
traffic flows on road, telecommunication and supply 
networks, optimal control, queueing theory, self – 
similar processes, computer aided learning. She is 
author of about 40 papers appeared on international 
journals and many publications on proceedings.  
Her e-mail address is  rmanzo@unisa.it. 
 
LUIGI RARITÁ was born in Salerno, Italy, in 1981. 
He graduated cum laude in Electronic Engineering in 
2004, with a thesis on mathematical models for 
telecommunication networks, in particular tandem 
queueing networks with negative customers and 
blocking. He obtained PhD in Information Engineering 
in 2008 at the University of Salerno discussing a thesis 
about control problems for flows on networks. He is 
actually a research assistant at the University of 
Salerno. His scientific interests are about numerical 
schemes and optimization techniques for fluid – 
dynamic models, and queueing theory. 
His e-mail address is lrarita@unisa.it. 

210


