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ABSTRACT
Binary classifier systems that provide class membership
probabilities as outputs may be augmented by a reject op-
tion to refuse classification for cases that either appear to
be outliers, or for which the output probability is around
0.5. We investigated the effect of these two reject op-
tions (called “distance reject” and “ambiguity reject”, re-
spectively) on the calibration and discriminatory power
of logistic regression models. Outliers were found us-
ing one-class support vector machines. Discriminatory
power was measured by the area under the ROC curve,
and calibration by the Hosmer-Lemeshow goodness-of-
fit test. Using an artificial data set and a real-world data
set for diagnosing myocardial infarction, we found that
ambiguity reject increased discriminatory power, while
distance reject decreased it. We did not observe any in-
fluence of either reject option on the calibration of the
logistic regression models.

Keywords: classifier systems, reject option, performance
evaluation

1. INTRODUCTION
Decision support systems in biomedicine can augment a
physician’s diagnostic capabilities by providing an auto-
mated second opinion. There are a number of approaches
to building such systems, ranging from capturing an ex-
pert’s domain knowledge in explicit form to using ma-
chine learning methods that learn a model from given
data without additional human intervention.

Here, we consider only systems of the second kind,
and further restrict our attention to models that distin-
guish between two classes (e.g., classifying cases as ei-
ther healthy or diseased). Some of these systems, such as
logistic regression or neural network models, provide ex-
plicit class membership probabilities, i.e., their output is
a measure to which degree a case is healthy or diseased.
Other machine learning models, such as support vector
machines, must be explicitly augmented to provide prob-
ability outputs.

The advantages of probability outputs are numerous:
Besides facilitating accurate assessments of the system’s
discriminatory power and calibration via ROC analysis

(Bradley 1997; Fawcett 2006) and goodness-of-fit tests
(Hosmer et al. 1997; Pigeon and Heyse 1999), probabil-
ity estimates can also be used for implementing a reject
option. Such an option allows the system to refrain from
making a decision if the predicted membership probabil-
ity for both classes is around 50%, i.e., if the system can-
not make a decision with a reasonable level of certainty.

In addition to rejecting uncertain cases, it may also
be desirable for a decision support system to make rec-
ommendations only for cases that are similar to the ones
that were used for building it. This goal is more difficult
to achieve, because it involves estimating how similar a
new case is to a set of previously known cases.

In the literature (see Section 2.), the first reject op-
tion (around probabilities of 50%) is known as ambiguity
reject option, and the second (for outlier cases) as dis-
tance reject option.

In this work, we investigate to which extend the am-
biguity and distance reject options have an influence on
the quality of a classifier’s performance, as measured by
its discriminatory power and calibration. For the ambigu-
ity reject option, we use a logistic regression model and
do not classify cases for which the model output is close
to 0.5. For the distance reject option, we additionally use
a one-class SVM to estimate the regions in input space
where most of the cases lie. The points outside these re-
gions are then considered to be outliers and rejected from
classification.

2. PREVIOUS WORK
The idea of not classifying cases in regions of substan-
tial class overlap, and thus class membership probabili-
ties of around 50%, was proposed by Chow (1970), who
was also the first to conduct an investigation into the ben-
efits of the reject rule from a theoretical point of view.
Dubuisson and Masson (1993) were the first to consider
distance rejection, using nearest neighbor distances to de-
cide whether a point is too far from the remainder of a
data set. The particular case of a reject option for near-
est neighbor classifiers had been studied earlier by Hell-
man (1970). Muzzolini et al. (1998) noted that rejection
thresholds have to be adjusted to the covariance structure
of mixture models to be unbiased, and proposed a method
for performing this adjustment. The work of Landgrebe
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et al. (2004, 2006) focused on the distance reject option
when the classification task is ill-defined in the sense that
one clearly defined target class is to be distinguished from
another poorly defined class in the presence of an un-
known third outlier class. Tax and Duin (2008) proposed
a novel method for performing classification with a dis-
tance reject option by combining multiple one-class mod-
els, one for each of the individual classes.

In the statistical literature, there is some theoret-
ical research on the effects of reject options when re-
jection costs are different from misclassification costs.
The framework of empirical risk minimization pro-
vides a theoretical background for the works of Herbei
and Wegkamp (2006), Yuan and Wegkamp (2010), and
Bartlett and Wegkamp (2008), who derived an SVM clas-
sifier with a reject option.

3. METHODS
In this section, we first describe the algorithms we used
for building machine-learning models, and then the meth-
ods for evaluating the performance of these algorithms.

3.1. Machine learning algorithms
We consider dichotomous classification problems as
specified by an n-element data set of m-dimensional in-
put vectors x1, . . . , xn and corresponding class labels
y1, . . . , yn ∈ {−1, 1}. For logistic regression, we as-
sume there is an additional constant 1 at the first position
of the xi in order to simplify the notation below; these
augmented data points are thus (m+ 1)-dimensional.

In a logistic regression model, the optimal values for
the (m + 1)-dimensional parameter vector β are deter-
mined by minimizing a negative log-likelihood function.
We additionally consider L2-regularization of logistic re-
gression models by calculating the maximum likelihood
estimate βML as

βML = arg min
β

n∑
i=1

log
(
1 + e−yiβ

T·xi
)

+ λβTβ .

The regularization parameter λ is usually chosen by
cross-validation.

The model predictions for new cases x are then
given as class-membership probabilities

P (y = +1 |x, βML) =
1

1 + e−β
T
ML·x

.

The model outputs are thus logistic transformations of
βTML· x, i.e., values proportional to the distance of x from
the hyperplane parameterized by βML. Ambiguity rejec-
tion can therefore be seen to refuse classification for those
cases that are within a certain distance from the separat-
ing hyperplane.

For distance rejection, we need to estimate the re-
gions of input space in which data are more dense than in
others. Standard parametric and non-parametric density
estimation algorithms are susceptible to the curse of di-
mensionality, and therefore not easily applicable in high

dimensions. A recent addition to the machine learning
arsenal allows us to address this problem without regard
to data dimensionality (Schölkopf et al. 2001; Schölkopf
and Smola 2002) . One-class support vector machines
extend standard support vector machine (SVM) method-
ology to the case of estimating a given fraction (1 − ν)
of the support of a data set; the remaining fraction ν are
considered outliers.

As with other support vector methods, the one-class
SVM algorithm projects the data into a different feature
space F using a nonlinear mapping Φ : Rn → F . With-
out a second class, the aim is then to separate the pro-
jected data from the origin by as wide a margin ρ as pos-
sible. The use of kernel functions k to replace projections
and dot product operations is similar to other SVM algo-
rithms. We used a Gaussian kernel

k(xi, xj) = exp
(
− γ ‖xi − xj‖2

)
with inverse variance parameter γ. Values of γ were cho-
sen in such a way that the proportion of outliers was close
to ν.

One-class SVMs estimate the data distribution by
solving the constrained optimization problem

min
w∈F, ξi∈Rm, ρ∈R

1

2
‖w‖2 +

1

nν

n∑
i=1

ξi − ρ

subject to w · Φ(xi) ≥ ρ− ξi,
ξi ≥ 0 ∀i = 1, . . . , n

where w is the parametrization of the separating hyper-
plane in F , and the ξi are slack variables. The dual prob-
lem is

min
αi∈Rn

1

2

n∑
i,j=1

αiαj k(xi, xj)

subject to 0 ≤ αi ≤
1

nν
∀i = 1, . . . , n

n∑
i=1

αi = 1 .

Support vectors are those data points xi for which the
corresponding αi satisfies 0 < αi <

1
mν . Outliers are

those points for which the decision function

f(x) =
n∑
i=1

αi k(xi, x)− ρ

is negative.

3.2. Evaluation metrics
We used the area under the ROC curve (AUC) as measure
of a classifier’s discriminatory power, and computed an
estimator θ̂ of the AUC via its equivalence to a Mann-
Whitney U-statistic as

θ̂ =
1

n1 · n2

n1∑
i=1

n2∑
j=1

(
1
(
p−i < p+j

)
+

1

2
1
(
p−i = p+j

))
.
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Figure 1: Sample of the artificial data set showing two
normally distributed classes with the logistic regression
discriminatory line. The points for which no classifica-
tion is made based on ambiguity rejection are located
close to the discriminatory line, and shown in light grey.

Here, p−i and p+j are the classifier outputs for cases from
classes −1 and +1, respectively, and 1 is the Boolean
indicator function.

The calibration of a classifier is usually as-
sessed with the Hosmer-Lemeshow C-test (Hosmer and
Lemeshow 1980). Although often critizised for a number
of drawbacks (Bertolini et al. 2000), it is nevertheless the
de-facto standard for determining the goodness-of-fit of
a model. As a Pearson chi-squared test, it computes the
test statistic

C =

G∑
i=1

(Oi − Ei)2

Ei(1− Ei

ni
)
,

as the sum of standardized squared differences between
the number of observed cases Oi and expected cases Ei
for a grouping of classifier outputs into G groups, each
with ni cases. By definition, G = 10 and the data
is grouped is by sorted classifier outputs. Hosmer and
Lemeshow (1980) observed that C has an approximate
chi-squared distribution with G− 2 degrees of freedom.

4. EXPERIMENTS
Our experiments on the effect of the reject option on clas-
sifier performance utilized two data sets, one simple arti-
ficial toy problem, and one real-world data set from the
domain of predicting acute myocardial infarction.

4.1. Data sets
For the artificial data set, we generated 500 data points
each from two multivariate normal distributions with di-
agonal covariance matrices, each representing one of the

Figure 2: Sample of the artificial data set showing two
normally distributed classes with the logistic regression
discriminatory line. The points for which no classifica-
tion is made based on distance rejection are located at the
outer edge of the data set, and shown in light grey.

two classes. The parameters were chosen to achieve an
AUC of about 0.9. A sample of the data with the separat-
ing line as determined by logistic regression, along with
points in the ambiguity reject region, is shown in Fig-
ure 1. The same data, now with points rejected based on
distance highlighted, is presented in Figure 2.

The myocardial infarction data set consists of in-
formation collected from 1253 patients presenting at the
emergency department of the Edinburgh Royal Infirmary
in Scotland with symptoms of acute myocardial infarc-
tion (AMI). A total of 39 features were recorded, com-
prising patient data (smoker, diabetes, . . . ), clinical in-
formation (location of pain, sensation of pain, hyperten-
sion, . . . ), and results of an ECG test (LBB, abnormal T
wave, . . . ). To increase diagnostic difficulty, we removed
data about ECG measurements, retaining a total of 33 fea-
tures. The gold standard diagnosis was made by expert
physicians based on a combination of blood serum tests
with clinical and ECG data. Of the 1253 patients, 274
were diagnosed with AMI, and 979 patients were either
declared healthy or to be suffering from other ailments.

4.2. Results
Our experiments were carried out using MATLAB
(MathWorks, Natick, MA), with our own implementation
of logistic regression models and the libsvm implementa-
tion of one-class SVMs (Chang and Lin 2001). For both
the artificial as well as the myocardial infarction data set,
we trained the logistic regression models using 60% of
the data, with the remaining 40% reserved for testing. All
data features were normalized to zero mean and unit vari-
ance. The experiments were performed 50 times, each
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Table 1: Discrimination and classification of logistic re-
gression models on the artificial data set. The results for
ambiguity and distance reject options are listed by vary-
ing fractions of rejected cases. HL denotes the Hosmer-
Lemeshow test statistic; the critical value for α = 0.05 is
15.51.

AUC HL
mean std mean std

logistic regression 0.880 0.01 15.07 7.16
(baseline)

ambiguity reject
τ = 0.1 0.897 0.01 15.22 8.58
τ = 0.2 0.913 0.01 13.93 9.35
τ = 0.3 0.925 0.01 14.73 7.82
τ = 0.4 0.936 0.01 14.82 9.61

distance reject
ν = 0.05 0.871 0.01 13.93 6.49
ν = 0.1 0.862 0.02 13.10 5.99
ν = 0.2 0.851 0.02 9.65 3.95

with different random allocations of data to the training
and test sets. All results are reported as averages and stan-
dard deviations on the test set over these 50 runs.

The parameters of our experiments were ν, the frac-
tion of outliers for the distance reject option, and τ , the
fraction of cases for the ambiguity reject option. The am-
biguity reject cases were the proportion τ of cases for
which the model output (class membership probability)
was closest to 0.5. A kernel parameter of γ = 0.001 gave
a number of outliers within 10% of the desired value,
as specified by ν. The number of support vectors was
slightly larger. This is in concordance with theory, which
states that ν is an upper bound on the fraction of out-
liers, but a lower bound on the fraction of support vectors
(Schölkopf et al. 2001).

The results of our experiments on the artificial data
set are summarized in Table 1. One can observe that am-
biguity rejection had a positive effect on AUC. This is to
be expected, because ambiguity rejection removes those
cases for which most misclassification errors occur. Fur-
thermore, it is also reasonable that the increase in AUC is
not as pronounced for larger values of τ , because fewer
and fewer ambiguous cases get removed.

On the other hand, there seemed to be no effect of τ
on the value of the Hosmer-Lemeshow (HL) test statistic.
As is known from the literature (Bertolini et al. 2000),
this test dependents strongly on the particular grouping of
data points, and showed high volatility in our experiments
as well (as indicated by the large standard deviations).

As for distance rejection, the AUC value decreased
with increasing numbers of rejected cases, while the HL
test statistic showed better model fit. A possible explana-
tion for the first phenomenon is the fact that the rejected
points were almost all correctly classified by the model

Table 2: Discrimination and classification of logistic re-
gression models on the myocardial infarction data set.
The results for ambiguity and distance reject options are
listed by varying fractions of rejected cases. HL denotes
the Hosmer-Lemeshow test statistic; the critical value for
α = 0.05 is 15.51.

AUC HL
mean std mean std

logistic regression 0.842 0.12 14.51 9.03
(baseline)

ambiguity reject
τ = 0.1 0.851 0.12 14.10 11.47
τ = 0.2 0.860 0.13 14.29 10.98
τ = 0.3 0.874 0.13 13.14 10.10
τ = 0.4 0.886 0.13 12.19 8.76

distance reject
ν = 0.05 0.841 0.12 19.38 20.39
ν = 0.1 0.838 0.12 22.61 19.29
ν = 0.2 0.834 0.12 34.81 21.23

(because they were on the correct side of the discrimi-
nation line). Removing them therefore had a detrimental
effect on the AUC. The second phenomenon may just be
a fluke observation, as evidenced by the high standard
deviations and the fact that it was not present in the real-
world data.

Table 2 provides the same information for the my-
ocardial infarction data set. Again, we find that ambigu-
ity rejection increased AUC without a clear effect on the
HL test statistic (which exhibits even higher standard de-
viations than on the artificial data set). And again, we
observed that distance rejection had a negative effect on
AUC. The effect on the HL test statistic was in the op-
posite direction of the effect it had on the artificial data
set.

Distance rejection is also not beneficial if it is per-
formed before training, as suggested by Landgrebe et al.
(2006). In this case, one rejects data from the training set,
and not from the test set. The reasoning for this is that the
model may be a better representation of the underlying
data generator when outliers are removed prior to model
building. Table 3 shows that this is not the case: There
was no difference in AUC for the artificial data set, and
an even larger negative effect for the real-world data set.
There were no discernible effects on the HL test statistics.

5. CONCLUSION
We investigated the effect of the ambiguity and distance
reject options on performance of a logistic regression
model on an artificial and a real-world data set. We ob-
served ambiguity rejection to increase AUC, and distance
rejection to decrease it. Both reject options did not have
an effect on classifier calibration.
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Table 3: Discrimination and classification of logistic re-
gression models on the artificial and on the myocardial
infarction data set, when a fraction ν of cases are removed
by distance rejection from the training set prior to model
building. HL denotes the Hosmer-Lemeshow test statis-
tic; the critical value for α = 0.05 is 15.51.

AUC HL
mean std mean std

artificial data
logistic regression 0.880 0.01 15.07 7.16

(baseline)
ν = 0.1 0.880 0.01 14.48 6.92
ν = 0.2 0.880 0.01 15.61 7.73

myocard. inf. data
logistic regression 0.842 0.12 14.51 9.03

(baseline)
ν = 0.1 0.828 0.12 15.20 11.75
ν = 0.2 0.818 0.12 14.28 10.40
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