
PROCESSOR-ORIENTED PERFORMANCE MEASUREMENT TOOL

Martin Schwarzbauer
(a)

, Michael Bogner
(b)

, Franz Wiesinger
(c)

, Andreas Gschwandtner
(d)

(a, b, c, d)

 Upper Austria University of Applied Sciences, Hagenberg Austria,

Hardware/Software Design & Embedded Systems Design

(a)

martin.schwarzbauer@fh-hagenberg.at,
(b)

michael.bogner@fh-hagenberg.at,
(c)

franz.wiesinger@fh-hagenberg.at,
(d)

andreas.gschwandtner@fh-hagenberg.at

ABSTRACT

Nowadays, a lot of powerful and different processors

with special techniques for improved performance exist.

The clock frequency was doubled within a year in the

last decades and the number of cores is increasing

continuously. Because commonly available

performance measuring tools like Microsoft Windows

Task Manager are known not to display the exact load

of a processor, it is not possible to compare applications

and different implementations regarding to their

performance on different processors. A special tool is

needed which allows the correct and processor-oriented

measuring of the processor’s load. This paper describes

the technique for measuring the performance of modern

processors precisely and shows a sample

implementation for an Intel Core 2 Duo processor on

the Microsoft Windows operating system. Using the

implemented tool it is possible to analyze and compare

different applications regarding to their performance.

The tests have shown that no application is able to

generate a processor load higher than 30%.

Keywords: processor performance, performance

measurement tool, performance counter

1. INTRODUCTION

Nowadays, a lot of powerful and different processors

with different techniques for improved performance

exist. The clock rate has been doubled within a year in

the last decades and new multi core processors have

been developed and sold by the manufacturer. All these

techniques improve the performance of the processor

and speed up the execution of instructions. But this

doesn’t mean that the execution of an application also

speeds up with the same ratio like the processors do.

It is not possible to utilize the actual processors. A

lot of the available performance gets lost and cannot be

used for the execution of instructions. The processor

itself would be able to execute more instructions but the

biggest problem and the bottleneck in current personal

computers is the slow access on peripherals.

Processors with doubled clock rates would be able

to process nearly twice the number of instructions at the

same time but if, for example, data from the hard disk

or other peripherals is fetched the processor has to wait.

The peripherals like random access memory (RAM) or

the hard disk are connected to the processor via bus

systems. These bus systems are not as quick as the

processor, so it has to wait until the data arrives.

For performance optimization and comparison of

different applications a tool is needed to measure the

real performance of the processors. There are a lot of

tools which are able to display the load of the processor

over the time. The most common and widely-used tool

is the Microsoft Windows Task Manager (Microsoft

Corporation, 2010b) on Microsoft Windows operating

systems (Figure 1). There also exist a lot of other

possibilities to measure the performance - for example

at the high level programming language C# (Microsoft

Corporation, 2010).

Figure 1: Microsoft Windows Task Manager.

The advantage using these tools is the simplicity in

the usage for measuring the performance, but there is a

big disadvantage for processor-oriented performance

measurements because the measured load is simply

incorrect. Available tools show the load of the processor

from the point of view of an operating system. This

means that wait times – when fetching data from RAM

or hard disk – are shown as 100% load of the processor.

From this point of view this is correct because without

the data from the peripheral the processor couldn’t

continue its work. But for processor-oriented

performance measurements this distores and falsifies

the results as the processor is actually idle.

Page 83

mailto:michael.bogner@fh-hagenberg.at
mailto:franz.wiesinger@fh-hagenberg.at

This paper describes a solution to measure the real

processor load so that it is possible to evaluate

performance optimizations. Using such a measurement

tool opens new options for comparing different

implementations or compiler options (compile for

speed, compile for size) and helps to explore and

assemble special performance design pattern for

software development to speed up processing simply by

design.

2. PERFORMANCE MEASURMENT

The best way to measure the exact load of a

processor is to use the processor itself for the

performance measurement. The two most common and

widely used processors are manufactured by Intel and

AMD. Both implement on their processors options for

performance measurement.

Each processor has some specially built in registers

in hardware – the so called model specific registers

(MSR). The number of available MSRs on Intel

processors can be found in (Intel Corporation, 2010,

Appendix B). A subset of these MSRs could be used to

measure the performance directly in hardware. These

registers are called Performance Counters. The

performance counters could be configured to count

specific and processor dependent events in hardware

(Dringowski, 2008; Intel Corporation, 2010). Some

typical events are Instructions Retired, Instruction per

Cycle, Level 1 Cache Miss, and so on. Using the correct

event it is possible to calculate the exact load of a

processor without the wait times for memory access,

stalls and so on.

The advantage of these registers is that they count

the configured events in hardware without any overhead

in software and impact on the processor’s behaviour. To

read or write these MSRs the processor uses an

assembler instruction (for example on Intel processors:

rdmsr and wrmsr) which has to be executed in real-

address mode or at privilege level 0 (Intel Corporation,

2009). The execution of an instruction at privilege level

0 requires on the two most common operating systems -

UNIX and Microsoft Windows - a special driver to

execute the instructions and access the MSRs. Figure 2

shows an overview of the concept to access the

performance counter registers using this driver.

The available events and registers for performance

counting are limited and different for each processor –

also within a processor family. On newer processors

there are more events available than on older ones and

the address of the registers also change. So it is

necessary to implement the performance measuring for

each processor differently.

On multi core processors it is necessary to measure

the performance of each core independent from the

others. The manufacturer implements for each core a set

of registers which could be used to count different

events. For the sake of convenience these registers have

the same address on each core. To access the register it

is necessary to ensure that the application which reads

or writes the register is executed at the core the event

should be counted.

Figure 2: Accessing the performance counter registers

using a driver.

The usage of the performance counters always

follows the same principle described below:

1. Ensure that execution is running on core X.

2. Set the configuration register to count the

specific event.

3. Continue step 1 + 2 for each core and event.

4. Ensure that execution is running on Core X.

5. Read number of counted events from the

register.

6. Continue step 4 + 5 for each core.

Intel introduced different MSRs years ago in their

processors so it was able to count different processor

events in hardware. The configuration and access to

these MSRs was processor depended. Since the Pentium

4 processor Intel standardised the access and

configuration of the MSRs for performance

measurement. This standardisation provides two

different versions to configure up to seven defined

events (even more on newer processors) for

performance measurement. These seven architecture

and processor independent events are

1. Unhalted Core Cycles

2. Instructions Retired

3. Unhalted Reference Cycles

4. LLC Reference

5. LLC Misses

6. Branch Instructions Retired

7. Branch Misses Retired

Figure 3 shows the necessary MSRs for

configuration and performance measurement in

dependency of the two different available versions

(Registers marked with * are used for configuration).

When any other events except the seven mentioned

Page 84

above should be used, the configuration and usage is

described in the different processor’s manuals.

When using the event Instructions Retired it is

possible to calculate the processors’ load in percent

using (1). Because of the processors ability to execute

more than one instruction per cycle the maximum

number of instruction per cycles must be known and

used for the load calculation in (1).

𝐿𝑜𝑎𝑑 % =
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑅𝑒𝑡𝑖𝑟𝑒𝑑

𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 ∗𝑚𝑎𝑥 .𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝐶𝑦𝑐𝑙𝑒
 (1)

Configuration and MSR

depends on processor
Version?

MSR:
IA32_PERFEVTSELx *

IA32_PMCx

MSR:

IA32_FIXED_CTR0
IA32_FIXED_CTR1
IA32_FIXED_CTR2

IA32_FIXED_CTR_CTRL *

YES NO

Version 1

Version 2

Event depends on

architecture?

MSR:

IA32_PERF_GLOBAL_CTRL *

Not supported

Figure 3: Overview of the available MSRs in

dependency of the supported version.

The configuration for counting the Instructions

Retired event differs by the two supported versions.

Using the assembler instruction cpuid it is possible to

detect which version is supported by the current used

processor. Based on the supported version there are

different MSRs for configuration and reading the

collected performance data. In version 1 each of the

seven events mentioned above could be counted – but

maximum two events at the same time. Version 2 only

supports counting the three following events

1. Instructions Retired (IA32_FIXED_CTR0)

2. Unhalted Core Cycles (IA32_FIXED_CTR1)

3. Unhalted Reference Cycles

(IA32_FIXED_CTR2)

Figures 4, 5 and 6 show the different MSRs in

detail that are needed for configuration.

MSR IA32_PERFEVTSELx (Figure 4) is used to

configure the performance counting mechanism in

version 1. The fields Unit Mask and Event Select

identify the event which should be counted. USR and

OS bit specify if the event should be counted in user

mode and/or in operating system mode. Bit EN enables

counting the selected event.

The MSR shown in Figure 5 is used to enable each

of the three possible events in version 2. Bit PMI

defines if an interrupt should be generated when a

counter overflow occurs. The bit EN specifies the mode

where the events should be counted.

Figure 4: IA32_PERFEVTSELx MSR is used to

configure the counting mechanism in version 1 (Intel

Corporation, 2010).

Figure 5: IA32_FIXED_CTR_CTRL MSR is used to

configure and enable the event counting mechanism in

version 2 (Intel Corporation, 2010).

In Figure 6 the global enable MSR is shown. When

bit 32, 33 and/or 34 is set, the event counting for

version 2 is enabled. Bit 0 and 1 is used to enable

performance measurement in version 1.

Figure 6: IA32_PERF_GLOBAL_CTRL MSR is used

to enable the different events (Intel Corporation, 2010).

To retrieve the number of counted events the

MSRs IA32_PMCx in version 1 and

IA32_FIXED_CTRx in version 2 must be read.

The following pseudo code shows the usage of the

Instructions Retired event on an Intel Core 2 Duo

processor using version 1.

if event supported then

 if version 1 supported then

 switch to core 1;

 // set UMASK and EventSelect to

 // specify the event

 // EN=1: activate counting

 // OS=USR=1: count event in user

 // and kernel mode

 IA32_PERFEVTSEL0= (UMASK=0x00) |

 (EventSelect=0xC0) | (EN=1) |

 (USR=1) | (OS=1);

 switch to core 2;

 // config core 2

 IA32_PERFEVTSEL0= (UMASK=0x00) |

 (EventSelect=0xC0) | (EN=1) |

 (USR=1) | (OS=1);

 //enable counting

 IA32_PERF_GLOBAL_CTRL =

Page 85

 (IA32_PMC_0 enable = 1);

 while not terminate then

 sleep(pollintervall);

 // read events counted on core 1

 Switch to core 1;

 Value1 = IA32_PMC0;

 // read events counted on core 2

 Switch to core 2;

 Value2 = IA32_PMC0;

 end while

 end if

end if

With the collected number of occurred events

stored in Value1 and Value2 it is possible to calculate

the processor’s load in percent. When using version 2

the configuration and access to the counted events only

differs from version 1 in different MSRs.

Because of the widely-used combination of Intel

processor and the operating system Microsoft Windows

a sample application has been implemented for this

platform for the performance measuring on an Intel

Core 2 Duo processor.

3. IMPLEMENTATION

In Figure 7 all components required for the

realization of a performance analysis tool are shown.

The arrows illustrate the interaction between the

different components.

ApplicationApplication

C++

PerfLib

User Mode

Kernel Mode

Driver

Hardware

Visual-

ization

Win32 API

Thread

PerfMonitor

START

STOP

Figure 7: Overview of the implementation.

The C++ class ThreadPerfMonitor configures the

performance measurement. Using the methods start or

stop the application can control the time of

measurement. The collected performance data will be

written into a file in comma-separated-values (CSV)

format, so that it is possible to process the values with

different applications.

The interaction between the processor’s hardware

is encapsulated in a C++ class called PerfLib. This class

provides methods to write and read the different MSRs

using the driver.

As already mentioned a driver is needed to execute

the instructions rdmsr and wrmsr to access the different

MSRs. In Figure 8 the usage of the driver is shown for

reading a MSR using the rdmsr instruction. A Win32

API accesses the driver via Input/Output Controls

(IOCTL). Using the IOCTL IOCTL_READMSR the

driver dispatches the registered function and executes

the rdmsr assembler instruction with the given

parameters. The read value will be returned to the user

mode and could be processed.

User Mode

Kernel Mode

Driver

Hardware

Win32 API

DeviceIoControl(IOCTL_READMSR)

1.

Execute function registerd with

IRP_DEVICE_CONTROL
2. 3. Execute the

IOCTL_READMSR

code

4.
5.rdmsr

6.

Figure 8: Sequence reading a MSR.

This implementation can easily be extended for

different processors on the Microsoft Windows

platform. Accessing the registers on UNIX, a different

driver must be implemented but the assembler

instructions and the configuration sequence of these

MSRs will be the same. The application uses the

Instructions Retired event to collect information of the

processor so that it is possible to calculate the load in

percent.

4. RESULTS

The implemented measurement application is

written in C++ and is able to count different events on

an Intel Core 2 Duo processor. Currently only this

processor is supported but the software can be easily

expanded so that any other processor and event can be

used for performance measurement. This could be done

by specifying the different processor dependent register

addresses for reading and writing the registers and the

configuration values that have to written to the MSRs.

At the moment the application configures the processor

to count the event Instructions Retired. Using this

event, the number of clock cycles, and the maximum

count of instructions (on Intel Core 2 Duo: 4; Intel

Corporation, 2008), which could be executed at one

clock cycle, it is possible to calculate the processor’s

load in percent (see (1) on page 3).

To visualize the results the application writes the

data into a file in CSV format. Using the written values

it is possible to visualize them, use it for calculations or

any other application can read the values and process

them. One of the most common tools to create a graph

based on a CSV file is Microsoft Windows Excel

(Figure 4 show a graph created with this application).

The realized performance measurement tool could

be used as a standalone application to record the load of

the processor’s cores independent of any other

Page 86

application. Another practice is to use the performance

tool explicit in the own application for performance

measurement. This could be easily done in applications

implemented in C++ because the developer only has to

call a Start- and Stop-Routine for the performance

measurement. The advantage is that only the period of

time is recorded the developer wants to measure.

Figure 9 and Figure 10 show the comparison

between the Microsoft Windows Task Manager and the

values recorded with the implemented processor-

oriented performance measurement tool during the

execution of a test application. The Microsoft Windows

Task Manager shows a load of 100% on core one. In

comparison to this we can see in Figure 10 that the

processor only uses effectively 25% of its available

resources. This example shows the difference in the

performance measurement tools. The test application

fetches a lot of data from the hard disk so that the

processor has to spend most of its time on waiting.

Available tools display the processor’s load from the

point of view of an operating system. This means that

while fetching data from peripherals the operating

system cannot continue with its work so the load for the

operating system is 100%.

Figure 9: Processor load measured with Microsoft

Windows Task Manager.

Figure 10: Processor load measured with the

processor’s performance counters.

The implemented tool shows the exact load of a

processor so these results are more significant than the

results of common tools. Based on these results it is not

advisable to use common tools for performance

measurements and testing optimization possibilities.

With the implemented application and their

measured results different optimization techniques

could be evaluated and compared regarding their

performance on the processor’s core.

Based on different test applications (e.g.

benchmark Prime95, Mersenne Research Inc., 2010)

there were nearly always the same results. Modern

processors can reach only a maximum load of about

30%. This means that the processor spends about 70%

of the available time on waiting for data or simply

doing nothing. At this point of view an application has a

good performance when it can reach a maximum of

about 30% load on common processors – because this is

still the maximum reachable load using current

computer systems.

To sum up it could be said that the results have

shown that modern processors and highly optimized

compilers aren’t able to create applications that can use

the available resource of the processor’s core in an

adequate way. It is necessary to find different

techniques and design pattern for software development

to improve application’s execution so that the load

increases. Using the implemented processor-oriented

performance measurement tool it is possible to collect

performance data and find software techniques and

design pattern and their different impact on the

processor’s load.

REFERENCES

Dringowski, P.J., 2008. Basic Performance

Measurements for AMD Athlon(TM) 64, AMD

Opteron(TM) and AMD Phenom(TM) Processors.

Available from:

http://developer.amd.com/Assets/Basic_Performan

ce_Measurements.pdf [accessed 31 March 2010]

Intel Corporation, 2008. Intel(R) Core(TM)2 Duo

Processor. Maximizing Dual-Core Performance

Efficiency. Available from:

http://download.intel.com/products/processor/core

2duo/mobile_prod_brief.pdf [accessed 5 April

2010]

Intel Corporation, 2009. Intel(R) 64 and IA-32

Architectures. Software Developer’s Manual.

Volume 2B: Instruction Set Reference, N-Z.

 Available from:

http://www.intel.com/design/processor/manuals/25

3667.pdf [accessed 31 March 2010]

Intel Corporation, 2010. Intel(R) 64 and IA-32

Architectures Software Developer’s Manual.

Volume 3B. System Programming Guide, Part2.

Available from:

http://developer.intel.com/Assets/PDF/manual/253

669.pdf [accessed 17 July 2010]

Mersenne Research Inc., 2010. Prime95. Available

from: http://mersenne.org/freesoft [accessed 31

March 2010]

Microsoft Corporation, 2010a. Performance Counters.

Available from: http://msdn.microsoft.com/en-

us/library/aa373083(VS.85).aspx [accessed 31

March 2010]

Microsoft Corporation, 2010b. What is Task Manager?.

Available from: http://windows.microsoft.com/en-

US/windows-vista/What-is-Task-Manager

[accessed 9 April 2010]

Page 87

http://developer.amd.com/Assets/Basic_Performance_Measurements.pdf
http://developer.amd.com/Assets/Basic_Performance_Measurements.pdf
http://download.intel.com/products/processor/core2duo/mobile_prod_brief.pdf
http://download.intel.com/products/processor/core2duo/mobile_prod_brief.pdf
http://www.intel.com/design/processor/manuals/253667.pdf
http://www.intel.com/design/processor/manuals/253667.pdf
http://developer.intel.com/Assets/PDF/manual/253669.pdf
http://developer.intel.com/Assets/PDF/manual/253669.pdf
http://mersenne.org/freesoft
http://msdn.microsoft.com/en-us/library/aa373083(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa373083(VS.85).aspx
http://windows.microsoft.com/en-US/windows-vista/What-is-Task-Manager
http://windows.microsoft.com/en-US/windows-vista/What-is-Task-Manager

Page 88

