
ON THE BENEFITS OF A DOMAIN-SPECIFIC LANGUAGE FOR MODELING
METAHEURISTIC OPTIMIZATION ALGORITHMS

Stefan Vonolfen(a), Stefan Wagner(b), Andreas Beham(c) , Michael Affenzeller(d)

(a)(b)(c)(d) Upper Austria University of Applied Sciences, Campus Hagenberg
School of Informatics, Communication and Media
Heuristic and Evolutionary Algorithms Laboratory

Softwarepark 11, A-4232 Hagenberg, Austria

(a)stefan.vonolfen@heuristiclab.com, (b)stefan.wagner@heuristiclab.com, (c)andreas.beham@heuristiclab.com,

(d)michael.affenzeller@heuristiclab.com

ABSTRACT
This work provides a case-study of how metaheuristic
optimization algorithms can be developed using a
domain-specific language as a separate modeling layer.
A separation of the modeling process from the
implementation of the algorithmic concepts improves
the communication and collaboration of practitioners,
optimization experts and programmers. This is achieved
by providing a higher level of abstraction compared to a
general-purpose programming language. A generic and
extensible modeling concept is presented and several
example algorithm models are illustrated.

Keywords: metaheuristics, modeling, domain specific
language

1. INTRODUCTION
Metaheuristics are general search strategies that can be
used to calculate approximate solutions for many
different kinds of problems in diverse application areas.
They guide the search process and can be seen as an
algorithmic framework with the ability to be tailored to
different problem environments (cf. Blum and Roli
2003). Many metaheuristic search strategies are inspired
by nature. For an overview of metaheuristic techniques
see for example Talbi (2009).

However according to Wolpert and Macready
(1995) there is no general search strategy that performs
well for all kinds of problems. This implies that even
though metaheuristics are general search strategies,
tailoring has to be done in order to generate good and
feasible solutions for a given problem.

According to Talbi (2009) there are three major
approaches for the development of metaheuristics: From
scratch, code reuse and both design and code reuse. A
software framework provides reusable code and also a
reusable design (cf. Johnson and Foote 1988). The goal
of using a metaheuristic framework is to be able to build
on as much existing code and design elements as
possible when developing a new optimization solution.
There are many different frameworks available in that
area - examples are Templar (Jones 2000), HotFrame

(Voss and Woodruff 2002), ParadisEO (Talibi 2009) or
HeuristicLab (Wagner, Winkler, Braune, Kronberger,
Beham, Affenzeller 2007; Wagner 2009).

When using such frameworks - however - the user
generally needs an in depth-knowledge of the
framework since according to (Talibi 2009) currently a
white-box approach is more suited to metaheuristics
than a black-box approach. This means that the user
often needs to know implementation details of the
framework and needs to have programming skills.

White-box reuse means that a very low level of
abstraction (i.e. the source code level) has to be
provided to the user in order to tailor an algorithm to a
certain problem. There are some approaches to build an
additional level of abstraction on top of the frameworks
including EASEA (Collete, Luttion, Schoenauer and
Louchet 2000) and GUIDE (Da Costa and Schoenauer
2009). However these approaches are either limited to a
particular optimization paradigm or very close to an
actual programming language.

The scope of this work is to raise this level of
abstraction by developing a modeling layer for
metaheuristic optimization techniques which is
independent of the underlying implementation. This is
accomplished by providing black-box reuse without
losing the flexibility to tailor the algorithm. Black-box
reuse means that components (building-blocks) are
provided that have a well defined interface and can be
combined in a well-defined way.

Figure 1: Separation of the modeling layer from the

implementation layer

Page 59

The modeling layer is separated from the
implementation layer as illustrated in Figure 1. In the
modeling layer algorithm models can be built by
combining algorithm building blocks. These building
blocks are then executed in the implementation layer,
for example by transforming them to code using an
underlying framework.
 The created models are written according to a
specification - an extensible domain specific language
(DSL) for metaheuristic optimization. This language
consists of all building blocks that are available to the
modeler and can be extended by adding new
components. In that way for example new algorithmic
concepts or problem-specific parts can be incorporated.
The models can be validated according to the
specification.
 There are various benefits a separate modeling
layer yields which are examined in this work. First of
all additional layers of abstraction can be built where
the implementation details can be abstracted and the
requirement of programming skills can be removed.
Second of all different frameworks or framework
versions can be used to transform the models into an
executable representation. Apart from that various
artifacts can be generated from the models including for
example textual descriptions.
 When building this modeling layer both, top-down
and bottom-up, approaches are possible. Top-down
means that the modeler starts by defining abstract
components that the algorithm is built of. Then by using
stepwise refinement these components are mapped to
the according implementation concepts. Bottom-up
means that more abstract components are defined
starting from an existing implementation layer.

2. BENEFITS
The level of abstraction that is provided by current
frameworks is raised by providing a separate modeling
layer above existing frameworks and consequently the
implementation layer is separated from the modeling
layer. This yields several benefits:

• Communication: In heuristic optimization

projects there are usually different types of
stakeholders. When implementing a solution,
an expert in the field of heuristic optimization
algorithms usually needs to have programming
skills since most of the available frameworks
are whitebox oriented. A separate modeling
layer could improve the communication
between experts in the field of optimization
and programmers.

• Collaboration: By proving a common model,

algorithm designers and programmers can
work together more efficiently because both,
top-down and bottom-up, modeling approaches
are possible. On the one hand, in a top-down
approach an algorithm designer would first
specify the abstract algorithm building blocks

and model the algorithm, then the programmer
maps these building blocks to an existing
framework or implements them from scratch.
On the other hand, in a bottom-up approach the
programmer first maps existing
implementations to modeling building blocks
that the algorithm designer can then use to
design new algorithmic variants. Of course,
also mixed approaches are possible where
certain building blocks are provided and new
ones are added later on by the programmer.

• Abstraction: Algorithms can be modeled
independently and the implementation details
are abstracted. As a result, no internal
knowledge of the underlying framework is
necessary and no programming skills are
required. During the modeling process the
technical details are hidden. Furthermore
higher layers of abstraction can be created,
than it is possible to realize within a
programming language. This can be achieved
for example by using coarse grained
components.

• Generation: Various artifacts can be
generated from the models. For example
different frameworks or framework versions
can be supported for the actual implementation
and execution of the algorithmic model, since
it is independent of the implementation. Apart
from that for example textual descriptions of
the algorithm or graphical representations can
be generated. In terms of communication and
collaboration it is also important that the
generated executable representations can be
easily executed and algorithm runs can be
easily analyzed by the domain expert. The
generated executable representations of the
algorithms are all unified, which means that for
example coding standards are followed and the
design is standardized. This is often very
difficult to achieve when writing hand-crafted
code, especially when parts are written by
different developers.

• Model validation: Since the model is defined
according to a meta-model, various validations
can be included. This validation is often only
performed on the syntactical level in current
frameworks. An example would be that the
operators actually fit together and work on the
same type of problem representation.

• Flexibility: Apart from providing the before
mentioned benefits, the modeling layer should
provide full flexibility. This means that it
should not be restricted to a certain paradigm
and the algorithmic structure should be fully
modifiable.

Page 60

3. EXISTING MODELING LAYERS
There are already some approaches of providing a
modeling layer for heuristic optimization. For example
some domain specific languages for local search
strategies have been developed which are mostly based
on constraint programming according to Fink and Voss
(2001). Other examples of modeling layers are EASEA
(Collete, Luttion, Schoenauer and Louchet 2000),
GUIDE (Collete, Luttion, Schoenauer and Louchet
2000) and the HotFrame configurator (Fink and Voss
2001) which are examined in the following. Also the
HeuristicLab environment (Wagner, Winkler, Braune,
Kronberger, Beham, Affenzeller 2007; Wagner 2009)
can be regarded as a modeling tool.
 In this section the existing modeling layers are
evaluated according to the benefits that are discussed in
section 2. Table 1 gives an overview of the evaluation
criteria. A √ symbol means that the criterion is fulfilled;
a о symbol means that a criterion is partially met and a
× symbol means that the criterion is not met. The −
symbol means that a certain criterion is not applicable
to a modeling layer.

Table 1: Evaluation

 EASEA is a scripting language for evolutionary
computation and is close to a programming language.
This means that even though it abstracts the actual
programming language and framework, the
communication and collaboration between
implementers and domain experts is not supported. This
is because programming skills are required to use
EASEA efficiently. However, one benefit of using
EASEA is certainly that code generation for different
frameworks is possible. Model validation is not
supported. In terms of flexibility, EASEA is designed
for evolutionary computation. However, since EASEA
is very close to an actual programming language, one
could argue that additional paradigms can be
incorporated.
 GUIDE provides a graphical user interface for
building evolutionary algorithms based on an algorithm
template. Its graphical user interface is intuitive and
reflects the terms used in the evolutionary computation
community. This enables communication between
programmers and domain experts. In terms of
collaboration building blocks based on a certain
framework can be defined and offered to the modeler.
However, in terms of communication and collaboration
the analysis of algorithm runs is not supported directly.
All framework and implementation details are
abstracted and code can be generated for various
frameworks. Model validation is not required, since the
tool does not allow the construction of invalid models.

However in terms of flexibility GUIDE is limited to
evolutionary algorithms and the underlying algorithm
structure cannot be modified.
 Similar to GUIDE, the HotFrame configurator is
designed as a configuration tool. It hides all
implementation details by providing a configuration
language to the user which improves the
communication. In terms of collaboration, programmers
can provide configurable building blocks to the domain
expert. From the configuration an executable
representation is generated. However, the analysis of
algorithm runs is not supported. In terms of abstraction,
the HotFrame configurator is limited to the HotFrame
framework. There is no need for model validation since
it only allows the user to create valid models. When it
comes to flexibility, the HotFrame configurator is
limited to the configuration of the algorithms; the
algorithm structure cannot be modified.
 Regarding HeuristicLab, one great benefit is
certainly the communication and collaboration between
domain experts and programmers. In the current release
(version 3.3) communication and collaboration between
programmers and domain experts is supported using a
model-driven approach which is described by Wagner
(2009). Apart from building the algorithms using pre-
defined building blocks, algorithm runs can be executed
and analyzed within the HeuristicLab environment. The
details of the underlying programming language are
abstracted completely by providing a generic modeling
concept. However, this layer of abstraction is tied to the
HeuristicLab framework and right now it cannot be
used to generate code for other frameworks. This means
that the framework details are not abstracted. As a result
the modeling and execution layer are not separated and
no generation is needed to execute the models. In terms
of flexibility, there exist two different types of
algorithms in the HeuristicLab framework: pre-defined
and user-defined algorithms. Pre-defined algorithms can
be parameterized (similar to the HotFrame configurator)
and thus there is no need for model validation, since the
user cannot construct invalid models. User-defined
algorithms provide a full degree of flexibility. However,
for these algorithms no fully-fledged meta-layer exists
right now. This means that the control and data flow
cannot be validated when constructing custom
algorithms.

4. MODELING CONCEPT
As stated in section 1, the developed modeling concept
is a black-box oriented approach. This allows the
definition and combination of well defined building
blocks. These building blocks are components that
represent a specific encapsulated functionality which is
part of a metaheuristic optimization algorithm. This
functionality can be realized on different levels of
abstraction.
 The elementary components that the algorithm is
built of are operators, similar to the modeling concept
proposed by Wagner (2009). However the level of
abstraction is higher and less focused on

Page 61

implementation and execution than the algorithm
models of the examined frameworks. The modeling
layer is separated from the implementation/execution
layer.

Figure 2: Interface of an operator

 Following a component-based approach, these
building blocks have a well defined interface. This
interface determines how building blocks can be
combined. As illustrated in Figure 2 an operator has a
control interface and a data interface. The control
interface can be used to model the control flow, the data
interface to model the data flow of the algorithm. This
separation allows a high level of flexibility. The control
and data interfaces consist of input and output ports that
can be connected to each other.

4.1. Control Flow
By connecting the control ports of the operators, the
control flow of the algorithm can be modeled. Each
operator has exactly one control input and zero or more
control outputs. A connection between the control
output of an operator A and a control input of an
operator B means that operator B is called by operator
A. Each algorithm has a start operator that has no
control input and one control output that triggers the
execution of the algorithm.
 Whenever multiple control output ports are
connected to one control input port, the control flows
are joined at that point. The semantic of a join is that the
execution of all previous operators has to be finished
before the called operator is executed. Finished means
that all previous operators either have finished
execution or are not executed.

4.2. Data Flow
Whenever an operator is executed, the parameters from
the input data ports are processed and the results are
written to the output data ports. An operator can have
zero or more data input and zero or more data output
ports. The data input ports store the current value until a
new value is set. The value of each data input port is set
to empty at the beginning of the execution of an
algorithm. A data output port can be connected to an
arbitrary number of data input ports. The value of the
data output port is written to all connected data input
ports.

5. IMPLEMENTATION
To provide means of formulating the models, a domain
specific language (DSL) for metaheuristic optimization
algorithms is developed. The design and
implementation of the modeling layer is based on the
general modeling concept that is outlined in the
previous section. Several design choices were made to
create a modeling system that meets the benefits
described in section 2.
 First of all it was decided that an external graphical
DSL should be developed. The main reason for that is
raising the level of abstraction and hiding the
implementation details. Furthermore, to enhance the
communication between domain experts and
programmers, a graphical concrete syntax was chosen.
 To achieve a high level of flexibility the vocabulary
of the DSL should not be fixed but definable by the
user. The user should be able to define new building
blocks and that way add a new vocabulary to the
modeling language. The developed DSL should be
highly extensible.
 As a result, actually two graphical editors are
developed: One editor to define the algorithmic building
blocks and one editor to model the algorithms. That
way, new building blocks for the modeling of
algorithms can be created and the vocabulary can be
easily extended.
 The DSL to define algorithmic building blocks
provides a specification of the algorithmic components.
It is used to create toolbox models which provide a set
of components that can be used in an algorithm. In
principal these two DSLs can be used by the same or by
different users. For example one user could create
certain building blocks and then provide them to
another user. The first user that defines the components
could be a programmer and the second user that builds
the algorithm models using the second editor could be a
domain expert in heuristic optimization. That way the
communication between these two user groups could be
enhanced.

Both languages were implemented as graphical
editors using the Microsoft Visual Studio Visualization
and Modeling SDK1. Both designers are integrated into
the Visual Studio environment.

6. RESULTS
Using the developed modeling tools, several example
algorithm models were created. Figure 3 shows a
genetic algorithm model solving the traveling salesman
problem using a permutation encoding. In that case,
high-level building blocks which are defined in the
corresponding toolboxes are combined with each other.

1 http://code.msdn.microsoft.com/vsvmsdk

Page 62

These high-level building blocks are defined in
toolboxes. Some can be directly mapped to a
framework, others are defined as finer-grained
algorithm models. For example the GA building block is
defined by a finer-grained GA building block that
includes operations such as evaluation, selection and
reproduction following the abstract GA specification.

 In the example model, the problem-specific TSP
toolbox is combined with the encoding-specific
Permutation toolboxes and the general Evolutionary
and GA toolbox.

Due to data flow validation, only building blocks
that fit together can be combined; for example no real-
vector operations can be used in conjunction with
permutation operations.
 These algorithm models can be converted to
executable HeuristicLab algorithms using the
HeuristicLab code generator. The targeted HeuristicLab
version is 3.3.0 (http://dev.heuristiclab.com).
 The runtime and quality of generated solutions for
different problem instances retrieved from the TSPLIB
[Rei91] has been measured and analyzed. These results
are compared to the standard GA implementation
included in the HeuristicLab 3.3.0 release which is
hand-crafted.
 All test runs where done using a population size of
100, a mutation rate of 5% and one-elitism. For all

instances 10 independent test runs were done and the
mean value and standard deviation was calculated.
 The quality of the best solution after 100 iterations
is examined to make sure that the generated code
produces correct results. The results are listed in table 3.
All deltas between the results of the hand-crafted GA
and the generated GA are in the range of the standard
deviation which shows the correctness of the approach.

Table 3: Best solution quality analysis

7. CONCLUSION
Concluding, a prototype of the modeling environment
has been developed and several benefits have been met
and also some drawbacks were identified:

• Communication: It has been shown that these

algorithm models are close to the abstract
algorithmic specification found in the
literature. This illustrates that a domain-
specific language can enhance the
communication between domain experts and

Figure 3: Genetic algorithm model solving the TSP

Page 63

programmers in the field of heuristic
optimization. However, graphical models can
get quite complex and difficult to change for
complex algorithmic concepts and it is crucial
to choose a sufficient level of abstraction.

• Collaboration: Using the prototype, top-down
and bottom-up modeling approaches are
possible which advances the collaboration
between the different stakeholders.

• Abstraction: The algorithm models are
designed independently of the underlying
framework and programming language.
However, it has yet to be shown that these
models can be mapped to frameworks other
than HeuristicLab.

• Generation: The generated code turned out to
be less efficient than the handcrafted code.
Furthermore, the generated code is very
different from the way a domain expert would
model the algorithms in the HeuristicLab
environment. This has a negative impact on the
maintainability.

• Model validation: Data flow validation has

been implemented and prevents the user from
creating invalid models.

• Flexibility: The algorithm model provides full
flexibility. This is shown by the fact that
several algorithmic concepts have been used in
the example models.

In the future, additional code generators could be
developed that produce more optimal code or produce
code that is closer to the algorithm model of
HeuristicLab. Also additional code generators could be
developed that produce code for other frameworks such
as ParadisEO or HotFrame. This would be especially
beneficial for the comparison of different frameworks.
 In terms of validation, control flow validation could
be implemented in addition to the existing data flow
validation.
 Concluding, apart from being beneficial as a case-
study, the work described in this paper could also have
impact on the further development of HeuristicLab.
Especially aspects concerning abstraction, generation
and model validation could be transfered to the
HeuristicLab algorithm model.

ACKNOWLEDGMENTS
The work described in this paper was done within the
Josef Ressel Centre for Heuristic Optimization
Heureka! (http://heureka.heuristiclab.com) sponsored
by the Austrian Research Promotion Agency (FFG).

REFERENCES
Blum, C.; Roli, A., 2003. Metaheuristics in

combinatorial optimization: Overview and
conceptual comparison. In: ACM Computing
Surveys 35(3), 268-308.

Collete, P., Luttion, E., Schoenauer, M. And Louchet,

J., 2000. Take It EASEA. PPSN VI: Proceedings
of the 6th International Conference on Parallel
Problem Solving from Nature, pp. 891-901.
London (UK).

Da Costa, L.; Schoenauer, M., 2009. Bringing

Evolutionary Computation to Industrial
Applications with GUIDE. GECCO 2009.
Montreal, Quebec (Canada).

Fink, A; Voss, S.; 2001. Reusable metaheuristic

software componentsand their application via
software generators. In: Proceedings of the 4th
Metaheuristics International Conference,
Porto,pages 637–642.

Johnson, R.E.; Foote, B., 1988. Designing reusable

classes. In: Journal of object-oriented
programming 1(2), 22-35.

Jones, M.S., 2000. An Object-Oriented Framework for

the Implementation of Search Techniques. Thesis
(PhD). University of East Anglia.

Talbi, E.-G.., 2009. Metaheuristics: from design to

implementation. John Wiley & Sons.

Voss, S. And Woodruff, D., 2002. Optimization

Software Class Libraries. Kluwer Academic
Publishers.

Wagner, S.; Winkler, S.; Braune, R.; Kronberger, G.;

Beham, A. 2007. Benefits of plugin-bases heuristic
optimization software systems. Computer Aided
Systems Theory - EUROCAST Conference, pp.
747-754.

Wagner, S. 2009. Heuristic optimization software

systems – Modeling of heuristic optimization
algorithms in the HeuristicLab software
environment. Thesis (PhD). Johannes Kepler
Univiersity, Linz, Austria.

Wolpert, D.H.; Macready, W.G., 1995. No Free Lunch

Theorems for Search. Santa Fe Institute.

AUTHORS BIOGRAPHY
The web-pages of the authors as well as further
information about HeuristicLab and related scientific
work can be found at http://heal.heuristiclab.com.

Page 64

