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ABSTRACT 
This work provides a case-study of how metaheuristic 
optimization algorithms can be developed using a 
domain-specific language as a separate modeling layer. 
A separation of the modeling process from the 
implementation of the algorithmic concepts improves 
the communication and collaboration of practitioners, 
optimization experts and programmers. This is achieved 
by providing a higher level of abstraction compared to a 
general-purpose programming language. A generic and 
extensible modeling concept is presented and several 
example algorithm models are illustrated. 

 
Keywords: metaheuristics, modeling, domain specific 
language 

 
1. INTRODUCTION 
Metaheuristics are general search strategies that can be 
used to calculate approximate solutions for many 
different kinds of problems in diverse application areas. 
They guide the search process and can be seen as an 
algorithmic framework with the ability to be tailored to 
different problem environments (cf. Blum and Roli 
2003). Many metaheuristic search strategies are inspired 
by nature. For an overview of metaheuristic techniques 
see for example Talbi (2009). 

However according to Wolpert and Macready 
(1995) there is no general search strategy that performs 
well for all kinds of problems. This implies that even 
though metaheuristics are general search strategies, 
tailoring has to be done in order to generate good and 
feasible solutions for a given problem.  

According to Talbi (2009) there are three major 
approaches for the development of metaheuristics: From 
scratch, code reuse and both design and code reuse. A 
software framework provides reusable code and also a 
reusable design (cf. Johnson and Foote 1988). The goal 
of using a metaheuristic framework is to be able to build 
on as much existing code and design elements as 
possible when developing a new optimization solution. 
There are many different frameworks available in that 
area - examples are Templar (Jones 2000), HotFrame 

(Voss and Woodruff 2002), ParadisEO (Talibi 2009) or 
HeuristicLab (Wagner, Winkler, Braune, Kronberger, 
Beham, Affenzeller 2007; Wagner 2009). 

When using such frameworks - however - the user 
generally needs an in depth-knowledge of the 
framework since according to (Talibi 2009) currently a 
white-box approach is more suited to metaheuristics 
than a black-box approach. This means that the user 
often needs to know implementation details of the 
framework and needs to have programming skills.  

White-box reuse means that a very low level of 
abstraction (i.e. the source code level) has to be 
provided to the user in order to tailor an algorithm to a 
certain problem. There are some approaches to build an 
additional level of abstraction on top of the frameworks 
including EASEA (Collete, Luttion, Schoenauer and 
Louchet 2000) and GUIDE (Da Costa and Schoenauer 
2009). However these approaches are either limited to a 
particular optimization paradigm or very close to an 
actual programming language. 

The scope of this work is to raise this level of 
abstraction by developing a modeling layer for 
metaheuristic optimization techniques which is 
independent of the underlying implementation. This is 
accomplished by providing black-box reuse without 
losing the flexibility to tailor the algorithm. Black-box 
reuse means that components (building-blocks) are 
provided that have a well defined interface and can be 
combined in a well-defined way. 

 

 
Figure 1: Separation of the modeling layer from the 

implementation layer 
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The modeling layer is separated from the 
implementation layer as illustrated in Figure 1. In the 
modeling layer algorithm models can be built by 
combining algorithm building blocks. These building 
blocks are then executed in the implementation layer, 
for example by transforming them to code using an 
underlying framework. 
 The created models are written according to a 
specification - an extensible domain specific language 
(DSL) for metaheuristic optimization. This language 
consists of all building blocks that are available to the 
modeler and can be extended by adding new 
components. In that way for example new algorithmic 
concepts or problem-specific parts can be incorporated. 
The models can be validated according to the 
specification. 
 There are various benefits a separate modeling 
layer yields which are examined in this work. First of 
all additional layers of abstraction can be built where 
the implementation details can be abstracted and the 
requirement of programming skills can be removed. 
Second of all different frameworks or framework 
versions can be used to transform the models into an 
executable representation. Apart from that various 
artifacts can be generated from the models including for 
example textual descriptions.   
 When building this modeling layer both, top-down 
and bottom-up, approaches are possible. Top-down 
means that the modeler starts by defining abstract 
components that the algorithm is built of. Then by using 
stepwise refinement these components are mapped to 
the according implementation concepts. Bottom-up 
means that more abstract components are defined 
starting from an existing implementation layer. 
 
2. BENEFITS 
The level of abstraction that is provided by current 
frameworks is raised by providing a separate modeling 
layer above existing frameworks and consequently the 
implementation layer is separated from the modeling 
layer. This yields several benefits: 

 
• Communication: In heuristic optimization 

projects there are usually different types of 
stakeholders. When implementing a solution, 
an expert in the field of heuristic optimization 
algorithms usually needs to have programming 
skills since most of the available frameworks 
are whitebox oriented. A separate modeling 
layer could improve the communication 
between experts in the field of optimization 
and programmers. 

 
• Collaboration: By proving a common model, 

algorithm designers and programmers can 
work together more efficiently because both, 
top-down and bottom-up, modeling approaches 
are possible. On the one hand, in a top-down 
approach an algorithm designer would first 
specify the abstract algorithm building blocks 

and model the algorithm, then the programmer 
maps these building blocks to an existing 
framework or implements them from scratch. 
On the other hand, in a bottom-up approach the 
programmer first maps existing 
implementations to modeling building blocks 
that the algorithm designer can then use to 
design new algorithmic variants. Of course, 
also mixed approaches are possible where 
certain building blocks are provided and new 
ones are added later on by the programmer. 
 

• Abstraction: Algorithms can be modeled 
independently and the implementation details 
are abstracted. As a result, no internal 
knowledge of the underlying framework is 
necessary and no programming skills are 
required. During the modeling process the 
technical details are hidden. Furthermore 
higher layers of abstraction can be created, 
than it is possible to realize within a 
programming language. This can be achieved 
for example by using coarse grained 
components. 
 

• Generation: Various artifacts can be 
generated from the models. For example 
different frameworks or framework versions 
can be supported for the actual implementation 
and execution of the algorithmic model, since 
it is independent of the implementation. Apart 
from that for example textual descriptions of 
the algorithm or graphical representations can 
be generated. In terms of communication and 
collaboration it is also important that the 
generated executable representations can be 
easily executed and algorithm runs can be 
easily analyzed by the domain expert. The 
generated executable representations of the 
algorithms are all unified, which means that for 
example coding standards are followed and the 
design is standardized. This is often very 
difficult to achieve when writing hand-crafted 
code, especially when parts are written by 
different developers. 
 

• Model validation: Since the model is defined 
according to a meta-model, various validations 
can be included. This validation is often only 
performed on the syntactical level in current 
frameworks. An example would be that the 
operators actually fit together and work on the 
same type of problem representation. 
 

• Flexibility: Apart from providing the before 
mentioned benefits, the modeling layer should 
provide full flexibility. This means that it 
should not be restricted to a certain paradigm 
and the algorithmic structure should be fully 
modifiable. 
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3. EXISTING MODELING LAYERS 
There are already some approaches of providing a 
modeling layer for heuristic optimization. For example 
some domain specific languages for local search 
strategies have been developed which are mostly based 
on constraint programming according to Fink and Voss 
(2001). Other examples of modeling layers are EASEA 
(Collete, Luttion, Schoenauer and Louchet 2000), 
GUIDE (Collete, Luttion, Schoenauer and Louchet 
2000) and the HotFrame configurator (Fink and Voss 
2001) which are examined in the following. Also the 
HeuristicLab environment (Wagner, Winkler, Braune, 
Kronberger, Beham, Affenzeller 2007; Wagner 2009) 
can be regarded as a modeling tool. 
 In this section the existing modeling layers are 
evaluated according to the benefits that are discussed in 
section 2. Table 1 gives an overview of the evaluation 
criteria. A √ symbol means that the criterion is fulfilled; 
a о symbol means that a criterion is partially met and a 
× symbol means that the criterion is not met. The − 
symbol means that a certain criterion is not applicable 
to a modeling layer. 

 
Table 1: Evaluation 

 
 

 EASEA is a scripting language for evolutionary 
computation and is close to a programming language. 
This means that even though it abstracts the actual 
programming language and framework, the 
communication and collaboration between 
implementers and domain experts is not supported. This 
is because programming skills are required to use 
EASEA efficiently. However, one benefit of using 
EASEA is certainly that code generation for different 
frameworks is possible. Model validation is not 
supported. In terms of flexibility, EASEA is designed 
for evolutionary computation. However, since EASEA 
is very close to an actual programming language, one 
could argue that additional paradigms can be 
incorporated. 
 GUIDE provides a graphical user interface for 
building evolutionary algorithms based on an algorithm 
template. Its graphical user interface is intuitive and 
reflects the terms used in the evolutionary computation 
community. This enables communication between 
programmers and domain experts. In terms of 
collaboration building blocks based on a certain 
framework can be defined and offered to the modeler. 
However, in terms of communication and collaboration 
the analysis of algorithm runs is not supported directly. 
All framework and implementation details are 
abstracted and code can be generated for various 
frameworks. Model validation is not required, since the 
tool does not allow the construction of invalid models. 

However in terms of flexibility GUIDE is limited to 
evolutionary algorithms and the underlying algorithm 
structure cannot be modified. 
 Similar to GUIDE, the HotFrame configurator is 
designed as a configuration tool. It hides all 
implementation details by providing a configuration 
language to the user which improves the 
communication. In terms of collaboration, programmers 
can provide configurable building blocks to the domain 
expert. From the configuration an executable 
representation is generated. However, the analysis of 
algorithm runs is not supported. In terms of abstraction, 
the HotFrame configurator is limited to the HotFrame 
framework. There is no need for model validation since 
it only allows the user to create valid models. When it 
comes to flexibility, the HotFrame configurator is 
limited to the configuration of the algorithms; the 
algorithm structure cannot be modified. 
 Regarding HeuristicLab, one great benefit is 
certainly the communication and collaboration between 
domain experts and programmers. In the current release 
(version 3.3) communication and collaboration between 
programmers and domain experts is supported using a 
model-driven approach which is described by Wagner 
(2009). Apart from building the algorithms using pre-
defined building blocks, algorithm runs can be executed 
and analyzed within the HeuristicLab environment. The 
details of the underlying programming language are 
abstracted completely by providing a generic modeling 
concept. However, this layer of abstraction is tied to the 
HeuristicLab framework and right now it cannot be 
used to generate code for other frameworks. This means 
that the framework details are not abstracted. As a result 
the modeling and execution layer are not separated and 
no generation is needed to execute the models. In terms 
of flexibility, there exist two different types of 
algorithms in the HeuristicLab framework: pre-defined 
and user-defined algorithms. Pre-defined algorithms can 
be parameterized (similar to the HotFrame configurator) 
and thus there is no need for model validation, since the 
user cannot construct invalid models. User-defined 
algorithms provide a full degree of flexibility. However, 
for these algorithms no fully-fledged meta-layer exists 
right now. This means that the control and data flow 
cannot be validated when constructing custom 
algorithms. 

 
4. MODELING CONCEPT 
As stated in section 1, the developed modeling concept 
is a black-box oriented approach. This allows the 
definition and combination of well defined building 
blocks. These building blocks are components that 
represent a specific encapsulated functionality which is 
part of a metaheuristic optimization algorithm. This 
functionality can be realized on different levels of 
abstraction. 
 The elementary components that the algorithm is 
built of are operators, similar to the modeling concept 
proposed by Wagner (2009). However the level of 
abstraction is higher and less focused on 
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implementation and execution than the algorithm 
models of the examined frameworks. The modeling 
layer is separated from the implementation/execution 
layer. 

 
Figure 2: Interface of an operator 

 
 Following a component-based approach, these 
building blocks have a well defined interface. This 
interface determines how building blocks can be 
combined. As illustrated in Figure 2 an operator has a 
control interface and a data interface. The control 
interface can be used to model the control flow, the data 
interface to model the data flow of the algorithm. This 
separation allows a high level of flexibility. The control 
and data interfaces consist of input and output ports that 
can be connected to each other. 

 
4.1. Control Flow 
By connecting the control ports of the operators, the 
control flow of the algorithm can be modeled. Each 
operator has exactly one control input and zero or more 
control outputs. A connection between the control 
output of an operator A and a control input of an 
operator B means that operator B is called by operator 
A. Each algorithm has a start operator that has no 
control input and one control output that triggers the 
execution of the algorithm. 
 Whenever multiple control output ports are 
connected to one control input port, the control flows 
are joined at that point. The semantic of a join is that the 
execution of all previous operators has to be finished 
before the called operator is executed. Finished means 
that all previous operators either have finished 
execution or are not executed. 

 
4.2. Data Flow 
Whenever an operator is executed, the parameters from 
the input data ports are processed and the results are 
written to the output data ports. An operator can have 
zero or more data input and zero or more data output 
ports. The data input ports store the current value until a 
new value is set. The value of each data input port is set 
to empty at the beginning of the execution of an 
algorithm. A data output port can be connected to an 
arbitrary number of data input ports. The value of the 
data output port is written to all connected data input 
ports. 

 

5. IMPLEMENTATION 
To provide means of formulating the models, a domain 
specific language (DSL) for metaheuristic optimization 
algorithms is developed. The design and 
implementation of the modeling layer is based on the 
general modeling concept that is outlined in the 
previous section. Several design choices were made to 
create a modeling system that meets the benefits 
described in section 2. 
 First of all it was decided that an external graphical 
DSL should be developed. The main reason for that is 
raising the level of abstraction and hiding the 
implementation details. Furthermore, to enhance the 
communication between domain experts and 
programmers, a graphical concrete syntax was chosen. 
 To achieve a high level of flexibility the vocabulary 
of the DSL should not be fixed but definable by the 
user. The user should be able to define new building 
blocks and that way add a new vocabulary to the 
modeling language. The developed DSL should be 
highly extensible. 
 As a result, actually two graphical editors are 
developed: One editor to define the algorithmic building 
blocks and one editor to model the algorithms. That 
way, new building blocks for the modeling of 
algorithms can be created and the vocabulary can be 
easily extended. 
 The DSL to define algorithmic building blocks 
provides a specification of the algorithmic components. 
It is used to create toolbox models which provide a set 
of components that can be used in an algorithm. In 
principal these two DSLs can be used by the same or by 
different users. For example one user could create 
certain building blocks and then provide them to 
another user. The first user that defines the components 
could be a programmer and the second user that builds 
the algorithm models using the second editor could be a 
domain expert in heuristic optimization. That way the 
communication between these two user groups could be 
enhanced. 

Both languages were implemented as graphical 
editors using the Microsoft Visual Studio Visualization 
and Modeling SDK1. Both designers are integrated into 
the Visual Studio environment.  

 
6. RESULTS 
Using the developed modeling tools, several example 
algorithm models were created. Figure 3 shows a 
genetic algorithm model solving the traveling salesman 
problem using a permutation encoding. In that case, 
high-level building blocks which are defined in the 
corresponding toolboxes are combined with each other.  

                                                           
1 http://code.msdn.microsoft.com/vsvmsdk 
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These high-level building blocks are defined in 
toolboxes. Some can be directly mapped to a 
framework, others are defined as finer-grained 
algorithm models. For example the GA building block is 
defined by a finer-grained GA building block that 
includes operations such as evaluation, selection and 
reproduction following the abstract GA specification.  

 In the example model, the problem-specific TSP 
toolbox is combined with the encoding-specific 
Permutation toolboxes and the general Evolutionary 
and GA toolbox.  

Due to data flow validation, only building blocks 
that fit together can be combined; for example no real-
vector operations can be used in conjunction with 
permutation operations.  
 These algorithm models can be converted to 
executable HeuristicLab algorithms using the 
HeuristicLab code generator. The targeted HeuristicLab 
version is 3.3.0 (http://dev.heuristiclab.com). 
 The runtime and quality of generated solutions for 
different problem instances retrieved from the TSPLIB 
[Rei91] has been measured and analyzed. These results 
are compared to the standard GA implementation 
included in the HeuristicLab 3.3.0 release which is 
hand-crafted. 
 All test runs where done using a population size of 
100, a mutation rate of 5% and one-elitism. For all 

instances 10 independent test runs were done and the 
mean value and standard deviation was calculated. 
 The quality of the best solution after 100 iterations 
is examined to make sure that the generated code 
produces correct results. The results are listed in table 3. 
All deltas between the results of the hand-crafted GA 
and the generated GA are in the range of the standard 
deviation which shows the correctness of the approach. 

 
Table 3: Best solution quality analysis 

 
 

7. CONCLUSION 
Concluding, a prototype of the modeling environment 
has been developed and several benefits have been met 
and also some drawbacks were identified: 

 
• Communication: It has been shown that these 

algorithm models are close to the abstract 
algorithmic specification found in the 
literature. This illustrates that a domain-
specific language can enhance the 
communication between domain experts and 

Figure 3: Genetic algorithm model solving the TSP 
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programmers in the field of heuristic 
optimization. However, graphical models can 
get quite complex and difficult to change for 
complex algorithmic concepts and it is crucial 
to choose a sufficient level of abstraction. 
 

• Collaboration: Using the prototype, top-down 
and bottom-up modeling approaches are 
possible which advances the collaboration 
between the different stakeholders. 
 

• Abstraction: The algorithm models are 
designed independently of the underlying 
framework and programming language. 
However, it has yet to be shown that these 
models can be mapped to frameworks other 
than HeuristicLab.  
 

• Generation: The generated code turned out to 
be less efficient than the handcrafted code. 
Furthermore, the generated code is very 
different from the way a domain expert would 
model the algorithms in the HeuristicLab 
environment. This has a negative impact on the 
maintainability. 

 
• Model validation: Data flow validation has 

been implemented and prevents the user from 
creating invalid models. 
 

• Flexibility: The algorithm model provides full 
flexibility. This is shown by the fact that 
several algorithmic concepts have been used in 
the example models. 

 
In the future, additional code generators could be 
developed that produce more optimal code or produce 
code that is closer to the algorithm model of 
HeuristicLab. Also additional code generators could be 
developed that produce code for other frameworks such 
as ParadisEO or HotFrame. This would be especially 
beneficial for the comparison of different frameworks.
 In terms of validation, control flow validation could 
be implemented in addition to the existing data flow 
validation. 
 Concluding, apart from being beneficial as a case-
study, the work described in this paper could also have 
impact on the further development of HeuristicLab. 
Especially aspects concerning abstraction, generation 
and model validation could be transfered to the 
HeuristicLab algorithm model. 
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