
DEVS: AN ADD-ON FOR REACTIVE NAVIGATION

Youcef DAHMANI (a), Maamar El-Amine HAMRI

 (b)

(a)

 University Ibn Khaldoun B.P. 78, Zaaroura Tiaret, Algeria
 (b)

 LSIS UMR CNRS 6168 University of Paul Cézanne Aix-Marseille III, France

(a)
 _y@yahoo. ,

(b)

amine.hamri@lsis.org

ABSTRACT
This article discusses the use of the discrete event

system specification (DEVS) to simulate reactive

navigation. The article illustrates the utility of this

formalism to combine behavioural robot navigation and

systems modelling concepts.

In this work, we exploit the fuzzy logic theory in order

to deal with imprecise and inaccurate robot localization.

The data obtained from the localization module are

presented to our DEVS model which is composed about

three states representing respectively three behaviours:

following left wall, following right wall and corridor

following. Some modifications in Fuzzy Inference

System are presented to optimize the calculus time.

Keywords: DEVS Formalism, Mobile Robots, Reactive

Navigation, Fuzzy Logic Controller, Localization

1. INTRODUCTION
The mobility and the autonomy of robots pose complex

problems, as regards generation of trajectory in strongly

constrained and unstructured spaces. The other problem

is of decision-making starting from information sensors

vague or incomplete. To this end, robots need more

sense, decision and technology (Michita 1999; Sergio

2000).

In this work, we use the DEVS formalism to describe

three behaviours as three different states and the

stimulus of each state is fired by localization distance

which is given by fuzzy controller.

The DEVS (Discrete EVent system Specification)

formalism was introduced by Zeigler (1976) as an

abstract formalism for discrete-events modelling and

simulation.

The DEVS formalism is a modelling approach based on

systems theory. It’s a modular and hierarchical

formalism focused on state notion. DEVS is based on

two types of models: atomic models and coupled

models. Atomic model represents the basic behaviour of

system and the coupled models are based on atomic

models and/or coupled models, they represent the

internal structure of the system which represent

coupling between models (BISGAMBIGLIA 2008).

For the class of formalisms denoted as discrete-event

(Fishwick 1995), system models are described as an

abstraction level where the time base is continuous (ℜ),

but during time-span, only a finite number of relevant

events occur. These events can cause the state of the

system to change.

The Fuzzy logic permit to use mathematics

concepts, its main advantage is the representation of the

human been knowledge. The use of fuzzy logic gives

good results in robot navigation without an analytical

model of the environment.

2. THE DEVS FORMALISM
The DEVS (Discrete EVent Systems specifications)

formalism allows two levels of description (Zeigler

2000; Glinsky 2004). At the lowest level, a basic

component called atomic DEVS which describes the

autonomous behaviour of a discrete-event system and at

the highest level, a coupled DEVS which describes a

system as coupled, hierarchical and modular model.

2.1. The atomic DEVS formalism
Formally, an atomic DEVS, which represents an atomic

model, is specified by 7-tuple:

AM=<X,S,Y,δ int, δext

Where

,λ,ta>

X: input events set;

S: states set;

Y: output events set;

δ int

δ

: S→S : internal transition function, models the

states changes caused by internal events, it describes the

behaviour of a Finite State Automaton;

ext

Q={(s,e) | s∈S.0≤e≤ta(s)} : total states and e describes

the elapsed time since the system made a transition to

the current state s;

: Q×S→S : external transition function, defines the

state changes due to external events;

λ: S→Y : output function, maps the internal state onto

the output set;

ta: S→ℜ : time advance function, represents the

lifetime of the state.

2.2. The coupled DEVS formalism
The coupled DEVS formalism describes a discrete

event system in terms of a network of coupled

components.

CM=< , ,D,{

Where

 | d∈D},EIC,EOC,IC,select>

Page 375

 RD

 LD

 BD

 MT

 End

 : set of possible inputs of the coupled model,

D : set of names associated to the model components,

: set of possible outputs of the coupled model,

EIC: set of External Input Coupling,

 | d∈D: set of the coupled model components, these

components are either atomic or coupled DEVS model,

EOC: set of External Output Coupling,

IC: defines the Internal Coupling,

Select:

→D : function that defines priority between

components.

3. FUZZY LOGIC CONTROLLER
A fuzzy logic controller permits to build control law

from linguistic and qualitative description of system’s

behaviour via fuzzy base rules.

A fuzzy controller consists of 3 basic elements (Fig.1):

1. State interface (Fuzzification): numerical values are

represented into linguistic variables with appropriate

membership functions,

2. Action interface (Defuzzification): transforms the

command actions into crisp values useable directly by

the process which is modeled.

3. Inference engine: elaborates decisions from fired

fuzzy rules, it’s the core of the controller.

Figure 1: Fuzzy logic controller

4. MODULAR DESIGN

4.1. Robot Architecture
In the present work, the robot considered is circular

having three sensors, one in front and one on each side.

The sensor’s orientation angle is 45° on both sides of

frontal axis of the robot. For safety navigation manner,

the robot is constrained by some points. The robot must

move far from a safe distance, the corridor must be

wide than a certain width, and the sensors have a

limited scope (Fig.2)

Figure 2: Structure and robot’s sensor’s position

4.2. Reactive Navigation in DEVS formalism
In this work, we have chosen 3 behaviours; each one

represents a state (Fig.3). The transition from one state

into the other is fired by external event (Table 1). This

work is based on 6 events which are obtained from the

localization module; this module activates the

appropriate port to trigger the event. We denote Right

Distance detection event (rd) gathered by the RD port,

the Left Distance detection (ld) obtained via the LD

port, Bilateral Distance detection (bd) which is gotten

by by the BD port, Move to Target (mt) and the end

event which are on respectively on the MT and the End

ports.

Figure 3: Reactive Navigation’s DEVS model

Note that, the bd event is obtained if both events rd and

ld are detected. rd and ld events are obtained by

calculating the minimum distance between respectively,

the right and frontal distance on the right sensor, and the

left and frontal distance on the left gathered by the left

sensor.

rd= min(right distance, frontal distance)

ld= min(left distance, frontal distance)

As illustrated on table 1, we define a following output

function

δext

λ: S→Y

: Q×S→S

Table 1: Diagram of event’s transitions
State Stand by

Tracking

Right

Wall

Tracking

Left

Wall

Tracking

Corridor

Move to

target

End

Moving

E
v
en

t

rd Tracking

Right

Wall

Tracking

Right

Wall

Tracking

Right

Wall

Tracking

Right

Wall

Tracking

Right

Wall

Not

Available

ld Tracking

Left

Wall

Tracking

Left

Wall

Tracking

Left

Wall

Tracking

Left

Wall

Tracking

Left

Wall

Not

Available

bd Tracking

Corridor

Tracking

Corridor

Tracking

Corridor

Tracking

Corridor

Tracking

Corridor

Not

Available

mt Move to

target

Move to

target

Move to

target

Move to

target

Move to

target

Not

Available
end End

Moving

End

Moving

End

Moving

End

Moving

End

Moving

Not

Available

Defuzzifer Fuzzifier
Inference

Engine

Crisp

Values
Crisp

Values

 Scope

R

Corridor‘s wide

Safe dist

Page 376

4.3. Optimization of fuzzy controller process
The reproach of the fuzzy logic control usage is that it

takes a lot of CPU time for calculations, especially for

large number of fuzzy rules.

We introduce a discrete event version of Fuzzy Logic

Control in order to reduce the fuzzy inference engine

activity and speed up the calculation process. This idea

is inspired from the works of Sheikh-Bahaei and

Jamshidi (2004).

To do that, a change detector bit is added to fuzzy logic

controller (Fig. 4). We define a change detector of each

fired fuzzy rule, and if no change is observed on the

participating linguistic terms, so we leave the rule and if

rule or some other linguistic terms are hold we use the

fuzzy inference method.

Figure 4: Proposed Fuzzy Controller

5. SIMULATIONS AND RESULTS

5.1. The Data Base Fuzzy Rules
According to our kinematics’ model (Fig.5), we note θ

the orientation of the robot, ϕ, represents the angle to

the target, and α describes the deviation done by the

robot when it moves (α=θ-ϕ).

So the structural fuzzy rules introduced by the Fuzzy

logic controller are:

 : If (θ-ϕ) is A and

Where A,B and C are linguistic terms and Dx stand for

Distance (right, left or frontal).

 is B Then α is C

Figure 5: Cinematic of the Robot

The different variables are fuzzified as below (Fig. 6)

Figure 6: Input/Output Fuzzification

So, the data base fuzzy rules are described on tables 2a,

2b.

According to these rules, each behavior “state” is

activated only when the change detector detects a

change in the conclusion of the fired fuzzy rules.

Table 2.a: Fuzzy Data

Base (Right Turn)

 (θ-ϕ)

min
N

(Dr,Df)
Z P

N P P P

Z Z Z Z

P N N N

Table 2.a: Fuzzy Data

Base (Left Turn)

 (θ-ϕ)

min
N

(Dl,Df)
Z P

N N N N

Z Z Z Z

P P P P

5.2. Simulations and results
The figure 7 shows an example of a fuzzy rule

implemented by these atomic models. Each atomic

model has a change detector, such that each model is

activated only when there is a change in the input,

otherwise they are sleeping and don’t take any CPU

time.

We remark there is not a big difference between the two

trajectories taken by the robot. But if we compare the

activities between the 2 methods we found that we gain

in number of iterative calculations evolving a

diminution in process activity and in the other point, we

decrease the number of event stimulus for the robot (see

Table.3).

N Z P

µ

1

 0 0.25 0.50 0.75 1

 Fuzzification of Dr,Dl and Df

N Z P

µ

1

 - π -π/2 0 π/2 π

Fuzzification of θ, ϕ and α

Left Obstacle

Mobile Robot
Right Obstacle

θ

ϕ

Target

Frontal Obstacle

DL

DR

DF

Left Obstacle

Mobile Robot
Right Obstacle

θ

ϕ

Target

Frontal Obstacle

DL

DR

DF

Page 377

Figure 7.a: Conventional Fuzzy Navigation

Figure 7.b: Optimized Fuzzy Navigation

The table below gives a comparison between the classic

conventional fuzzy navigation and the combined

discrete event one.

Table 3: Diagram of event’s transitions
 Following right wall

Number of

fuzzy iterations
RD Event call

Conventional fuzzy

navigation
1765 49

Discrete Event 1119 26

 Following left wall

Number of

fuzzy iterations
RD Event call

Conventional fuzzy

navigation
814 9

Discrete Event 538 7

This result depicted on table 3 shows for the same

environment, starting and ending at the same points (see

Fig.7 a. and b.), the navigation process gives good

results compared to the conventional fuzzy navigation.

We can see that we decrease the activity of cpu and

calculation time by using the DEVS simulation. In

conventional method all the fuzzy operations

(fuzzification , inference, defuzzification) is done at

every time step, but in Discrete Event Fuzzy Logic the

calculation are done only if there is change (event) in

the system.

6. CONCLUSIONS AND PERSPECTIVES
This paper has allowed us to combine fuzzy approach

and DEVS formalism in reactive navigation; it gave us

good results in particular for the 3 mentioned

behaviours. However, the subject is not ready to be

completed.

It’s known that, we can always think of carrying out

certain number of works, we can retain following work:

 Adding and simulating other behaviours with

DEVS formalism,

 Realization of conflict behaviour in robot

navigation,

 Integration of the vague concepts on all levels of

robot’s architecture,

 Trying this method in more complex environment.

REFERENCES
Bisgambiglia, P.A., 2008. Approximate Modelling

Approach for Discrete Events Systems:
Application for Forest Fire Propagation, PhD

Thesis, University of Corse, France.

Fishwick, P., 1995. Simulation Model Design and

Execution: Building Digital Worlds.

Glinsky, E. and Gabriel, W., 2004. Modeling and

Simulation of Hardware/Software systems With

CD++. Information Processing and Management,
7 (2), 147–168.

Michita, I., Kazno, H. and Tsutomu, M., 1999. Physical

Constraints on Human Robot Interaction.

Proceedings of the International Joint Conference
on Artificial Intelligence, July-August, Sweden.

Sergio, U.G. and Horacio, M.A., 2000. Application of

Behavior-Based Architecture for Mobile Robots

Design. Lecture Notes in Artificial Intelligence
1793, MICAI 2000: Advances in Artificial
Intelligence, pp 136-147, April 2000, Mexico.

Sheikh-Bahaei, S. and Jamshidi, M., 2004. Discrete

Event Fuzzy Logic Control with Application to

Sensor-Based Intelligent Mobile Robot.

Proceedings WAC, June 28-July 1, Spain.

Zeigler, B.P., 1976. Theory of Modeling and
Simulation, Academic Press.

Zeigler, B.P., Praehofer, H. And Kim, T.G., 2000.

Theory of Modeling and Simulation Second
Edition Integrating Discrete Event and Continuous
Complex Dynamic Systems, Academic Press.

AUTHORS BIOGRAPHY
Youcef DAHMANI is lecturer of computer science at

the Ibn Khaldoun University of Tiaret. He obtained his

diploma of computer engineering in 1992 from

U.S.T.Oran, Algeria, and the MSc degree in 1977 from

university of Es Senia Oran and received the doctorate

in 2006 from U.S.T.Oran. His research areas include

optimization of fuzzy rules, artifial intelligence, reactive

robotic systems and network security.
Maamar El-Amine HAMRI is an associate professor

at Aix Marseille III university and a member of LSIS

lab. His main research is the discrete event simulation.

Currently his is interested to the use of simulation in IA

and software engineering. He is also member of the

M&S network and supervises the M&S dictionary

project.

Page 378

