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ABSTRACT 
This article discusses the use of the discrete event 

system specification (DEVS) to simulate reactive 

navigation. The article illustrates the utility of this 

formalism to combine behavioural robot navigation and 

systems modelling concepts. 

In this work, we exploit the fuzzy logic theory in order 

to deal with imprecise and inaccurate robot localization. 

The data obtained from the localization module are 

presented to our DEVS model which is composed about 

three states representing respectively three behaviours: 

following left wall, following right wall and corridor 

following. Some modifications in Fuzzy Inference 

System are presented to optimize the calculus time. 

 

Keywords: DEVS Formalism, Mobile Robots, Reactive 

Navigation, Fuzzy Logic Controller, Localization 

 

1. INTRODUCTION 
The mobility and the autonomy of robots pose complex 

problems, as regards generation of trajectory in strongly 

constrained and unstructured spaces. The other problem 

is of decision-making starting from information sensors 

vague or incomplete. To this end, robots need more 

sense, decision and technology (Michita 1999; Sergio 

2000).   

In this work, we use the DEVS formalism to describe 

three behaviours as three different states and the 

stimulus of each state is fired by localization distance 

which is given by fuzzy controller. 

The DEVS (Discrete EVent system Specification) 

formalism was introduced by Zeigler (1976) as an 

abstract formalism for discrete-events modelling and 

simulation. 

The DEVS formalism is a modelling approach based on 

systems theory. It’s a modular and hierarchical 

formalism focused on state notion. DEVS is based on 

two types of models: atomic models and coupled 

models. Atomic model represents the basic behaviour of 

system and the coupled models are based on atomic 

models and/or coupled models, they represent the 

internal structure of the system which represent 

coupling between models (BISGAMBIGLIA 2008). 

For the class of formalisms denoted as discrete-event 

(Fishwick 1995), system models are described as an 

abstraction level where the time base is continuous (ℜ), 

but during time-span, only a finite number of relevant 

events occur. These events can cause the state of the 

system to change.  

The Fuzzy logic permit to use mathematics 

concepts, its main advantage is the representation of the 

human been knowledge.  The use of fuzzy logic gives 

good results in robot navigation without an analytical 

model of the environment. 

 

2. THE DEVS FORMALISM 
The DEVS (Discrete EVent Systems specifications) 

formalism allows two levels of description (Zeigler 

2000; Glinsky 2004). At the lowest level, a basic 

component called atomic DEVS which describes the 

autonomous behaviour of a discrete-event system and at 

the highest level, a coupled DEVS which describes a 

system as coupled, hierarchical and modular model. 

 

2.1. The atomic DEVS formalism 
Formally, an atomic DEVS, which represents an atomic 

model, is specified by 7-tuple: 

AM=<X,S,Y,δ int, δext

Where 

,λ,ta> 

X: input events set; 

S: states set; 

Y: output events set; 

δ int

δ

: S→S : internal transition function, models the 

states changes caused by internal events, it describes the 

behaviour of a Finite State Automaton; 

ext

Q={(s,e) | s∈S.0≤e≤ta(s)} : total states and e describes 

the elapsed time since the system made a transition to 

the current state s; 

: Q×S→S : external transition function, defines the 

state changes due to external events; 

λ: S→Y : output function, maps the internal state onto 

the output set; 

ta:  S→ℜ : time advance function, represents the 

lifetime of the state. 

 

2.2. The coupled DEVS formalism 
The coupled DEVS formalism describes a discrete 

event system in terms of a network of coupled 

components. 

CM=< , ,D,{

Where 

 | d∈D},EIC,EOC,IC,select> 
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 : set of possible inputs of the coupled model, 

 

D : set of names associated to the model components, 

: set of possible outputs of the coupled model, 

EIC: set of External Input Coupling, 

 | d∈D: set of the coupled model components, these 

components are either atomic or coupled DEVS model, 

EOC: set of External Output Coupling, 

IC: defines the Internal Coupling, 

Select: 

 

→D : function that defines priority between 

components. 

3. FUZZY LOGIC CONTROLLER 
A fuzzy logic controller permits to build control law 

from linguistic and qualitative description of system’s 

behaviour via fuzzy base rules. 

A fuzzy controller consists of 3 basic elements (Fig.1):  

1. State interface (Fuzzification): numerical values are 

represented into linguistic variables with appropriate 

membership functions, 

2. Action interface (Defuzzification): transforms the 

command actions into crisp values useable directly by 

the process which is modeled.  

3. Inference engine: elaborates decisions from fired 

fuzzy rules, it’s the core of the controller. 

 

 
Figure 1: Fuzzy logic controller 

 

4. MODULAR DESIGN 
 

4.1. Robot Architecture 
In the present work, the robot considered is circular 

having three sensors, one in front and one on each side. 

The sensor’s orientation angle is 45° on both sides of 

frontal axis of the robot. For safety navigation manner, 

the robot is constrained by some points. The robot must 

move far from a safe distance, the corridor must be 

wide than a certain width, and the sensors have a 

limited scope (Fig.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Structure and robot’s sensor’s position 

4.2. Reactive Navigation in DEVS formalism 
In this work, we have chosen 3 behaviours; each one 

represents a state (Fig.3). The transition from one state 

into the other is fired by external event (Table 1). This 

work is based on 6 events which are obtained from the 

localization module; this module activates the 

appropriate port to trigger the event. We denote Right 

Distance detection event (rd) gathered by the RD port, 

the Left Distance detection (ld) obtained via the LD 

port, Bilateral Distance detection (bd) which is gotten 

by by the BD port, Move to Target (mt)  and the end 

event which are on respectively on the MT and the End 

ports.  

 

 
 

Figure 3: Reactive Navigation’s DEVS model 

 

Note that, the bd event is obtained if both events rd and 

ld are detected. rd and ld events are obtained by 

calculating the minimum distance between respectively, 

the right and frontal distance on the right sensor, and the 

left and frontal distance on the left gathered by the left 

sensor.  

rd= min(right distance, frontal distance) 

ld= min(left distance, frontal distance) 

As illustrated on table 1, we define a following output 

function  

δext

λ: S→Y 

: Q×S→S 

 

Table 1: Diagram of event’s transitions 
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4.3. Optimization of fuzzy controller process 
The reproach of the fuzzy logic control usage is that it 

takes a lot of CPU time for calculations, especially for 

large number of fuzzy rules.  

We introduce a discrete event version of Fuzzy Logic 

Control in order to reduce the fuzzy inference engine 

activity and speed up the calculation process. This idea 

is inspired from the works of Sheikh-Bahaei and 

Jamshidi (2004). 

To do that, a change detector bit is added to fuzzy logic 

controller (Fig. 4). We define a change detector of each 

fired fuzzy rule, and if no change is observed on the 

participating linguistic terms, so we leave the rule and if 

rule or some other linguistic terms are hold we use the 

fuzzy inference method. 

 

 
Figure 4: Proposed Fuzzy Controller 

 

5. SIMULATIONS AND RESULTS 
 

5.1. The Data Base Fuzzy Rules 
According to our kinematics’ model (Fig.5), we note θ 

the orientation of the robot, ϕ, represents the angle to 

the target, and α describes the deviation done by the 

robot when it moves (α=θ-ϕ). 

So the structural fuzzy rules introduced by the Fuzzy 

logic controller are: 

 :  If  (θ-ϕ) is A and 

Where A,B and C are linguistic terms and Dx stand for 

Distance (right, left or frontal). 

 is B Then  α is C  

 

 
Figure 5: Cinematic of the Robot 

 

The different variables are fuzzified as below (Fig. 6)  

 

 
Figure 6: Input/Output Fuzzification 

 

So, the data base fuzzy rules are described on tables 2a, 

2b. 

According to these rules, each behavior “state” is 

activated only when the change detector detects a 

change in the conclusion of the fired fuzzy rules. 

 

Table 2.a: Fuzzy Data 

Base (Right Turn) 

     

    (θ-ϕ) 

min
N 

(Dr,Df) 
Z P 

N P P P 

Z Z Z Z 

P N N N 

Table 2.a: Fuzzy Data 

Base (Left Turn) 
 

       (θ-ϕ) 

min
N 

(Dl,Df) 
Z P 

N N N N 

Z Z Z Z 

P P P P 

 

5.2. Simulations and results 
The figure 7 shows an example of a fuzzy rule 

implemented by these atomic models. Each atomic 

model has a change detector, such that each model is 

activated only when there is a change in the input, 

otherwise they are sleeping and don’t take any CPU 

time. 

We remark there is not a big difference between the two 

trajectories taken by the robot. But if we compare the 

activities between the 2 methods we found that we gain 

in number of iterative calculations evolving a 

diminution in process activity and in the other point, we 

decrease the number of event stimulus for the robot (see 

Table.3). 
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Figure 7.a: Conventional Fuzzy Navigation 

 

 

 

 

 

 

 

 

Figure 7.b: Optimized Fuzzy Navigation 

The table below gives a comparison between the classic 

conventional fuzzy navigation and the combined 

discrete event one. 

Table 3: Diagram of event’s transitions 
 Following right wall 

Number of 

fuzzy iterations 
RD Event call 

Conventional fuzzy 

navigation 
1765 49 

Discrete Event  1119 26 

 Following left wall 

Number of 

fuzzy iterations 
RD Event call 

Conventional fuzzy 

navigation 
814 9 

Discrete Event  538 7 

 

This result depicted on table 3 shows for the same 

environment, starting and ending at the same points (see 

Fig.7 a. and b.), the navigation process gives good 

results compared to the conventional fuzzy navigation.  

We can see that we decrease the activity of cpu and 

calculation time by using the DEVS simulation. In 

conventional method all the fuzzy operations 

(fuzzification , inference, defuzzification ) is done at 

every time step, but in Discrete Event Fuzzy Logic the 

calculation are done only if there is change (event) in 

the system. 

 

6. CONCLUSIONS AND PERSPECTIVES 
This paper has allowed us to combine fuzzy approach 

and DEVS formalism in reactive navigation; it gave us 

good results in particular for the 3 mentioned 

behaviours. However, the subject is not ready to be 

completed. 

It’s known that, we can always think of carrying out 

certain number of works, we can retain following work: 

 Adding and simulating other behaviours with 

DEVS formalism, 

 Realization of conflict behaviour in robot 

navigation, 

 Integration of the vague concepts on all levels of 

robot’s architecture,  

 Trying this method in more complex environment. 
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