
IMPROVEMENT ON DYNAMIC TILED TERRAIN RENDERING ALGORITHM IN
LIBMINI

Liao Mingxue(a), Xu Fanjang(a), He Xiaoxin(a)

(a)

Institute of Software, Chinese Academy of Sciences

(a)

liaomingxue@sohu.com

ABSTRACT
As an open source library for large-scale terrain

rendering in a continuous LOD high field, libMini takes

a top-down method for static terrain rendering and

achieves good performance. However, it uses the same

top-down method to render elevation and texture for

dynamic terrain. The method consumes a few seconds

to update dynamic terrain and thus does not meet real-

time requirements for rendering and leads to possible

holes and gaps between adjacent terrain tiles. A

millisecond-level real-time bottom-up libMini-based

algorithm is proposed to render dynamic terrain while a

method is presented to blend holes and gaps produced

during the process of rendering dynamic tiled terrain.

Keywords: bottom-up algorithm, dynamic terrain,

libMini, tiled terrain

1. INTRODUCTION
TERRAIN visualization is an important part of

geographic information system, virtual battlefield

environment, simulating training system, games and so

on. Many algorithms are published for static terrain

visualization, such as real-time continuous level of

detail rendering algorithm (Lindstrom 1996),

progressive meshes algorithm (Hoppe 1996), ROAM

(Duchaineau 1997) and view-dependent fast real-time

generating algorithm for large-scale terrain (Jin 2009).

Due to the development of virtual environment

simulation and increase in requirements for real-time

interaction, the research on dynamic terrain

visualization algorithms becomes increasingly

important.

Both elevation data and image data of terrain will

be changed due to interactions between 3D models and

terrain in battlefield simulation or other situations, for

example, explosion of thousands of bombs will force

ground surfaces to collapse and will expose deep soil

that takes on a different appearance from the ground

surfaces and thus will pose restriction on the movement

of tanks and other models in the scene. A few methods

are now invented for dynamic terrain rendering.

Robert (1999) described a model of ground

surfaces and explained how these surfaces can be

deformed by characters in an animation. But their

simulation model of ground surfaces was based on a

uniform-resolution height field that cannot be extended

to large-scale terrain scene.

Shamir proposed a multi-resolution dynamic

meshes algorithm, which concentrates on complex

geometric objects other than large-scale terrain (Shamir

2000). They used DAG (Directed Acyclic Graph) to

present hierarchical structure and updated the DAG as

deformations happened on objects at time steps to form

T-DAG. This relatively costly T-DAG updating has a

limit to on-line modifications on objects.

With an extension to ROAM and using DEXTER

(Dynamic EXTEnsion of Resolution), He provided an

algorithm for dynamic terrain visualization (He 2002).

But their approach united with fake properties of terrain

deformation and did not consider the physical model of

terrain. They only dealt with relatively small scale

terrain. Their terrain was divided into regions, but the

continuity among the regions was not processed.

Recently, based on ROAM, Cai implemented a

dynamic terrain method for rendering craters in battle-

field environments (Cai 2006), but they did not address

how the method runs smoothly in real-time. Exploiting

the power of modern GPU, Shiben developed a system

for real-time rendering and manipulation of large

terrains (Shiben 2008). Their system achieves a

performance of 250-microsecond terrain deformation

over a block of size 1024 1024. However, the

performance can be only reached with the help of GPU

and thus costly.

This paper firstly proposes a real-time dynamic

terrain algorithm for large-scale terrain based on

libMini library (Stefan 1998). The library achieves good

LOD continuity and rendering effect and has been

applied well in VTP (Discoe 2005, Discoe 2009) and

AquaNox game (Stefan 1998). In the library, the terrain

is divided into tiles to solve the problem in large-scale

data rendering. This paper also implements a dynamic

terrain algorithm for elevation and image updating in

the tiled terrain to eliminate holes and gaps between

adjacent tiles.

2. BRIEF INTRODUCTION TO ALGORITHM
OF LIBMINI

The underlying data structure of libMini algorithm for

terrain rendering is basically a quadtree. The quadtree is

represented by a Boolean matrix. Beginning from the

Page 369

root node of the tree, if the terrain block represented by

a parent node needs to upgrade its rendering detail level,

we set corresponding value in the matrix to 1 and

continue this way with the parents’ four subnodes. A

decision variable f with a less-than-one value in (1) tells

a node to be upgraded (Stefan 1998).

 (1)

 (2)

 In both (1) and (2), l is the distance to eye point, d is

the length of the terrain block presented by the node,

and d2 is the roughness of the block. The constant C

determines the minimum global resolution, whereas the

constant c specifies the desired global resolution. The

dhi, which also appear in Figure 1 (Stefan 1998), are the

absolute values of the differences between center

elevation and average elevation of two ends of four

borders and two diagonals.

Figure 1: Definition for Variables dhi in (2)

The major issue in rendering terrain is how to

guarantee that the level difference of adjacent blocks is

not greater than one in order to build a continuous mesh

without holes. LibMini takes a top-down algorithm as in

Figure 2 (Yang 2009) starting with highest-resolution

blocks, it calculates their d2-values and then propagates

those values to lower-resolution blocks to decide what

real d2 values of the lower-resolution blocks are.

Figure 2: Process of Propagation of d2-values

As in Figure 2 the K (Stefan 1998) times d2-value

is propagated from higher-resolution block CKIJ to

lower ones ABCD, CEFH, and CDGH. Generally, a
block in higher-resolution will propagate K times its d2-

value to its parent block in lower-resolution and two

lower-resolution blocks adjacent to its parent block. The

final d2 value of a block is the maximum of its own d2

value and all K-times d2 values passed to it.

According to the top-down algorithm above, if a

small local part of the whole terrain changes

dynamically, libMini need to calculate the new d2-value

of the highest-resolution blocks in the local part and

then to propagate the new values to lower-resolution

blocks around this part. And these lower-resolution

blocks also need to propagate their new d2-values to

much-lower-resolution blocks around them. And such

propagations will be continued this way up to the

lowest-resolution blocks. In conclusion, a little change

to any smallest part of terrain will trigger a continuous

change to large-scale part of the terrain. Such changes

are very time costly especially in a frequently changed

terrain environment. So a smart algorithm must be

designed to avoid such costly operation on dynamic

terrain.

3. ALGORITHM FOR UPDATING BOTH
ELEVATION AND TEXTURE

3.1. Elevation Updating
When a piece of terrain changes dynamically, the

elevation of the terrain will usually be changed. Then,

the changed terrain can act on the moving 3D models,

such as tanks.

There are three steps to update elevation. Firstly,

we use libMini API to get the highest-resolution

elevation data of the changed terrain. Then, we modify

the necessary part of the elevation data to demonstrate

some dynamic terrain effect such as craters caused by

sudden bomb explosion. At last, we build elevation data

in lower resolutions with a simple interleaved method

shown in Figure 30.

Figure 3: Simple Interleaved Method to Build Lower-

resolution Data From Higher-resolution Data

After updating elevation we need to recalculate the

d2 values before rendering the new elevation. LibMini

recalculates all d2 values within about 2~3 seconds for

2048*2048 grids so that it cannot reach a real-time

performance. Naturally we hope to only update a small

local region where elevation is changed. However,

libMini does not support such operation because using

the top-down algorithm to propagate d2 values in a

local region will lead to incorrect d2 values for lower-

resolution blocks in other regions. For example, if the

Page 370

old final d2 value x of block CDGH in Figure 2 is set to

K times the old d2 value y of block CKIJ and the new

d2 value z of CKIJ is smaller than y, then the new final

d2 value of CDGH will not be updated because x>Kz.

In fact, if Kz is the maximum value of all values passed

to CDGH, the new final d2 value of CDGH should have

been updated to Kz.

In conclusion, the top-down algorithm can be

efficiently used for elevation update in the whole

region, but not effective in a local region. Here, we

devise a 2-step bottom-up algorithm to solve this

problem.

Firstly all d2 values of highest-resolution blocks in

the changed local region are calculated according to a

mathematical model.

Second, based on the rule of d2-value propagation,

by a simple process of check for all higher-resolution

blocks related with a lower-resolution block, it can be

deduced that the d2 value of a lower-resolution block is

affected only by 12 blocks in higher resolution. As in

figure 4, by checking higher-resolution blocks around

block CDGH, we know its d2-value is affected by d2-

values of blocks: A’K’KC, K’B’DK, DD’LI’, LG’GI’,

GNMM’, MH’HM’, HF’J’J, JJ’CE’, CKIJ, KDI’I,

II’GM’, JIM’H. The general situation is shown in

figure 5 (Yang 2009). Then, a bottom-up algorithm for

updating d2-values can be devised as below.

Bottom-up Algorithm
for each resolution r from lower to higher
 Evaluate block scope that need updating d2 value
 if r is the highest-resolution
 for each block b that need updating d2
 With (2) to calculate d2 of b, noted by b.d2
 endfor
 else
 for each block b that need updating d2
 calculate b.d2
 calculate Kd21 Kd22 … Kd212
 b.d2 max{ b.d2, Kd21, …, Kd212}
 endfor
 endif
end for

Figure 4: A Process of Finding Which d2-values Will

Affect d2-value of CDGH Block

Figure 5: All 12 d2-values That Will Determine Lower-

resolution Block ABCD’s d2 Value

For correctness of the bottom-up algorithm, we

should prove a theorem given below.

Theorem 1. The top-down algorithm in libMini for
spreading d2 values is equivalent to the bottom-up
algorithm for spreading d2 values.

Proof. Firstly we build a discrete coordinate system

with two coordinate axes I and J. The starts of both I

and J are 0. The ends of them are 2
n
. The start point <i,

j> of blocks with resolution 2
k
(n k 0) must be

multiples of 2
k
. The coordinates of a block with 2

k

resolution are expressed by [<i, j>, <i+2
k
, j+2

k
>]. Figure

6 demonstrates such a coordinate system where0 the

coordinate system starts with point <0, 0>, ends with

point <4, 4>. The minimum resolution of blocks is 1.

The maximum is 4. Figure 6 shows 16 blocks with

minimum resolution, 4 blocks with 2
1
 resolution, and 1

block with with 2
2
 resolution. The 4 blocks with 2

1

resolution are [<0,0>,<2,2>], [<2,0>,<4,2>],

[<0,2>,<2,4>] and [<2,2>,<4,4>], they all start with

multiples of their resolution 2
1
. Then, a 2

k
 resolution

block may be in 4 different possible types of position as

shown in (3) to (6). The 4 different types of position are

shown by blocks A, B, C, D in figure 6.

I 0 mod 2
k+1

 J 0 mod 2
k+1

 (3)

I 2
k
 mod 2

k+1
 J 0 mod 2

k+1
 (4)

I 0 mod 2
k+1

 J 2
k
 mod 2

k+1
 (5)

I 2
k
 mod 2

k+1
 J 2

k
 mod 2

k+1
 (6)

Based on the top-down algorithm in libMini, the d2

values are spread from a higher-resolution block to

three lower-resolution blocks. We take a notation top-
down(b) to indicate the blocks set containing blocks to

which a higher-resolution block b [<I, J>, <I+2
k
, J+2

k
>]

spreads d2 value. If the block b is in position (3), then

the top-down(b) set consists of three elements as below:

(3) top-down(b)=

{

[<I, J>, <I+2
k+1

, J+2
k+1

>], (7)

[<I, J-2
k+1

>, <I+2
k+1

, J>], (8)

[<I-2k+1
, J>, <I, J+2

k+1
>] (9)

}

Page 371

The other three cases of top-down(b) are as below.

(4) top-down(b)=

{

[<I-2k
, J>, <I+2

k
, J+2

k+1
>], (10)

[<I-2k
, J-2

k+1
>, <I+2

k
, J>], (11)

[<I+2
k
, J>, <I+2

k
+2

k+1
, J+2

k+1
>] (12)

}

(5) top-down(b)=

{

[<I, J-2
k
>, <I+2

k+1
, J+2

k
>], (13)

[<I, J+2
k
>, <I+2

k+1
, J+2

k
+2

k+1
>], (14)

[<I-2k+1
, J-2k

>, <I, J+2
k
>] (15)

}

(6) top-down(b)=

{

[<I-2k
, J-2

k
>, <I+2

k
, J+2

k
>], (16)

[<I+2
k
, J-2

k
>, <I+2

k
+2

k+1
, J+2

k
>], (17)

[<I-2k
, J+2

k
>, <I+2

k
, J+2

k
+2

k+1
>] (18)

}

For any lower-resolution block b[<I, J>, <I+2
M

,

J+2
M

>], it must be a member of top-down set of a

certain higher-resolution block. Let b[<I’, J’>, <I’+2
M

,

J’+2
M

>] be equal to any of (7)~(18), we can get all

possible higher-resolution block B that propagate their

d2 values to b. For example, let b be equal to (7), we

have:

[<I’,J’>,<I’+2
M

,J’+2
M

>]=[<I,J>,<I+2
k+1

,J+2
k+1

>]. (19)

From (19), we can know the relations below:

I=I’, J=J’, k=M-1. (20)

Then b becomes:

b=[<I’,J’>,<I’+2
M-1

,J’+2
M-1

>]. (21)

With the same method, we can get the following

possible b:

b=[<I’, J’+2
M

>,<I’+2
M-1

, J’+2
M

+2
M-1

>]. (22)

b=[<I’+2
M

, J’>,<I’+2
M

+2
M-1

, J’+2
M-1

>]. (23)

b=[<I’+2
M-1

, J’>,<I’+2
M

, J’+2
M-1

>]. (24)

b=[<I’+2
M-1

, J’+2
M

>,<I’+2
M

, J’+2
M

+2
M-1

>]. (25)

b=[<I’-2M-1
, J’>,<I’, J’+2

M-1
>]. (26)

b=[<I’, J’+2
M-1

>,<I’+2
M-1

, J’+2
M

>]. (27)

b=[<I’, J’-2M-1
>,<I’+2

M-1
, J’>]. (28)

b=[<I’+2
M

, J’+2
M-1

>,<I’+2
M

+2
M-1

, J’+2
M

>]. (29)

b=[<I’+2
M-1

, J’+2
M-1

>,<I’+2
M

, J’+2
M

>]. (30)

b=[<I’-2M-1
, J’+2

M-1
>,<I’, J’+2

M
>]. (31)

b=[<I’+2
M-1

, J’-2M-1
>,<I’+2

M
, J’>]. (32)

All possible b indicated by (21)~(32) is shown in

figure 7. In this figure, the d2-value of the lower-

resolution block ABCD will be affected by those of

blocks (21)~(32). This figure has the same meaning as

figure 5.

Figure 6: The Coordinate System

Figure 7: All Possible Higher-resolution Blocks Which

d2-values Put on an Effect on a Specific Lower-

resolution Block

Following this theorem, we can use the algorithm

above to render dynamic terrain such as a terrain where

groups of bombs make craters in a single tile. When the

dynamic terrain crosses tiles, we should use an

enhanced version of this algorithm in section 4.

3.2. Image/Texture Updating
When terrain changes dynamically, textures or images

used for rendering the terrain usually need to be

changed. However, we cannot change the images

directly due to the fact that libMini employs S3TC

(Brown 2009) algorithm to compress textures. S3TC

compresses every block of 4 4 RGB or RGBA pixels

into 64-bit data. Therefore, we can take four steps to

update textures.

First, we calculate the image scope of the

dynamically changed terrain and align it to make sure

that both width and height of it are multiples of 4 and

get the highest-resolution image data in this aligned

scope from libMini. The second step is to decompress

the aligned image and then to modify some

decompressed image pixels according to the dynamical

terrain model. The following step is to recompress the

modified data into the form which libMini can

recognize. At last, we use the modified highest

resolution image to create images in other lower

resolutions and reload the revised image data into

memory according to the current run-time LOD.

Page 372

If an image to be changed crosses n tiles (n is 1, 2

or 4), as shown in figure 8 (Yang 2009), following the 4

steps above, we need 9 steps to update the terrain image:

calculate the affected areas of all tiles, align the areas,

collect highest-resolution image data from all tiles,

decompress them, combine the decompressed data into

one image then modify the whole image according to

terrain model, divide the whole image into n parts,

compress each part, recalculate lower-resolution images,

and in the end, rerender the images.

Figure 8: Processing Images Crossing Tiles

4. BLENDING BETWEEN TILES
The libMini guarantees that the difference of roughness

level between two adjacent blocks within one terrain tile

is less than or equal to one. It doesn’t guarantee such a

level difference between tiles especially when the

adjacent titles change independently. As a result, there

may produce holes between tiles especially when the

terrain dynamically changes in the margin of tiles. The

number of the influenced tiles will be 1, 2 or 4 when the

terrain changes. These tiles are called target tiles. To

avoid holes between target tiles, we take a 3-step

blending method.

First, based on a logic coordinate system we

update elevation of changed terrain to make sure that

the joint elevation values of the two tiles be the same.

As shown in figure 9 (Yang 2009), two lines of points

covered in one ellipse are managed by two tiles. In fact,

the two lines are the same. When one tile is updated on

points of the same line, they may be also changed by

update to the other tile. So there are two copies of

elevation of the same line. In the following process of

d2 calculating the resolution levels of grids near the

same line probably produce a difference greater than 1

to make holes. To keep these points the same elevation

value, we treat the terrain being changed as a whole part

in separate logic coordinates. After the terrain in such

coordinates is updated, the elevation values of the

terrain are mapped back into every tile in their

coordinates.

Second, all target tiles are processed as if they

were one whole tile in the process to calculate d2. The

bottom-up algorithm in section 3.1 is used here to

reduce the amount of terrain blocks to be updated.

Therefore, a difference not greater than 1 of resolution

level between tiles can be guaranteed and possible holes

among tiles can also be eliminated.

Figure 9: Keep Joint Elevation Values the Same

5. ALGORITHM PERFORMANCE AND
EXPERIMENT RESULT

If the size of a terrain tile is 2
N

2
N
, time complexity of

top-down algorithm in libMini is shown as (33) where

C1 is time for calculating d2 and C2 is time for passing

d2 to 3 lower-resolution blocks. We suppose that the

scope of elevation data being changed is 2
n

2
n
, time

complexity of botttom-up algorithm is shown as (34)

where C3 indicate time for indexing d2 value of 12

higher-resolution blocks. Generally C3 of is 4 times

greater than c2. But usually n is about 3 and N is greater

than 10. In conclusion, bottom-up algorithm is about

10
3
 times faster than the old one and is more adaptive to

situations such as war games where local changes to

elevation are numerous and frequent (about 10
3
/second).

 (33)

 (34)

We test the algorithms above on a PC with

Pentium 2.8GHz CPU and 2GB memory. The

programming environment is Visual Studio C++ 2005.

The tested terrain consist of 16 16 tiles and each tile

has 257 257 grid points and 2048 2048 pixels and

dynamic terrain is created by a crater model covering

about 16 16 grids. The average time to render the

dynamic terrain for 1000 tests is about 1.27

milliseconds whereas the algorithm of libMini takes is

2512 milliseconds. The process of test is described

below.

Firstly we build a type of crater model. The

parameters of the model are defined by a quadtuple

<position, direction, radius, depth> where position

indicates the position of bomb explosion (the center of a

crater), direction is the direction of the bomb track, and

radius and depth are the radius and depth of the crater

respectively.

The intersection line that a longitudinal section

intersects the crater elevation plane is shown in figure

Page 373

10 (Yang 2009). The numbers on this figure represent

distance from the center point of the crater. If the radius

of the crater is r, then the number 2 has the meaning of

2r.

Figure 10 The Intersection Line of the Crater

Figure 11 shows how the elevation of a cross-4-tile

crater is updated. To be clearer, we mark the joint part

of the tiles red and the crater green. Figure 12 presents

the updated crater image. Also to be clearer, one tile

image left blank and the crater is lightened and marked

mainly khaki.

Figure 11: Update on Elevation of a Cross-4-tile Crater

Figure 12: Update on Image of a Cross-4-tile Crater

ACKNOWLEDGMENTS
The authors wish to thank associate professor Zhang

Jinfang who developed a software product based on

both VTP and libMini and to thank Yang Kai (Yang

2009) who implemented the algorithm of this paper.

REFERENCES
Lindstrom P., Koller D., Ribarsky W., Larry F.H., Faust

N., Turner G., 1996. Real-time Continuous Level

of Detail Rendering of Height Fields. Proceedings
of the 23rd Annual Conference on Computer
Graphics, pp. 109–118. August 4-9, New Orleans

(LA, USA).

Hoppe H., 1996. Progressive meshes. Proceedings of
the 23rd Annual Conference on Computer
Graphics, pp. 99–108. August 4-9, New Orleans

(LA, USA).

Duchaineau M., Wolinsky M., Sigeti D.E., et al, 1997.

Roaming Terrain: Real-time Optimally Adapting

Meshes. Proceedings. of the 8th Conference on
Visualization, pp. 81-88. October 18-24, Phoenix

(Arizona, USA).

Jin H., Lu X., Liu H., 2009. View-dependent fast real-

time generating algorithm for large-scale terrain.

Proceedings of the 6th International Conference
on Mining Science & Technology, pp. 1147-1151.

October, 18-20, Xu Zhou (Anhui, China).

Robert W., James F., Jessica K., 1999. Animating Sand,

Mud, and Snow. Computer Graphics Forum,

18(1), 0-11.

Shamir A., Valerio P., Chandrajit B., 2000. Multi-

resolution Dynamic Meshes with Arbitrary

Deformations. Proceedings of IEEE Visualization,

pp. 423-430. October 8-13, Salt Lake City (Utah,

USA).

He Y., Cremer J., Papelis Y., 2002. Real-time

Extendible-resolution Display of On-line Dynamic

Terrain. Proceedings of Graphics Interface, pp.

27-39. May 27-29, Calgary (Alberta, Canada).

Cai X., Li F., Sun H., Zhan S., 2006. Research of

Dynamic Terrain in Complex Battlefield

Environments. Lecture Notes in Computer
Science, 3942:903-912.

Shiben B., Suryakant P., Narayanan P.J., 2008. Real-

time Rendering and Manipulation of Large

Terrains. Sixth Indian Conference on Computer
Vision, Graphics & Image Processing, pp. 551-

559. December 16-19, Bhubaneswar (India).

Stefan R., Wolfgang H., Philipp S., Seidel H.P., 1998.

Real-Time Generation of Continuous Levels of

Detail for Height Fields. Proceedings of WSCG,

pp. 315-322. February 9-13, Plzen (Czech

Republic).

Stefan R., 2009. Real-time Terrain Rendering.

Available from: http://stereofx.org/terrain.html

[accessed 4 July 2010].

Discoe B., 2009. Virtual Terrain Project. Available

from: http://vterrain.org [accessed 4 July 2010].

Discoe B., 2005. Open-Source Visualization and the

Virtual Terrain Project. Geo: Connexion
International magazine, pp. 47-50.

Brown P., 2009. EXT_texture_compression_S3TC.

Available from:

http://www.opengl.org/registry/specs/EXT/texture

_compression_s3tc.txt [accessed 4 July 2010].

Yang K., 2009. Research on Visualization of Dynamic
Terrain (in Chinese). Thesis (Master Degree).

Institute of Software, Chinese Academy of

Sciences.

Page 374

