
IMPROVEMENT ON DYNAMIC TILED TERRAIN RENDERING ALGORITHM IN 
LIBMINI  

 

 

Liao Mingxue(a), Xu Fanjang(a), He Xiaoxin(a)  
 

 
(a)

Institute of Software, Chinese Academy of Sciences 

 
(a)

liaomingxue@sohu.com 

 

 

 

 

ABSTRACT 
As an open source library for large-scale terrain 

rendering in a continuous LOD high field, libMini takes 

a top-down method for static terrain rendering and 

achieves good performance. However, it uses the same 

top-down method to render elevation and texture for 

dynamic terrain. The method consumes a few seconds 

to update dynamic terrain and thus does not meet real-

time requirements for rendering and leads to possible 

holes and gaps between adjacent terrain tiles. A 

millisecond-level real-time bottom-up libMini-based 

algorithm is proposed to render dynamic terrain while a 

method is presented to blend holes and gaps produced 

during the process of rendering dynamic tiled terrain. 

 

Keywords: bottom-up algorithm, dynamic terrain, 

libMini, tiled terrain 

 

1. INTRODUCTION 
TERRAIN visualization is an important part of 

geographic information system, virtual battlefield 

environment, simulating training system, games and so 

on. Many algorithms are published for static terrain 

visualization, such as real-time continuous level of 

detail rendering algorithm (Lindstrom 1996), 

progressive meshes algorithm (Hoppe 1996), ROAM 

(Duchaineau 1997) and view-dependent fast real-time 

generating algorithm for large-scale terrain (Jin 2009). 

Due to the development of virtual environment 

simulation and increase in requirements for real-time 

interaction, the research on dynamic terrain 

visualization algorithms becomes increasingly 

important. 

Both elevation data and image data of terrain will 

be changed due to interactions between 3D models and 

terrain in battlefield simulation or other situations, for 

example, explosion of thousands of bombs will force 

ground surfaces to collapse and will expose deep soil 

that takes on a different appearance from the ground 

surfaces and thus will pose restriction on the movement 

of tanks and other models in the scene. A few methods 

are now invented for dynamic terrain rendering. 

Robert (1999) described a model of ground 

surfaces and explained how these surfaces can be 

deformed by characters in an animation. But their 

simulation model of ground surfaces was based on a 

uniform-resolution height field that cannot be extended 

to large-scale terrain scene.  

Shamir proposed a multi-resolution dynamic 

meshes algorithm, which concentrates on complex 

geometric objects other than large-scale terrain (Shamir 

2000). They used DAG (Directed Acyclic Graph) to 

present hierarchical structure and updated the DAG as 

deformations happened on objects at time steps to form 

T-DAG. This relatively costly T-DAG updating has a 

limit to on-line modifications on objects. 

With an extension to ROAM and using DEXTER 

(Dynamic EXTEnsion of Resolution), He provided an 

algorithm for dynamic terrain visualization (He 2002). 

But their approach united with fake properties of terrain 

deformation and did not consider the physical model of 

terrain. They only dealt with relatively small scale 

terrain. Their terrain was divided into regions, but the 

continuity among the regions was not processed. 

Recently, based on ROAM, Cai implemented a 

dynamic terrain method for rendering craters in battle-

field environments (Cai 2006), but they did not address 

how the method runs smoothly in real-time. Exploiting 

the power of modern GPU, Shiben developed a system 

for real-time rendering and manipulation of large 

terrains (Shiben 2008). Their system achieves a 

performance of 250-microsecond terrain deformation 

over a block of size 1024 1024. However, the 

performance can be only reached with the help of GPU 

and thus costly. 

This paper firstly proposes a real-time dynamic 

terrain algorithm for large-scale terrain based on 

libMini library (Stefan 1998). The library achieves good 

LOD continuity and rendering effect and has been 

applied well in VTP (Discoe 2005, Discoe 2009) and 

AquaNox game (Stefan 1998). In the library, the terrain 

is divided into tiles to solve the problem in large-scale 

data rendering. This paper also implements a dynamic 

terrain algorithm for elevation and image updating in 

the tiled terrain to eliminate holes and gaps between 

adjacent tiles. 

 

2. BRIEF INTRODUCTION TO ALGORITHM 
OF LIBMINI 

The underlying data structure of libMini algorithm for 

terrain rendering is basically a quadtree. The quadtree is 

represented by a Boolean matrix. Beginning from the 
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root node of the tree, if the terrain block represented by 

a parent node needs to upgrade its rendering detail level, 

we set corresponding value in the matrix to 1 and 

continue this way with the parents’ four subnodes. A 

decision variable f with a less-than-one value in (1) tells 

a node to be upgraded (Stefan 1998). 

 

    (1) 

     (2) 

 

 In both (1) and (2), l is the distance to eye point, d is 

the length of the terrain block presented by the node, 

and d2 is the roughness of the block. The constant C 

determines the minimum global resolution, whereas the 

constant c specifies the desired global resolution. The 

dhi, which also appear in Figure 1 (Stefan 1998), are the 

absolute values of the differences between center 

elevation and average elevation of two ends of four 

borders and two diagonals. 

 

 
Figure 1: Definition for Variables dhi in (2) 

 

The major issue in rendering terrain is how to 

guarantee that the level difference of adjacent blocks is 

not greater than one in order to build a continuous mesh 

without holes. LibMini takes a top-down algorithm as in 

Figure 2 (Yang 2009) starting with highest-resolution 

blocks, it calculates their d2-values and then propagates 

those values to lower-resolution blocks to decide what 

real d2 values of the lower-resolution blocks are. 

 

 
Figure 2: Process of Propagation of d2-values 

As in Figure 2 the K (Stefan 1998) times d2-value 

is propagated from higher-resolution block CKIJ to 

lower ones ABCD, CEFH, and CDGH. Generally, a 
block in higher-resolution will propagate K times its d2-

value to its parent block in lower-resolution and two 

lower-resolution blocks adjacent to its parent block. The 

final d2 value of a block is the maximum of its own d2 

value and all K-times d2 values passed to it. 

According to the top-down algorithm above, if a 

small local part of the whole terrain changes 

dynamically, libMini need to calculate the new d2-value 

of the highest-resolution blocks in the local part and 

then to propagate the new values to lower-resolution 

blocks around this part. And these lower-resolution 

blocks also need to propagate their new d2-values to 

much-lower-resolution blocks around them. And such 

propagations will be continued this way up to the 

lowest-resolution blocks. In conclusion, a little change 

to any smallest part of terrain will trigger a continuous 

change to large-scale part of the terrain. Such changes 

are very time costly especially in a frequently changed 

terrain environment. So a smart algorithm must be 

designed to avoid such costly operation on dynamic 

terrain. 

 

3. ALGORITHM FOR UPDATING BOTH 
ELEVATION AND TEXTURE 
 

3.1. Elevation Updating 
When a piece of terrain changes dynamically, the 

elevation of the terrain will usually be changed. Then, 

the changed terrain can act on the moving 3D models, 

such as tanks.  

There are three steps to update elevation. Firstly, 

we use libMini API to get the highest-resolution 

elevation data of the changed terrain. Then, we modify 

the necessary part of the elevation data to demonstrate 

some dynamic terrain effect such as craters caused by 

sudden bomb explosion. At last, we build elevation data 

in lower resolutions with a simple interleaved method 

shown in Figure 30. 
 

 
Figure 3: Simple Interleaved Method to Build Lower-

resolution Data From Higher-resolution Data 

 

After updating elevation we need to recalculate the 

d2 values before rendering the new elevation. LibMini 

recalculates all d2 values within about 2~3 seconds for 

2048*2048 grids so that it cannot reach a real-time 

performance. Naturally we hope to only update a small 

local region where elevation is changed. However, 

libMini does not support such operation because using 

the top-down algorithm to propagate d2 values in a 

local region will lead to incorrect d2 values for lower-

resolution blocks in other regions.  For example, if the 
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old final d2 value x of block CDGH in Figure 2 is set to 

K times the old d2 value y of block CKIJ and the new 

d2 value z of CKIJ is smaller  than y, then the new final 

d2 value of CDGH will not be updated because x>Kz. 

In fact, if Kz is the maximum value of all values passed 

to CDGH, the new final d2 value of CDGH should have 

been updated to Kz. 

In conclusion, the top-down algorithm can be 

efficiently used for elevation update in the whole 

region, but not effective in a local region. Here, we 

devise a 2-step bottom-up algorithm to solve this 

problem.  

Firstly all d2 values of highest-resolution blocks in 

the changed local region are calculated according to a 

mathematical model.  

Second, based on the rule of d2-value propagation, 

by a simple process of check for all higher-resolution 

blocks related with a lower-resolution block, it can be 

deduced that the d2 value of a lower-resolution block is 

affected only by 12 blocks  in higher resolution. As in 

figure 4, by checking higher-resolution blocks around 

block CDGH, we know its d2-value is affected by d2-

values of blocks: A’K’KC, K’B’DK, DD’LI’, LG’GI’, 

GNMM’, MH’HM’, HF’J’J, JJ’CE’, CKIJ, KDI’I, 

II’GM’, JIM’H.  The general situation is shown in 

figure 5 (Yang 2009). Then, a bottom-up algorithm for 

updating d2-values can be devised as below. 

Bottom-up Algorithm 
for each resolution r from lower to higher 
  Evaluate block scope that need updating d2 value 
  if  r is the highest-resolution 
     for  each block b that need updating d2 
        With (2) to calculate d2 of b, noted by b.d2 
     endfor 
  else 
     for each block b that need updating d2 
        calculate b.d2 
        calculate Kd21 Kd22 … Kd212 
 b.d2  max{ b.d2, Kd21, …, Kd212}        
     endfor 
  endif 
end for 
 

 

Figure 4: A Process of Finding Which d2-values Will 

Affect d2-value of CDGH Block 

 
Figure 5: All 12 d2-values That Will Determine Lower-

resolution Block ABCD’s d2 Value 

 
For correctness of the bottom-up algorithm, we 

should prove a theorem given below.  

Theorem 1. The top-down algorithm in libMini for 
spreading d2 values is equivalent to the bottom-up 
algorithm for spreading d2 values.  

Proof. Firstly we build a discrete coordinate system 

with two coordinate axes I and J. The starts of both I  

and J are 0. The ends of them are 2
n
. The start point <i, 

j> of blocks with resolution 2
k
(n k 0) must be 

multiples of 2
k
. The coordinates of a block with 2

k
 

resolution are expressed by [<i, j>, <i+2
k
, j+2

k
>]. Figure 

6 demonstrates such a coordinate system where0 the 

coordinate system starts with point <0, 0>, ends with 

point <4, 4>. The minimum resolution of blocks is 1. 

The maximum is 4. Figure 6 shows 16 blocks with 

minimum resolution, 4 blocks with 2
1
 resolution, and 1 

block with with 2
2
 resolution. The 4 blocks with 2

1
 

resolution are [<0,0>,<2,2>], [<2,0>,<4,2>], 

[<0,2>,<2,4>] and [<2,2>,<4,4>], they all start with 

multiples of their resolution 2
1
. Then, a 2

k
  resolution 

block may be in 4 different possible types of position as 

shown in (3) to (6). The 4 different types of position are 

shown by blocks A, B, C, D in figure 6. 

 

I 0 mod 2
k+1 

 J 0 mod 2
k+1

   (3) 

I 2
k
 mod 2

k+1 
 J 0 mod 2

k+1
   (4) 

I 0 mod 2
k+1 

 J 2
k
 mod 2

k+1
   (5) 

I 2
k
 mod 2

k+1 
 J 2

k
 mod 2

k+1
   (6) 

 

Based on the top-down algorithm in libMini, the d2 

values are spread from a higher-resolution block to 

three lower-resolution blocks. We take a notation top-
down(b) to indicate the blocks set containing blocks to 

which a higher-resolution block b [<I, J>, <I+2
k
, J+2

k
>] 

spreads d2 value.  If the block b is in position (3), then 

the top-down(b) set consists of three elements as below:  

 

(3) top-down(b)= 

{ 

[<I, J>, <I+2
k+1

, J+2
k+1

>],    (7) 

[<I, J-2
k+1

>, <I+2
k+1

, J>],    (8) 

[<I-2k+1
, J>, <I, J+2

k+1
>]    (9) 

} 
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The other three cases of top-down(b) are as below. 

 

(4) top-down(b)= 

{ 

[<I-2k
, J>, <I+2

k
, J+2

k+1
>],   (10) 

[<I-2k
, J-2

k+1
>, <I+2

k
, J>],    (11) 

[<I+2
k
, J>, <I+2

k
+2

k+1
, J+2

k+1
>]   (12) 

} 

(5) top-down(b)= 

{ 

[<I, J-2
k
>, <I+2

k+1
, J+2

k
>],   (13) 

[<I, J+2
k
>, <I+2

k+1
, J+2

k
+2

k+1
>],   (14) 

[<I-2k+1
, J-2k

>, <I, J+2
k
>]    (15) 

} 

(6) top-down(b)= 

{ 

[<I-2k
, J-2

k
>, <I+2

k
, J+2

k
>],   (16) 

[<I+2
k
, J-2

k
>, <I+2

k
+2

k+1
, J+2

k
>],   (17) 

[<I-2k
, J+2

k
>, <I+2

k
, J+2

k
+2

k+1
>]   (18) 

} 
 

For any lower-resolution block b[<I, J>, <I+2
M

, 

J+2
M

>], it must be a member of top-down set of a 

certain higher-resolution block.  Let b[<I’, J’>, <I’+2
M

, 

J’+2
M

>] be equal to any of (7)~(18), we can get all 

possible higher-resolution block B that propagate their 

d2 values to b. For example, let b be equal to (7), we 

have:  

 

[<I’,J’>,<I’+2
M

,J’+2
M

>]=[<I,J>,<I+2
k+1

,J+2
k+1

>]. (19) 

 

From (19), we can know the relations below: 

 

I=I’, J=J’, k=M-1.    (20) 

 

Then b becomes: 

 

b=[<I’,J’>,<I’+2
M-1

,J’+2
M-1

>].   (21) 

 

With the same method, we can get the following 

possible b: 

 

b=[<I’, J’+2
M

>,<I’+2
M-1

, J’+2
M

+2
M-1

>].  (22) 

b=[<I’+2
M

, J’>,<I’+2
M

+2
M-1

, J’+2
M-1

>].  (23) 

b=[<I’+2
M-1

, J’>,<I’+2
M

, J’+2
M-1

>].  (24) 

b=[<I’+2
M-1

, J’+2
M

>,<I’+2
M

, J’+2
M

+2
M-1

>].  (25) 

b=[<I’-2M-1
, J’>,<I’, J’+2

M-1
>].   (26) 

b=[<I’, J’+2
M-1

>,<I’+2
M-1

, J’+2
M

>].  (27) 

b=[<I’, J’-2M-1
>,<I’+2

M-1
, J’>].   (28) 

b=[<I’+2
M

, J’+2
M-1

>,<I’+2
M

+2
M-1

, J’+2
M

>].  (29) 

b=[<I’+2
M-1

, J’+2
M-1

>,<I’+2
M

, J’+2
M

>].  (30) 

b=[<I’-2M-1
, J’+2

M-1
>,<I’, J’+2

M
>].   (31) 

b=[<I’+2
M-1

, J’-2M-1
>,<I’+2

M
, J’>].   (32) 

 

All possible b indicated by (21)~(32) is shown in 

figure 7. In this figure, the d2-value of the lower-

resolution block ABCD will be affected by those of 

blocks (21)~(32). This figure has the same meaning as 

figure 5.  

 

 
Figure 6: The Coordinate System 

 

 
Figure 7: All Possible Higher-resolution Blocks Which 

d2-values Put on an Effect on a Specific Lower-

resolution Block 

 

Following this theorem, we can use the algorithm 

above to render dynamic terrain such as a terrain where 

groups of bombs make craters in a single tile. When the 

dynamic terrain crosses tiles, we should use an 

enhanced version of this algorithm in section 4. 

 

3.2. Image/Texture Updating 
When terrain changes dynamically, textures or images 

used for rendering the terrain usually need to be 

changed. However, we cannot change the images 

directly due to the fact that libMini employs S3TC 

(Brown 2009) algorithm to compress textures. S3TC 

compresses every block of 4 4 RGB or RGBA pixels 

into 64-bit data. Therefore, we can take four steps to 

update textures. 

First, we calculate the image scope of the 

dynamically changed terrain and align it to make sure 

that both width and height of it are multiples of 4 and 

get the highest-resolution image data in this aligned 

scope from libMini. The second step is to decompress 

the aligned image and then to modify some 

decompressed image pixels according to the dynamical 

terrain model. The following step is to recompress the 

modified data into the form which libMini can 

recognize. At last, we use the modified highest 

resolution image to create images in other lower 

resolutions and reload the revised image data into 

memory according to the current run-time LOD. 
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If an image to be changed crosses n tiles (n is 1, 2 

or 4), as shown in figure 8 (Yang 2009), following the 4 

steps above, we need 9 steps to update the terrain image: 

calculate the affected areas of all tiles, align the areas, 

collect highest-resolution image data from all tiles, 

decompress them, combine the decompressed data into 

one image then modify the whole image according to 

terrain model, divide the whole image into n parts, 

compress each part, recalculate lower-resolution images, 

and in the end, rerender the images. 

 

 
Figure 8: Processing Images Crossing Tiles 

 

4. BLENDING BETWEEN TILES 
The libMini guarantees that the difference of roughness 

level between two adjacent blocks within one terrain tile 

is less than or equal to one. It doesn’t guarantee such a 

level difference between tiles especially when the 

adjacent titles change independently. As a result, there 

may produce holes between tiles especially when the 

terrain dynamically changes in the margin of tiles. The 

number of the influenced tiles will be 1, 2 or 4 when the 

terrain changes. These tiles are called target tiles. To 

avoid holes between target tiles, we take a 3-step 

blending method. 

First, based on a logic coordinate system we 

update elevation of changed terrain to make sure that 

the joint elevation values of the two tiles be the same. 

As shown in figure 9 (Yang 2009), two lines of points 

covered in one ellipse are managed by two tiles. In fact, 

the two lines are the same. When one tile is updated on 

points of the same line, they may be also changed by 

update to the other tile. So there are two copies of 

elevation of the same line. In the following process of 

d2 calculating the resolution levels of grids near the 

same line probably produce a difference greater than 1 

to make holes. To keep these points the same elevation 

value, we treat the terrain being changed as a whole part 

in separate logic coordinates. After the terrain in such 

coordinates is updated, the elevation values of the 

terrain are mapped back into every tile in their 

coordinates.  

Second, all target tiles are processed as if they 

were one whole tile in the process to calculate d2. The 

bottom-up algorithm in section 3.1 is used here to 

reduce the amount of terrain blocks to be updated. 

Therefore, a difference not greater than 1 of resolution 

level between tiles can be guaranteed and possible holes 

among tiles can also be eliminated.  

 

 
Figure 9: Keep Joint Elevation Values the Same 

 

5. ALGORITHM PERFORMANCE AND 
EXPERIMENT RESULT 

If the size of a terrain tile is 2
N

2
N
, time complexity of 

top-down algorithm in libMini is shown as (33) where 

C1 is time for calculating d2 and C2 is time for passing 

d2 to 3 lower-resolution blocks. We suppose that the 

scope of elevation data being changed is 2
n

2
n
, time 

complexity of botttom-up algorithm is shown as (34) 

where C3 indicate time for indexing d2 value of 12 

higher-resolution blocks. Generally C3 of is 4 times 

greater than c2. But usually n is about 3 and N is greater 

than 10. In conclusion, bottom-up algorithm is about 

10
3
 times faster than the old one and is more adaptive to 

situations such as war games where local changes to 

elevation are numerous and frequent (about 10
3
/second). 

 

   (33) 

   (34) 

 

We test the algorithms above on a PC with 

Pentium 2.8GHz CPU and 2GB memory. The 

programming environment is Visual Studio C++ 2005. 

The tested terrain consist of 16 16 tiles and each tile 

has 257 257 grid points and 2048 2048 pixels and 

dynamic terrain is created by a crater model covering 

about 16 16 grids. The average time to render the 

dynamic terrain for 1000 tests is about 1.27 

milliseconds whereas the algorithm of libMini takes is 

2512 milliseconds. The process of test is described 

below. 

Firstly we build a type of crater model. The 

parameters of the model are defined by a quadtuple 

<position, direction, radius, depth> where position 

indicates the position of bomb explosion (the center of a 

crater), direction is the direction of the bomb track, and 

radius and depth are the radius and depth of the crater 

respectively. 

The intersection line that a longitudinal section 

intersects the crater elevation plane is shown in figure 
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10 (Yang 2009). The numbers on this figure represent 

distance from the center point of the crater. If the radius 

of the crater is r, then the number 2 has the meaning of 

2r. 

 

 
Figure 10 The Intersection Line of the Crater 

 

Figure 11 shows how the elevation of a cross-4-tile 

crater is updated. To be clearer, we mark the joint part 

of the tiles red and the crater green. Figure 12 presents 

the updated crater image. Also to be clearer, one tile 

image left blank and the crater is lightened and marked 

mainly khaki. 

 

 
Figure 11: Update on Elevation of a Cross-4-tile Crater 

 

 
Figure 12: Update on Image of a Cross-4-tile Crater 

 

ACKNOWLEDGMENTS 
The authors wish to thank associate professor Zhang 

Jinfang who developed a software product based on 

both VTP and libMini and to thank Yang Kai (Yang 

2009) who implemented the algorithm of this paper. 

 

REFERENCES 
Lindstrom P., Koller D., Ribarsky W., Larry F.H., Faust 

N., Turner G., 1996. Real-time Continuous Level 

of Detail Rendering of Height Fields. Proceedings 
of the 23rd Annual Conference on Computer 
Graphics, pp. 109–118. August 4-9, New Orleans 

(LA, USA). 

Hoppe H., 1996. Progressive meshes. Proceedings of 
the 23rd Annual Conference on Computer 
Graphics, pp. 99–108. August 4-9, New Orleans 

(LA, USA). 

Duchaineau M., Wolinsky M., Sigeti D.E., et al, 1997. 

Roaming Terrain: Real-time Optimally Adapting 

Meshes. Proceedings. of the 8th Conference on 
Visualization, pp. 81-88. October 18-24, Phoenix 

(Arizona, USA). 

Jin H., Lu X., Liu H., 2009. View-dependent fast real-

time generating algorithm for large-scale terrain. 

Proceedings of the 6th International Conference 
on Mining Science & Technology, pp. 1147-1151. 

October, 18-20, Xu Zhou (Anhui, China). 

Robert W., James F., Jessica K., 1999. Animating Sand, 

Mud, and Snow. Computer Graphics Forum, 

18(1), 0-11. 

Shamir A., Valerio P., Chandrajit B., 2000. Multi-

resolution Dynamic Meshes with Arbitrary 

Deformations. Proceedings of IEEE Visualization, 

pp. 423-430. October 8-13, Salt Lake City (Utah, 

USA). 

He Y., Cremer J., Papelis Y., 2002. Real-time 

Extendible-resolution Display of On-line Dynamic 

Terrain. Proceedings of Graphics Interface, pp. 

27-39. May 27-29, Calgary (Alberta, Canada).  

Cai X., Li F., Sun H., Zhan S., 2006. Research of 

Dynamic Terrain in Complex Battlefield 

Environments. Lecture Notes in Computer 
Science, 3942:903-912.  

Shiben B., Suryakant P., Narayanan P.J., 2008. Real-

time Rendering and Manipulation of Large 

Terrains. Sixth Indian Conference on Computer 
Vision, Graphics & Image Processing, pp. 551-

559. December 16-19, Bhubaneswar (India).  

Stefan R., Wolfgang H., Philipp S., Seidel H.P., 1998. 

Real-Time Generation of Continuous Levels of 

Detail for Height Fields. Proceedings of WSCG, 

pp. 315-322. February 9-13, Plzen (Czech 

Republic). 

Stefan R., 2009. Real-time Terrain Rendering. 

Available from: http://stereofx.org/terrain.html 

[accessed 4 July 2010]. 

Discoe B., 2009. Virtual Terrain Project. Available 

from: http://vterrain.org [accessed 4 July 2010]. 

Discoe B., 2005. Open-Source Visualization and the 

Virtual Terrain Project. Geo: Connexion 
International magazine, pp. 47-50. 

Brown P., 2009. EXT_texture_compression_S3TC. 

Available from: 

http://www.opengl.org/registry/specs/EXT/texture

_compression_s3tc.txt [accessed 4 July 2010]. 

Yang K., 2009. Research on Visualization of Dynamic 
Terrain (in Chinese). Thesis (Master Degree). 

Institute of Software, Chinese Academy of 

Sciences. 

Page 374


