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ABSTRACT 
Manufacturing industrial systems are complex systems 
whose performance is characterized by interactions 
among different parts of the system as well as by 
stochastic phenomena affecting the operation of the 
parts themselves. 

A key aspect in studying a complex system is the 
ability to model its evolution over time and, as a 
consequence, to identify, from a statistical point of 
view, the trend of the performance measures (i.e. 
productivity) over time. Discrete event system 
simulation (DESS) is certainly the widespread 
technique adopted to this aim. 

In this paper, a methodology to characterize the 
trend of the variance of the population for a flow-line 
production system is developed. The knowledge of the 
relation between the variance of the population and the 
system run time allows the analyst to better design 
simulation campaigns and define warm-up period. 
Moreover, this result is also useful when in-field tests 
have to be designed to certify performances of a newly 
deployed system. 
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1. INTRODUCTION 

Manufacturing industrial systems are complex 
systems whose behavior is characterized by the 
operation of several parts (i.e. machines performing 
processes on products) and the interactions among the 
parts themselves. Frequently, stochastic phenomena 
affect the operational state of the machines, and, as a 
consequence, disruptions of production flows are 
stochastically propagated all over the manufacturing 
system. 

As an example, if we refer to a production line, 
operative conditions of machines positioned along the 
line is determined by failures and repairs of the process 
each very machine is executing on products, while 
disruptive interactions between the machines are due to 
interruptions of the production flow. 

The optimal design of a manufacturing system is 
related to the definition of performance targets on 

machines (e.g. nominal capacity, reliability parameters, 
etc.) and of the structure of the system (e.g. buffer 
location and size), so as to reach a desired performance 
of the whole system. 

Since the behavior of the system is influenced by 
stochastic phenomena, performance parameters have to 
be computed by means of probabilistic models, aiming 
at providing their steady state value, or estimated by 
adopting methodologies able to reproduce the evolution 
of the system over a limited run time. Discrete event 
system simulation (DESS) is the widely adopted 
approach for that latter case. 

Adopting such an approach to asses system 
performances, and considering that it is impossible to 
execute a unique infinite run, we face with the need to 
execute several simulation runs reproducing different 
histories of the system, then running the same system  
with different sequences of random events. Hence, the 
performance measured in each run represents a different 
individual withdrew from the population of the 
individuals constituting all the possible values of the 
system performance measured at the specified run time. 
The set of the individuals is then a sample withdrew 
from the population. 

Hence, once the sample is obtained, statistical 
analysis methodologies have to be used to obtain an 
estimation of the system performance in terms of 
confidence interval (Law, 1983). The wider the 
confidence interval, the lower the precision in assessing 
the true value of the performance measure is. 

The variance of the sample is a key factor directly 
influencing the amplitude of the confidence interval 
(Montgomery and Runger, 2007). Moreover, the 
variance of the population is guessed with respect to the 
sample variance, thus producing a further extension of 
the confidence interval. 

If we were able to directly compute the variance of 
the population with respect to some characteristics of 
the system, we would be able to restrict the confidence 
interval thus obtaining better estimation. Furthermore, 
knowing the trend of the population variance over run 
time will allow us to a priori define the right 
combination of simulation run length and number of 
runs to execute given a desired confidence interval. This 
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aspect becomes very important when in-filed tests have 
to be deployed to certifies the performance of the 
system. In such a situation, system runs are executed in 
real time, thus there is an implicit need to reduce to a 
bare minimum the total time required for the test. 

This paper develops a methodology to determine 
the trend of the population variance over run time for 
flow-line structured manufacturing systems. The 
methodology is based on some analytical considerations 
and is supported by experimental evidence. It is also 
shown how this information can be used to design 
simulation campaigns or in-field tests guaranteeing a 
specified confidence interval of the performance 
measure estimation. 

 
2. METHODOLOGY DESCRIPTION 

Provided that the behavior of the system is affected 
by stochastic phenomena, a generic performance 
measure is described by means of a random variable 
(i.e. characterized by a mean value, a variance, and a 
probability density function) for any finite time. All of 
the mean value, variance and probability density 
function of the performance measure vary over time. 
Nevertheless, we can state that, if the system is ergodic, 
as time tends to infinite the mean value tends to the 
steady state asymptotic value of the performance 
measure. Consequently, the variance tends to zero and 
the random variable degenerates to a deterministic 
variable. 

A number of studies were carried out in years to 
analytically derive trends of mean value and variance 
over time of performance measures of some canonical 
systems (Kelton and Law, 1985; Li and Meerkov, 2000; 
Tan, 1999). 

Starting from the simplest case of a single machine 
operating with a Bernoulli like production process (Li 
and Meerkov, 2000) the mean and the variance of the 
number of units produced after t time steps  can be 
expressed as 

)(tN

[ ] pttN =)(E   (1) 
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Defining the productivity of the machine as 
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we can state that the mean productivity at t is 
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while its variance is 
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Hence, by substituting eq. 1 and 2 in eq. 4 and 5 
we can obtain 
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Let’s now consider the case of a machine 
characterized by a deterministic production rate but 
affected by failure and repair phenomena represented by 
continuous time Markovian processes. Tan (1999) 
determined the number of parts produced at time t, 

, and its variance. Considering the case in which 
the machine has a probability 
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at time zero, such a variance is equal to 
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where p and r represent the failure rate and the repair 
rate, respectively. 

By substituting eq. 8 in eq. 5 we obtain 
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Hence, we can observe that the variance of the 
productivity of a machine has the following form 

[ ] ( ) ,)(Var t
t
KtP o+=   (10) 

where K is a parameter to be determined. Having an 
exact mathematical solution for K allows us to exactly 
know the variance of the population, otherwise K could 
also be determined in an experimental way by fitting the 
variance of a large sample with the relation 

[ ] .)(Var
t
KtP =   (11) 

Experimental observations, realized by means of 
simulation campaigns, showed that eq. 10 represents a 
good approximation also when longer lines (i.e. lines 
with several machines decoupled with buffers) are 
considered. 

Another important aspect addressed is the 
identification of the mass probability function of the 
performance measure considered, in our case , that 
changes over time. The shape of such a mass probability 
function is certainly not Gaussian since the value of the 
productivity is limited between 0 and a maximum value 
depending by the characteristics of the system and of 
the machines. 

)(tP

Since the productivity derives from the sum of the 
independent random variables representing the units 
produced over time, according to the central limit 
theorem, the mass probability function of 

asymptotically tends to a Gaussian. Hence, from a )(tP

Page 324



 
Figure 2: Mean trend. 

 
Figure 3: Variance trend. 

certain time 0  we can apply the inferential 
techniques explained in the next section. 

tt >

 
3. ESTIMATION APPROACH 
When dealing with simulation of stochastic processes, 
estimation of parameters of interest is provided in terms 
of confidence intervals. This approach states that the 
estimated range of value contains the true population 
parameter with a confidence of )%1( α− . That is, the 
method used to obtain this range, yields correct 
statements )%1( α−  of the time. The length of a 
confidence interval is a measure of precision of the 
estimation. 

If ϑ  is the sample mean of a random sample of 
size n from a normal population with known variance 

, a 1002σ )%1( α−⋅  confidence interval on ϑ  is given 
by 

,22
n

z
n

z σϑϑσϑ αα +≤≤−  (12) 

where n is the sample size, α−1  is the confidence level 
and 2αz  is the upper 2100 α⋅  percentage point of the 
standard normal distribution. As it is possible to see in 
eq. 12, the larger the sample size, the narrower the 
interval is. Conversely, the larger the sample variability, 
the less the accuracy on the estimation is (Montgomery 
and Runger, 2007). 

By substituting the approximate variance of eq. 11 
in eq. 12 we obtain 
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4. NUMERICAL EXAMPLE 
An exemplificative case study has been carried out to 
show how the methodology presented in this paper can 
be used to organize and design simulation campaigns. 

Let us consider a simple production line consisting 
of two machines decoupled by a finite buffer (Figure 1).  

 

 
Figure 1: two-machine one-buffer line. 

 
The input parameters of interest are as follows: 

production capacity (µ), failure rate (p) and repair rate 
(r) of each machine, and buffer size (N). The 
corresponding values adopted in the case study, derived 
from a real installation typical of the 
beverage/packaging field, are reported in Table 1 
(where t.u. is for time unit).  

Given the simulation model of such a system, a 
simulation campaign, consisting of 50000 runs of 
10000000 time units [t.u.] length each, has been carried 
out. The performance measure of interest is the 
production rate  at any time instant t, i.e. the ratio 
between the number of produced items and the 
simulation time 

)(tP

0tt − . The production rate  has 
been captured at several time values over all the 
simulation length. 

)(tP

 
 

Table 1: Input Parameters 
 Machine 1 Machine 2 Buffer 

Capacity 
[itmes/t.u.] 400 400 - 

Failure rate 
[1/t.u.] 0.01667 0.06667 - 

Repair rate 
[1/t.u.] 0.083333 0.4 - 

Size [items] - - 1500 
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Figure 4: Fitting results. 

 
At any capture time the sample mean  and 

variance  were computed with respect to the 
simulated data. Figure 2 and Figure 3 depict the trend of 

 and , respectively, against the 
simulation time t. 
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Note that the sample mean quickly approaches its 
steady state value. When analytical model for steady 
state performance computation are available, such the 
ones proposed in Gershwin (2002) and in Gebennini et 
al. (2009), the steady state value of the productivity can 
be conveniently a priori determined. 

Focusing on the variance , Figure 4 
shows how the curve of 

[ )(Var tP
[ ])(Var tP  can be properly 

fitted by the function reported in eq. 11. In this specific 
case, . 5103 ⋅=K

In order to estimate the goodness of the fit, the R-
square (i.e. the square of the multiple correlation 
coefficient and the coefficient of multiple 
determination) is computed. Specifically, its value is 
about 0.99, very close to 1 (i.e. the value corresponding 

to a perfect fit). 
This result proves that the form of the 

approximated variance reported in eq. 11 holds also 
when complex lines are dealt with. 
As can be seen, knowing K in advance for a specific 
system configuration allows to effectively represent the 
variance of the population. Practically, K can be 
determined whether by using specific analytical formula 
obtained in the literature, or by adopting heuristic 
methods (i.e. neural networks) to interpolate K values 
from a set of observations conducted with different 
values of system parameters.  

Thus, we are provided with all the data necessary 
for computing the confidence interval (see eq. 13) in 
relation to a certain simulation time  and a certain 
number n of simulation runs/repetitions. Figure 5 shows 
the surface representing the confidence interval half 
length (CI/2) for a significant range of simulation times 
and numbers of repetitions, i.e. the range [200,…,8000] 
t.u. for the simulation time and the range [1,…,30] for 
the number of runs. This is a useful result for 
dimensioning simulation campaigns by identifying 
isolines for any specified value of the confidence 
interval (Figure 6). 

0tt −

 
5. CONCLUSION 
The paper presents a methodology for the design of 
simulation campaigns or in-field tests, specifically for 
identifying a trade-off between replication length and 
number of simulation runs to execute as a function of a 
specified estimation precision. 

The method is based on the direct estimation of the 
population variance by means of a properly shaped 
fitting function. That shape is determined by some 
analytical analyses on the structure of the 
manufacturing system. 

The trend of the population variance can be then 
expressed as a function of the system run time, and 

 
Figure 5: CI/2 surface. 
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confidence interval diagrams can be determined to find 
better trade-offs between the number of simulation to 
run and simulation length. 
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