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ABSTRACT 
In this paper we describe different aspects of parameter 

tuning strategies for meta-heuristic algorithms. In 

contrast to many automated parameter adjustment 

methods in the field, special attention is given to 

parameter tuning strategies which are able to be applied 

during the run of a meta-heuristics. The basic idea we 

are using for this approach steams from self adaptive 

evolution strategies and this paper discusses different 

adaptations to this idea in order to find out, to which 

extent this concept can be transformed to other meta-

heuristics.      

 

Keywords: Meta-heuristic Optimization, Evolutionary 

Algorithms, Parameter Tuning. 

 

1. INTRODUCTION 
Heuristic methods provide a reasonable tradeoff 

between achieved solution quality and required 

computing time, as they employ intelligent rules to scan 

only a fraction of a highly complex search space. 

Typical applications of heuristic methods can be found 

in production optimization; for example, heuristic 

algorithms are applied in machine scheduling and 

logistics optimization. For efficiently scanning such 

highly complex and exponentially growing search 

spaces, only heuristic methods can be considered for 

solving problems in dimensions which are relevant for 

real-world applications. 

The step from heuristics to meta-heuristics is an 

essential one: While heuristics are often designed and 

tuned for some specific problem, meta-heuristics offer 

generic strategies for solving arbitrary problems. The 

implementation of concrete solution manipulation 

operators still depends on the problem representation, 

but the optimization strategy itself is problem-

independent. 

The success of meta-heuristics is based on an 

interplay between phases of diversification and 

intensification, but in order to achieve a beneficial 

equilibrium, fine-tuning is necessary for each problem 

instance depending on its fitness landscape 

characteristics (Affenzeller et al., 2009). 

One of the most prominent representatives of 

meta-heuristics is the class of evolutionary algorithms 

(Eiben and Smith, 2003): New solution candidates 

(individuals) are generated by combining attributes of 

existing solution candidates (crossover) and afterwards 

they are slightly modified with a certain probability 

(mutation); parent individuals are chosen by means of 

nature inspired selection techniques (Holland, 1975). A 

second well-known example of a rather simple meta-

heuristic is simulated annealing (Kirkpatrick et al., 

1983): This approach is closely related to local search 

strategies such as hill climbing/descending and 

generates new solutions iteratively, starting from a 

usually randomly initialized solution. In contrast to 

simple hill climbing/descending, moves to worse 

solutions are permitted with a certain probability which 

decreases during the heuristic search process; by this 

means the algorithm first performs exploration 

(diversification), and later tends to focus on promising 

regions (intensification). 

A multitude of other meta-heuristics has been described 

in the literature, such as for example particle swarm 

optimization (Eberhardt et al., 2001), tabu search 

(Glover, 1997) and iterated local search (Lourenco et 

al., 2003). The evolution of so many diverse meta-

heuristics results from the fact that no single method 

outperforms all others for all possible problems. To be a 

bit more precise, the so-called No-Free-Lunch theorem 

postulates that a general-purpose universal optimization 

strategy is impossible and that the only way how one 

strategy can outperform another is to be more 

specialized to the structure of the tackled problem. The 

No-Free-Lunch theorem basically says that, given two 

arbitrary meta-heuristics (including random search), 

there always exist search spaces for which the first 

meta-heuristic will perform better than the second and 

vice versa.  

This means that even for the most sophisticated meta-

heuristic a fitness landscape can be constructed for 
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which it performs worse than ordinary random search. 

Therefore, it always takes qualified algorithm experts to 

select, parameterize and tune a meta-heuristic algorithm 

for a concrete application. 

 

 

 

 

Figure 1: Schematic representation of the ordered 

relation between problem instances (lower layer) and 

potentially well suited meta-heuristics (upper layer). 

 

This situation is illustrated in Figure 1 where the 

lower layer represents the problem instances with their 

associated fitness landscape characteristics and the 

upper layer shows the meta-heuristic methods under 

certain parameterizations. There exist some rough rules 

of thumb derived from empirical testing that indicate 

which meta-heuristics should be chosen for certain 

problem characteristics. However, picking an 

appropriate method for a certain problem instance is a 

non-trivial task. On the one hand, fitness landscape 

characteristics may change remarkably for different 

problem dimensions; on the other hand, the 

characteristics of a certain meta-heuristic may 

considerably vary for different parameter settings. 

The problem of choosing an appropriate method 

and to find a beneficial set of parameters for a given 

optimization task is usually a challenging and time 

consuming task which takes an experienced algorithm 

expert. Alternatively, some automated approaches have 

been proposed that try chose the method or its 

parameter setting automatically. However, these 

approaches usually all suffer from enormous runtime 

consumption as it is necessary to run a set of parameter 

settings for the meta-heuristics to be optimized in order 

to evaluate only one single solution candidate of the 

optimization method which is responsible for 

optimizing the parameter tuning. The approach of 

optimizing the parameters of a meta-heuristics for a 

certain problem is often referred to as meta-

optimization of meta-heuristics and is usually done with 

a meta-heuristics itself. Unfortunately, it is also no good 

idea to optimize the parameters applied to a small 

problem instance of the problem class to be solved in 

terms of parameter adjustment, as fitness landscape 

characteristics are usually totally different for different 

problem instance of the same problem class and 

therefore require different parameter settings. 

Summarizing all these considerations, it can be 

concluded that the application of meta optimization 

strategies for the parameter optimization task of a 

modern meta-heuristics applied to a challenging 

problem to be solved is a very time consuming task and 

therefore usually not applied in practice where up-to 

date hardware environment is already on its limits just 

for solving the problem to be solved. 

 

In this paper we aim to introduce a general purpose 

lazy meta-optimization approach which is able to adapt 

certain parameter setting of a meta-heuristic algorithm 

during its run. The basic idea is inspired by the general 

idea, how self adaptive evolution strategies handle 

componentwise adjustment of the strategy parameters 

during the run (Schwefel, 1975). The main advantage of 

this strategy is, that, even if it is not so powerful than 

pure meta-optimization approaches, that it should be 

quite easily applicable to even quite time consuming 

problem instances as the runtime requirements are not 

much higher than in the case of a standard meta-

heuristics. 

 

The paper is organized as follows:   Sections 2 and 

3 describe the theoretical foundations for the new lazy 

meta-optimization approach which is introduced in 

section 4. In section 5 first results of the lazy meta-

optimization are shown exemplarily for genetic 

algorithms with and without offspring selection 

(Affenzeller and Wagner, 2005). Finally, section 6 

concludes the main characteristics of the proposed 

approach and touches on some ideas about future 

application areas of the proposed ideas. 

 

2. META OPTIMIZATION 
As stated in the introduction, the choice of a 

certain meta-heuristics as well as the parameter tuning 

process is highly dependent on the problem instance 

which is to be optimized. With the No-Free-Lunch 

theorem in mind there is also strong theoretical 

evidence that a universal solver meta-heuristics cannot 

be realized. 

Meta meta-heuristics, in which meta-heuristics are 

used for the parameter tuning process of a meta-

heuristics, has have already been discussed for a long 

period of time. In (Grefenstette, 1986), for example, a 

genetic algorithm has been used for tuning the 

parameters of a genetic algorithm.  

A severe drawback of such approaches is that for 

the fitness evaluation of a high-level (meta-meta level) 

solution candidate a complete run of the low level 

algorithm has to be performed; considering the fact that 

reams of thousands of evaluations are usually required 

for achieving satisfying results and that each evaluation 

on the high level requires a full run on the low-level 

meta-heuristics it becomes easy to follow that this 

approach is still rather restricted to solve rather simple 

(low dimensional) problems. A crucial fact concerning 

this approach is also that it is not advantageous to 

identify good algorithm parameters on the basis of low 

dimensional problems and apply them on higher 

dimensional problems because the fitness landscape 

characteristics are drastically changing even for 

different problem instances of the same problem class. 
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A comprehensive review of parameter control 

strategies for evolutionary algorithms is stated in (Eiben 

et al., 1999). 

A similar flavor which is driven by the availability 

of parallel hardware systems is given by hyper-

heuristics (Burke et al., 2003). The goal here is, that 

hyper-heuristics should be able to adapt to the fitness 

landscape characteristics associated with a certain 

problem. However, the approach is quite different: 

Hyper-heuristics operate on a higher level of 

abstraction: they choose a certain meta-heuristics out 

from a set of available meta-heuristics depending on the 

actual performance which may be measured on the basis 

of CPU-time and the change in fitness. Even this 

approach seems to be quite simple and also quite 

efficient to handle especially in a parallel environment, 

it is not able to tune the parameters of the certain meta-

heuristics themselves. 

In the following sections we will propose a new 

attempt which may be seen as some kind of 

compromise of meta-meta heuristics and hyper 

heuristics. In this approach, the tuning of parameters 

should be done during the run of a single algorithm in 

way which is inspired by the way evolution strategies 

adaptively handle step-width regulation according to 

(Beyer and Schwefel, 2002).     

 

3. SELF-ADAPTIVE ES 
With the 1/5 success-rule, Rechenberg introduced 

a regulator for the mutation strength depending on the 

ratio of successful mutants in a certain generation 

(Rechenberg, 1973). If the ratio of successful mutants is 

high (>1/5) it is rather easy to achieve improvements 

and the optimum is considered to be far away. 

Therefore, the mutation strength (step-width) is 

increased. In case of too little successful mutants (<1/5) 

mutation strength is decreased because it is argued that 

the algorithm may jump around an optimum without 

detecting it.    

Following basically the same idea, Schwefel 

introduced a self-adaptive step-width regulation which 

is applied individually to each dimension of the 

parameter vector for each solution candidate of the ES 

population (Schwefel, 1975). Technically, this is done 

in the following way: 

The dimension of an n-dimensional parameter 

vector is doubled resulting in a parameter vector of 

dimension 2n. The additional n dimensions store the 

actual standard deviation of the usually normal 

distributed mutation step-width for each dimension of 

the parameter vector. 

 

X = ((x1,x2, …. xn),( 1,  2, …. , n )) 

 xi’ = xi + N(0, i’) (mutation) 

 

 Consequently, also the mutation step-widths have 

to be mutated as well. This is usually done by adding 

some Gaussian noise around 0 with a constant term and 

a term which depends on the dimension. 

 The aspect of this adaptive parameter tuning 

strategy which is quite unique is the fact that the 

mutation step-widths i are implicitly optimized even if 

we do not have an explicit fitness function for them. In 

other word this means that this strategy operates under 

the assumption that above average solution candidates 

are more likely to have emerged with advantageous 

parameters (step-width variances). 

 The main idea of the present contribution is to 

consider, how and to which extent this idea can be 

transferred to other meta-heuristics. The next two 

chapters exemplarily point out some concrete strategies 

about how such an ES-inspired lazy meta-optimization 

strategy may be transferred to genetic algorithms and 

give some preliminary results. 

 

4. LAZY META-OPTIMIZATION 
 In this section we consider which parameter of a 

standard genetic algorithm (SGA), an island model 

parallel genetic algorithm (PGA), and an offspring 

selection genetic algorithm (OSGA) can be optimized 

implicitly during the run of the algorithm. 

  Basically, offspring selection is defined in the 

following way: After generating new solutions by 

crossover and mutation, these new solutions are inserted 

into the next generation’s population only if they are 

better than their parents. The decision whether a child is 

considered better than its parents depends on the so-

called comparison factor cf (cf  [0, 1]) parameter: If 

cf=0 then a child is already considered better if it 

surpasses the fitness of the worse parent, if cf=1 then a 

child has to be better than both parents for being 

considered successful. Additionally, the parameter 

success ratio defines the ratio of successful individuals 

in the next population; the rest of the population is filled 

up with children that do not necessarily have to be 

successful. Details about this procedure can for example 

be found in (Affenzeller and Wagner, 2005) or in 

(Affenzeller et al., 2009). 

For the considered GA variants the following 

parameter values have to be adjusted: 

• Population size 

• Selection operator 

• Elitism 

• Crossover operator 

• Mutation operator 

• Mutation rate 

• Additionally for PGAs 

o Communication topology 

o Migration scheme 

o Migration rate 

o Migration interval 

• Additionally for OSGAs 

o Comparision factor  

o Success ratio 

o Maximum selection pressure 

 The only parameters that can be considered in a 

sense that they were relevant for the evolvement of a 

certain individual are the choice of the crossover 

operator and the mutation operator.  

Page 33



Parameters like the mutation rate have to be 

analyzed with respect to the evolvement of the 

population. 

So far we have analyzed combinations of different 

crossover and mutation operators which are stored 

together with the individual (the individual stores the 

operator by which it has been evolved). Due to the 

sexual recombination aspect, a local family tournament 

is applied when the two parent individuals are carrying 

different crossover operators in their parameter 

knapsack. If mutation is to be applied in the actual 

reproduction step, the family tournament has to be 

extended for up to four potential offspring solution 

candidates that may arise, if both parents have used 

different crossover and mutation operators. 
 

 
Figure 2: Migration of parameters (and) individuals in 

the topology of a unidirectional ring. 

 

Concerning the online-optimization of strategy 

parameters that have to be interpreted on the population 

level several more challenging questions arise – 

especially in the context of genetic algorithms. In 

contrast to standard meta-optimization approaches, here 

we want to evaluate the actual potential of the 

population in terms of achievable solution quality 

during the run of the algorithm. Therefore, it becomes 

necessary to define some measure for the potential of 

the population with respect to achievable solution 

quality. Having in mind the building block theory for 

genetic algorithms (e.g. in Affenzeller et al, 2009) the 

achievable solution quality of a genetic algorithm 

mainly depends on the distribution of essential genetic 

information over the individuals in a certain population 

and how the available genetic operators are able to 

combine this essential genetic information to better and 

better solution candidates. 

The evaluation function for the actual potential of a 

population may be defined in terms of a measure which 

calculates the relative ratio of successful offspring of a 

random sample taken from the actual population where 

an offspring is considered successful if its fitness is 

better than the fitness of the better two parents which 

can be evolved using the actual set of parameters and 

operators. However, the question remains how the 

parameters which are relevant for the evolvement of a 

population can be compared amongst each other. For 

this purpose we propose an architecture which is similar 

to a course grained parallel GA. The only difference to 

an island model GA is that the concept of migration is 

adapted for the exchange of advantageous parameter 

settings between the subpopulations as indicated in 

Figure 2. 

 

5. RESULTS 
In this section first results of lazy meta-

optimization are shown for genetic algorithms 

considering the performance of different crossover 

operators for the ch130 travelling salesman benchmark 

problem taken from the TSPLib. The experiments have 

been performed with the framework HeuristicLab 3.3
1
 

using the set of parameters shown in Table 1 and Table 

2. A detailed description of the listed GA parameters 

and operators can be found in (Affenzeller et al., 2009). 
 

Parameter Value 

Generations 2000 

Population 

size 

100 

Selection 

operator 

Proportional 

Mutation 

operator 

Inversion 

Mutation rate 5% 

Elitism 

strategy 

1-elitism 

Crossover 

operators 

Family tournament using the following 

set of crossover operators: 

AbsolutePositionTopologicalCrossover 

OrderBasedCrossover 

PositionBasedCrossover 

CyclicCrossover 

OrderCrossover 

EdgeRecombinationCrossover 

MaximalPreservativeCrossover 

PariallyMatchedCrossover 

CosaCrossover 

Table1: Parameters for the experiments shown in Figure 

3 and Figure 4. 

 

Figure 3 shows that when using a standard GA basically 

only two (ERX and Cosa) out of the nine available 

crossover operators turn out to be successful where 

ERX becomes even more successful in the final (almost 

converged) stage when the goal is to achieve still minor 

improvements. 

 

 
Figure 3: Distribution of crossover operators when 

using a standard GA. 

                                                             
1
 https://dev.heuristiclab.com/trac/hl/core 
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Parameter Value 

Generations 500 

Success Ratio 1 

Comparison Factor 1 

Max. selection pressure 100 

Table 2: Additional (offspring selection) parameters for 

the experiments shown in Fig. 4. 

 

The remaining seven crossover operators turn out 

to be ineffective for the given problem and are therefore 

practically not used even if some survival strategy is 

implemented in order to avoid the total disappearance of 

an operator. 

When using an offspring selection GA (additional 

parameters are given in Table 2) the dominance of 

single operators becomes even more evident and it is 

especially the ERX operator which extensively 

outperforms the other operators; only the Cosa operator 

can contribute in some stages of the algorithm. 

 

Even if we can only show some snapshot results in 

this paper, the basic characteristics (dominance of ERX 

and Cosa) explained here are characteristic for other 

TSP experiments. When experimenting with other 

problem instances or even other problems the 

characteristics are different of course which is one of 

the main motivations for meta-meta or hyper-heuristics. 

 

 

 
Figure 4: Distribution of crossover operators when 

using an offspring selection GA. 

 

Concerning the experiments it has to be pointed 

out that the results shown here are only exemplarily and 

many other experimental setups are to be addressed in 

the future. Some suggestions are given in the 

conclusion. Furthermore, the main goal of the 

experiments of this paper was not focused on solution 

quality but rather on indicating the potential of the 

proposed lazy meta-optimization approach. However, 

the achieved results are close (within a 5% range) to the 

global optimal solution and comparable or better than 

with any single operator.  

 

6. CONCLUSION 
In this paper we have proposed several aspects for 

a lazy meta-optimization approach which is inspired by 

the implicit strategy parameter optimization of 

evolution strategies with adaptive step-width regulation 

according to (Schwefel, 1975). Concretely, it has been 

considered, which parameters of several genetic 

algorithm variants may be optimized following this 

strategy. First exemplary results of this approach have 

been shown. 

However, many aspects should be analyzed in 

more detail: Open topics for future research in this field 

concern the mentioned family tournament. Alternatively 

also random operators of the two parent individuals 

could be used analyzing the effects concerning 

performance and expressiveness. Also the analysis of 

different migration strategies (for the exchange of 

parameters relevant for the performance of 

subpopulations) need to be studied in more detail. 

Furthermore, the evaluation of the actual potential 

of a GA population is a challenging research topic of its 

own. As an alternative to the proposed potential 

evaluation, also a combined measure could be used 

considering the best and average individual fitness 

combined with a diversity potential. 
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