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ABSTRACT 
Infinite server semantics continuous Petri nets 
(ISSCPNs) is one of the most relevant timed 
interpretation of Continuous PNs (the relaxation into 
continuous models of Petri nets). Previous works 
comparing ISSSCPNs with Forrester diagrams and 
linear ordinary differential equation systems (LODES), 
taking into account the information delays and some 
methodological considerations, demonstrated that 
ISSCPNs permit to model any LODES when known 
upper and lower bounds of the state variables exists. 
Therefore systems with cyclic behavior or delays in the 
information can be modeled. These results permit 
analyze the modeling and simulation of cyclic systems 
with ISSSCPNs based on the comparison with the 
behavior of LODES. This type of analysis is very usual 
in system dynamics, in order to develop models (usually 
with FD) for unknown systems whose evolution have 
been observed. The possibility of model sinusoid 
functions, and the addition/substation of markings in 
redundant places, permits ISSCPNs model any cyclical 
system by Fourier decomposition, and the 
representation of different markings leads to very 
interesting graphics, which can correspond to real or 
approximate systems. This paper deepen into ISSCPNs 
expressive power, that is, the type of  behaviour that 
they can present and the kind of systems that can be 
modelled with them. 
 
Keywords: Continuous Petri nets, Forrester diagrams, 
relaxation of discrete event dynamic systems, positive 
systems, expressive power. 
 
1. INTRODUCTION 
PNs constitute a well-known family of discrete event 
dynamic formalism over the nonnegative naturals. 
Although PNs models are originally discrete event 
models, their relaxation through continuization 
transforms them into continuous models. At the price of 
losing certain possibilities of analysis, this permits to 
obtain some advantage, such as avoiding the state 
explosion problem inherent to the discrete systems and 
taking advantage of the extensive theory about 
continuous dynamic systems. Although not all PN 

systems allow a “reasonable” continuization [1], this 
relaxation is possible in many practical cases, leading 
to a continuous-time formalism: continuous PNs.  
Different timed interpretations lead to different 
firing/flow policies. One of the most relevant is 
ISSCPNs, the one that will be dealt with in this paper. 
Under this interpretation PNs are piecewise linear 
systems over the nonnegative reals. 
 FD, a specific modelling tool inside System 
Dynamics (SD), provides a graphic representation of 
continuous dynamic systems based on (eventually non 
linear) ordinary differential equation systems (ODES). 
They have been widely used to model complex systems 
with a friendly graphic representation, but they are 
totally equivalent to ODES. An interesting class of 
linear ODES are positive linear systems, whose state 
variables take only nonnegative values, the same as 
Continuous PNs. Another special class of positive 
linear systems are compartmental systems, which are 
systems composed of interconnected compartments or 
reservoirs. 
 Previous works comparing ISSSCPNs with 
Forrester diagrams and linear ordinary differential 
equation systems (LODES), taking into account the 
information delays and some methodological 
considerations, demonstrated that ISSCPNs permit to 
model any LODES when known upper and lower 
bounds of the state variables exists [10]. 
 
2. PREVIOUS DEVELOPMENTS ABOUT 

EXPRESSIVE POWER OF ISSCPNS 
The evolution of a ISSCPN is described by the system: 

m ()= C · f() 
f()[ti]=[ti] enab()[ti]         
m(0) = m0 

 Thus a continuous Petri net under infinite servers 
semantics becomes a piecewise linear system. The 
switch between two linear systems is triggered by a 
change of the place giving the minimum in the 
expression for the enabling degree. 
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2.1. On positivity 
Broadly speaking, positive systems are systems whose 
state variables take only nonnegative values. A positive 
system automatically preserves the non-negativity of 
the state variables, i.e., if non-negativity constraints on 
the state are added, they are redundant.  
 More formally, let ∑ (1) be a linear system: 

      x (t) = A x(t) + B u(t)                (1) 

 Definition 1. [9] ∑ is said to be positive iff for 
every nonnegative initial state and for every 
nonnegative input its state is nonnegative. Then the 
positive orthand  is a nonnegative invariant set. If 
B=0, the system is said to be uncontrolled or unforced.  

n

 Note that positivity in linear systems can depend 
on the basis of the input as well as on the basis of the 
state space. Some non-positive system can be 
transformed into another equivalent positive system by 
a basis change in the state space. This is the reason why 
some authors define positive systems by requiring the 
existence of an invariant set (without requiring, 
however, that such an invariant set be the positive 
orthand). 
 Theorem 1. [9] A linear system (1) is positive, iff 
A is a Metzler matrix and B is nonnegative (a 
matrix/vector is nonnegative if all its elements are 
nonnegative and a square matrix is Metzler if non-
diagonal elements are nonnegative). 
 According to Definition 1, ISSCPNs are positive 
systems (the fact that the flow of a transition is 
proportional to its enabling degree ensures the 
nonnegativity of the marking). Nevertheless, the 
matrices Ai of the linear systems ruling the evolution of 
the net (recall that an ISSCPN is a piecewise linear 
system) can be non Metzler matrices. In a ISSCPN the 
switching between linear systems is triggered by a 
change in the place giving the minimum in the 
expression of the enabling degree.  
 The evolution of the net system in Figure 1 is 
driven by a linear system with matrix A1 if x1≤x2 and 
with matrix A2 otherwise (if x1=x2 both systems are 
equivalent). Neither A1 nor A2 is a Metzler matrix, 
however the system is positive.  
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x1

λ

x2

t1

x1

   -If  x1≤x2: 
  x 1=–λ · x1 
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Figure 1: A ISSCPN whose associated linear systems 
have non Metzler matrices. 
 
2.2. Control Arcs in PNs. Expressive power of 

ISSCPNs. 
Control arcs will be introduced in this section. A 
control arc is defined on a couple {place, transition} 

of the transition without modifying the marking of the 
place. It will be shown that by using control arcs any 
bounded LODES can be represented by an equivalent 
ISSCPN. 
 Let us

and allows to model instantaneous control of the flow 

 describe how a control arc can be added to 
a ISSCPN. Consider an ISSCPN with a vector of 
internal speeds  and incidence matrices Pre and Post. 
Let us assumed that the flow of a transition t is desired 
to be [t] m[p] all along the evolution of the system for 
a given place p that is not an input place of t. In other 
words, we want the flow of transition t to be controlled 
by place p. Recall that the flow of t is f[t]=[t] min pt 
{m[p]/Pre[p,t]}. Therefore, in order to achieve our goal 
it is necessary that p is an input place of t and that it is 
always giving the minimum in the expression for the 
flow. This can be done by adding an arc going from p 
to t with weight k. We will asume that k is big enough 
to ensure that p always gives the minimum. If the 
internal speed of t, ’[t], is made k times faster 
(’[t]=k·[t]) then f[t]=[t]m[p]. In order to avoid that 
transition t consumes fluid from p, a new arc going 
from t to p with weight k is added to the net. This way, 
the flow of t is controlled by p, but the marking of p is 
not modified by the firing of t. Summing up, to put a 
control arc between {p,t} of weight k, two arcs of 
weight k have to be added (from p to t and from t to p), 
and the internal speed of t has to be multiplied by k. 
 

aij·k
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xj

k
k

aij·k

xi
xj

k
k

 
Figure 2: A control arc with wei ht k. 

  
that in a control arc {p,t} the weight k is 

trol arc is defined as a control arc 

 that by using regular 
nt

g

 Note 
assumed to be big enough to ensure the control of the 
transition. If the markings of the input places of t are 
strictly positive and the marking of p is upperbounded 
then such a k does always exist. However, if the 
marking of one of the input places tends to zero or the 
marking of p tends to infinity, no finite k exists such 
that p gives the minimum in the expression for the 
enalbling degree. 
 An ideal con
with its constant k equals to infinite. The use of ideal 
control arcs allows to control transitions even when the 
marking of an input place tends to zero or the marking 
of p tends to infinity. Ideal control arcs represent an 
extension in the modelling power of ISSCPN and can 
be used to empty a place in finite time. They are 
equivalent to the information arcs in FD (in linear and 
nonnegative restricted systems). 
 The following lemma states
co rol arcs (no ideal control arcs) any LODES that has 
a positive and known lower and upper bounds can be 
modelled by an equivalent ISSCPN. 
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 Lemma 1: For any LODES with positive and 
known lower and upper bounds there exists an ISSCPN 
having identical behaviour. 
 Proof. (see the previous work, in reference [10]) 
 From Lemma 1, the following Proposition is 
immediately obtained. 
 Proposition 1: For any LODES whose state 
variables have a known lower and upper bound there 
exists an ISSCPN that represents the evolution of the 
LODES in the positive reals. 
  Proof: Any LODES with known lower bounds can 
be shifted to the positive reals by means of a change of 
variable. According to Lemma 1 there exists an 
equivalent ISSCPN for the shifted system.  
 Recall that by introducing ideal control arcs it is 
possible for a place to control a transition even if its 
marking stretches to infinity. Therefore the use of ideal 
control arcs allows to model also those LODES that are 
not upper bounded.  
 
3. ODES, FD AND ISSCPNS 
 
3.1. Behaviours types modelled with ISSCPN 
Let be a general case of unforced linear ODES, x (t) = 
A x(t), with dimension 2, where: 



 

A =  







22a21a
12a11a

 

The system can be represented by FD as shown in 
Figure 3. By ISSCPN if can be represented according to 
Table 1, which uses ideal control arcs in the cases with 
negative coefficients. 
 
 

N2

a22
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N1

a12a11

N2

a22
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N1
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Figure 3: FD modelling a general unforced linear ODES 
of dimension 2. 
 
Table 1: ISSCPN modelling general unforced linear 
ODES, depending on the signs of the coefficients. 

 Coef. aij Coef. aii 
 
 
> 0 

aij

xi
xj

aij

xi
xj

 aij

xi
xj

aij

xi
xj

 
 
< 0 

aij·k∞

xi
xj

k∞
k∞

aij·k∞

xi
xj

k∞
k∞

 aij·k∞

xi
xj

k∞
k∞

aij·k∞

xi
xj

k∞
k∞

 

As control arcs can be used in both cases (positive or 
negative coefficients), the system can be represented by 
ISSCPN as shown in Figure 4, in which the sense of 
some arcs depends on the sign of the coefficient (the 
narrow with a + must be used with positive coefficients 
and viceversa). 
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+
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Figure 4: ISSCPN modelling a general unforced linear 
ODES of dimension 2. 

 
The solution of the system is, in the general case, eAt · 
x(0). Certain particular cases that exemplify the types 
of behaviour of this system are shown in Table 2. 
Exponential (positive and negative), linear, oscillating, 
hyperbolic and even sine growing behaviours can been 
seen.  
 
Table 2: Examples of behaviour that can be modelled  
with ISSCPNs in positive systems. 

A eig(A) eAt 
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 
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 The paper is based on the behaviour derived from 
row 4 (which is a particular case of the last row, with 
b=0). It is frequently presented in usual systems. Let us 
suppose a particular system with a material storage (St) 
and a staff of employees (E), whose observed real 
behaviour, by Jay W. Forrester [8], was one of the basis 
of system dynamics. The material is decreased due to 
the sales (S), which are assumed to be constant in time, 
and it is increased with the production (P), which is 
proportional to the number of employees. On the other 
hand, E varies with the contracting (C), which is 
proportional to the difference between the desired 
storage (DSt) and the present St. Figure 5 shows the FD 
that models this system.   
 

DSt

St

E
C

SPc1

c2 DSt

St

E
C

SPc1

c2
 

Figure 5. DF of a storage with employees system. 
  
 The differential equations system corresponding to 
that FD and its matrices are, 

P(t) = c1 · E(t) 
C(t) = c2 · (DSt–St(t))  
dSt(t) / dt = P(t) – S 
dE(t) / dt = C(t) 

A=  B=  







 0c

c0

2

1







 
DSt·c
S

2

  

 The eigenvalues of A are pure complex 
conjugated, independently of the values of c1 and c2 
(due to the structure of the system), and their temporal 
evolution is oscillatory, sine shaped and with no 
damping. It can be described as: 

St= w · sin((c1·c2)1/2 ·t) + DSt  (3) 
E= w · (c2/c1)1/2 · cos((c1·c2)1/2 ·t) + S/c1 
 

where w depends on the initial state, and it is computed 
as  

 w = ((St(0)–DSt)2 + ((E(0)·c1–S)/(c1·c2))2)1/2  
 

 So, if the storage is represented versus the 
employment, although the sales are constant a cyclic 
behaviour appears, with the parameters shown in Figure 
6. As a curiosity, this type of behaviour (cyclic even 
with continuous inputs) was the origin of Forrester’s 
studies, which were the source of System Dynamics. 
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w
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Figure 6. Behaviour of the system described in Figure 5 
 

 If St(0)=DSt and E(0)=S/c1, then the system is 
stable. It is also important to emphasize that this system 
has only physical sense when the levels (stored 
elements and number of employees) have positive 
values, but the system of differential equations is non 
positive, and negative employment and storage can be 
reached for some initial conditions. Therefore, the 
constraint for non negativity (St,,E≥0) must be 
additionally included in order to obtain a correct model.       
 The system with the non negativity constraint can 
be modelled with continuous PNs (Figure 7) but it must 
be taken into account that C, which can be positive or 
negative, must be implemented as a combination of a 
flow of new contracts and a flow of dismissals, both 
positive.  
 Note that two places have been used (those with 
unitary marking) in order to get a constant flow with 
ISS, and control arcs have been necessary to explicitly 
select the places that provide the information to the 
transitions with synchronizations.  The system will be 
described by (3) whenever St≥1/k∞ and E≥St/k∞. Recall 
that k∞ represents a finite constant as big we want 
(eventually tending to infinite). 

λ=c1 St

P S

1
k∞ k∞

E
C+

1

k∞k∞
C –

λ=S·k∞

λ=c2·k∞

λ=DSt·c2

λ=c1 St

P S

1
k∞ k∞

E
C+

1

k∞k∞
C –

λ=S·k∞

λ=c2·k∞

λ=DSt·c2

 
Figure 7. ISSCPN equivalent to the system in Figure 3 
restricted to positive values. 
 
 It is also important to note that an appropriate 
value of k∞ in the PN depends on the minimum values 
that St and E can reach (and then on the initial 
marking). For instance, if c1=c2=1, St(0)=9, DSt=10 
and E(0)=S=12, then k∞ does not need to be higher than 
1. Figure 8 shows simultaneously the evolution of the 
constrained system (modelled with ISSCPN or FD with 
constraints) and the non restricted one (modelled with 
ODES or FD without constraints). Both are similar 
from the initial state to the first intersection with the 
horizontal axis (point a in the graphic). Figure 8a 
presents St versus E, and Figure 8b shows the temporal 
evolution of the state variables.  
The choice of appropriate parameters can lead to 
completely positive systems, and then ideal control arcs 
are not needed. The model will be exactly the same as 
in Figure 7 by replacing the respective k∞ for finite 
values ki. An example of such type of evolution is 
represented in Figure 9. 
The system can also be converted in a conservative PN 
if the complementary places of the state variables are 
added, as shown in Figure 10. 
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Figure 8: Evolution of the system with c1=c2=1, 
St(0)=E(0)=40; DSt=10, C=V=20 from constrained  
(broken line) and no constrained (unbroken line) 
models. 

 
Figure 9: Evolution of the system with c1=c2=1, St(0)=4 
E(0)=5; C=V=5. 
 
Since ideal control are not used now, the system can 
evolution through different covertures before switching 
to the final coverage in which control arcs are who 
effectively control their transitions, as shown in Figure 
11. 
These coverage changes are determined by the value of 
the places, in the moments in which the minimum of 
the transitions are provided for different places, which 
corresponds with intersection of the curves shown in 
Figure 12 (intersections of red with yellow or green 
with blue lines). 

λ1=c1· kE A

P V

1
kv kv

E
C+

1

kAkA

C –

λ2=V·kv

λ4=c2·kA

λ3=AD·c2

Ac

Ec

kE
kE

p3

p4

p2

p1

p5

p6

 
Figure 10: Conservative model equivalent to Figure 7. 
 

 

 
Figure 11: Different behaviours of the system 
depending on the parameters. 

 
Figure 12: System evolution and temporal evolution of 
every variable, which permits determining the switches. 
 
3.2. Pure systems with Petri nets 
The use of control arcs occasions that the system is 
non-pure. A simple transformation, according to Figure 
13, transforms the system into an equivalent pure PN. 

 
 

p1 k

k

λ·k p2p1 k

k

λ·k p2
p1

k
k+1

p2a

p2b

k+1
k

λ·k
λ·k λ·k

p1

k
k+1

p2a

p2b

k+1
k

λ·k
λ·k λ·k

Figure 13: Control arcs modelled with pure PN. 
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 Control arcs weighted with factor k are an 
abbreviation in infinite server semantics continuous 
PNs, and allow to simulate bounded positive linear 
systems (eventually under certain transformations). But 
the behaviour and expressive power of infinite server 
semantics continuous PNs are not restricted to bounded 
linear positive systems. In fact, any bounded linear 
system (positive or not) can be shifted to the positive 
reals and therefore modelled by a infinite server 
semantics continuous PN. In particular pure oscillatory 
behaviours can be modelled with infinite server 
semantics continuous PNs. 

Specifically, the example used in this paper is 
converted into the system in figure 14, in which the 8 
arcs with weight k+1 are represented with different 
colour.  
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t2

t4
t3 k
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t11
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k k
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1
1

p7
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p3
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p10

p9

t10t9

t8t7
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P
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t4
t3 k
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t11
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k
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k
k

k

1

1
1

p7

p4

p3

p2

p1

p10

p9

t10t9

t8t7

t6t5

t12

 

 Ideal control arcs constitute an extension for 
infinite server semantics continuous PNs (are the 
control arcs k weighted with factor ∞). With them its 
expressive power increases because they permit to 
simulate any positive linear system (bounded or not) or 
any one that can be transformed into a positive system.  

Figure 14: Conservative pure system equivalent to 
systems in Figures 7 and 10. 

 The possibility of model sinusoid functions, and 
the addition/substation of markings in redundant places, 
permits ISSCPNs model any cyclical system by Fourier 
decomposition, and the representation of different 
markings leads to very interesting graphics, which can 
correspond to real or approximate systems. 

 
Obviously the simulation of the model in Figure 14 is 
exactly equal to those of the non-pure systems of 
Figures 7 and 10, provided that the places in which 
every place with control arc has been divided are 
exactly equals. A small difference between them can 
drive to stable or instable systems, as shown in Figure 
15. 
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