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Abstract 
 This paper deals with a method which enables to 
describe a system using both UML State Machine Diagrams  
and Fuzzy-DEVS (to describe uncertain data) then to 
perform its simulation using DEVS formalism. The goal of 
the paper is to simplify the modeling of DEVS models, and 
also to take into account possible uncertainties on the 
transitions between states, by using a language based on 
UML State Machine Diagrams . This language is a part of a 
larger approach which final purpose is to create a high level 
intuitive language to enable non-computer scientists to 
describe DEVS models. 
 
1. INTRODUCTION 
 In some research fields, the importance of modeling 
and simulation to describe complex systems has strongly 
increased. The purpose of modeling is to make a system 
study be more simple by considering only some of its 
properties. Simulation makes the model evolve with time, in 
order to get results. 
Our research lab (CNRS SPE) has been working for several 
years on DEVS formalism defined by Pr. Zeigler during the 
70’s [1] . 
 DEVS is a low-level formalism based on the general 
systems theory; it was introduced by Pr. Zeigler. It allows to 
describe a system in a modular and hierarchical way, and to 
consider a global system as a set of other more simple 
systems, in order to reduce the system’s complexity. The 
simulation is “automatically” performed; the user does not 
have to focus on the conception of the simulator [1]. 
DEVS also has great genericity properties, it can be used in 
many study domains, always considering the fact that a 
system evolves with events; moreover, DEVS has a good 
evolutivity, and has often been extended to be able to take 
into account various systems: dynamic systems (i.e. which 
structure evolves with time) with DSDE [2] and DynDEVS 
[3] , systems with uncertain parameters with Fuzzy-DEVS 
[4] and min-max-DEVS [5], systems with evolutions in 

their interfaces with Cell-DEVS (cellular approach) [6] and 
Vector-DEVS (vectorial approach) [7]. 
 Our goal is to create a high level and intuitive 
specification language for DEVS models, in order to enable 
non-computer scientists to create their own models. This 
language will take place in a Model Driven Architecture, it 
means that mappings between it and DEVS will be 
performed using a MDA approach. 
 The purpose of this paper is to simplify the modeling 
phasis by defining an intermediate language (based on UML 
State Machine Diagrams and fuzzy logic) which will take 
place between the intuitive language which is being 
developed and DEVS models. This intermediate language 
will be based on UML State Machine Diagrams (used to 
describe states and transitions) and fuzzy logic (used to 
describe uncertain transitions with a set of fuzzy words).   
 In the first part, we will present the DEVS formalism; 
we briefly describe Unified Modeling Language and 
Approximate Reasoning. Those three formalisms can be 
seen as a basis for this work. DEVS is the core of our 
approach, and the main purpose of our work is to create a 
different reasoning (included in our intermediate language) 
to create DEVS models, using both UML State Machine 
Diagrams and Fuzzy reasoning. 
 The second part deals with the description of our 
approach: we discuss about the importance of the modeling 
phasis. 
 The third part will show, through a simple example, 
how our approach can be applied. 
 Before giving a conclusion, we discuss in the last part 
about our results and make some comments 
 
2. BACKGROUND 
 In this part we present some formalisms and theories 
which will be used later to explain our approach. We begin 
with DEVS formalism, the core of our works, then we 
briefly introduce UML formalism and the State Machine 
Diagrams included in UML 2.0.  
After that, we present the fuzzy reasoning and explain its 
interest when it is needed to introduce uncertainties when 
modeling a system. Fuzzy sets theory and possibilities 
theory are described, and we present Fuzzy-DEVS 

Page 215



formalism which is an extension of DEVS formalism able to 
take into account uncertainties. 
 
2.1. DEVS formalism 
 The basic concepts of DEVS approach are intended to 
control the difficulty of the studied problem, by reducing the 
analysis of the system to a study composed of a sum of 
simpler subsystems. Our environment, based on the concept 
of hierarchy, makes it possible to apprehend the complexity 
of a problem in a completely gradual way. 
 The representation of complex systems is generally 
hard to implement. Indeed, it implies to take into account a 
multitude of elements, linked themselves by many 
connections. To reduce the impact of this problem, we use 
the hierarchical approach of modeling introduced by B.P. 
Zeigler [1], which aims at the gradual introduction of the 
successive components of the system by successive masking 
of under components. 
 This approach uses the concepts of Atomic Model and 
Coupled Model.  
 An atomic model (black box see Figures 1) makes it 
possible to account for the behaviours of inputs/outputs and 
the changes of states of the studied system. The coupled 
model describes how to connect in a hierarchical way 
several components (atomic model and/or coupled model) to 
get a higher level coupled model.  
 

 
Figure 1: Atomic Model DEVS.  
 
After receiving an input event, the external transition 
function is executed. This function updates the state of the 
system. If there was no entry, after the expiration of the 
lifespan of the state (ta), the internal transition functions and 
the output function are executed. The internal transition 
function updates the state of the model. 
 
The atomic model (see Figure 1) is defined by:  
AM = < X, Y, S, ta, !int, !ext, " >  (1)  (1) 
With:  
X, the input ports set, through which external events are 
received; 
Y, the output ports set, through which external events are 
sent; 
S, the states set of the system; 
ta, the time advance function (or lifespan of a state); 
!int, the internal transition function; 
!ext, the external transition function; 

", the output function; 
 
The simulation is carried out by associating to each 
component a simulator making it possible to implement the 
corresponding simulation algorithms. 
 Thus, DEVS enables the specialist to be completely 
abstracted from the simulators implementation. Once the 
model is built and whatever its form is, B.P. Zeigler defined 
a simulator able to take into account any model described 
according to DEVS formalism, and developed the concept 
of abstract simulator [1]. The architecture of such a 
simulator represents an algorithmic description making it 
possible to implement the implicit instructions of the models 
resulting from formalism DEVS, in order to generate their 
behaviour. The major advantage of such a simulator is the 
fact that its construction is independent from the model. 
 DEVS is a very good tool for the modeling and the 
simulation of complex systems but it does not allow a 
lambda user, who is not a computer scientist, to specify his 
models. 
 A specification language establishing the link between 
knowledge of an expert and a DEVS environment would 
make it possible to extend the advantages of DEVS. 
 
2.2. UML 
 Unified Modeling Language is a graphical modeling 
language and provides a toolkit which enables to model the 
structural aspects of a system as well as its behaviour [8]. 
 Its developpement is driven by the Object Management 
Group, and its current version is UML 2.0. 
One of the main interests of UML is that it is a part of the 
Model Driven Architecture approach. 
 MDA1 (Model Driven Architecture) is a software 
design approach initiated by the OMG (Object Management 
Group) in 2001 to introduce a new way of development 
based upon models rather than code. It defines a set of 
guidelines for defining models at different abstraction 
levels, from platform independent models (PIMs) to 
platform specific models (PSMs) tied to a particular 
implementation technology. The translation between a PIM 
and one or more PSMs is to be performed automatically by 
using transformation tools. 
Another interest of UML is a language which is provided to 
model behavior, and can be used in software engineering 
(for instance, to model the behavior of class instances) as 
well as in modeling and simulation (to model states and 
transitions): this language is named Statecharts (State 
Machine Diagrams in UML 2.0). 
Statecharts  are a high-level graphical-oriented formalism 
used to describe complex reactive systems. They were 
developped by D. Harel [9] and are an extension of state-
transition diagrams (the diagrams representing a Finite State 

                                                 
1 http://www.omg.org/mda/ 
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Machine or Automaton) [10]. They were added three 
concepts: orthogonality (the way parallel activities are 
achieved), composition hierarchy (depth nesting of states) 
and broadcast communication (events sent from one to 
many elements). 
Statecharts are composed of eight basic elements: Labels, 
Transitions, States, Actions, Conditions, Events, 
Expressions and Variables.  
Statecharts formalism has been evolving for years now. The 
most popular derived formalisms are the Classical UML, 
and those implemented by Rhapsody [11, 12]. Moreover, 
several other semantics provide them a pretty good 
evolutivity. 
We chose as an intermediate language UML State Machine 
Diagrams, because they provide a set of graphical elements 
to specify models. Of course we modified some aspects of 
this formalism to take into account fuzzy logic. 
A state is represented by a rounded rectangle named blob. 
A transition is an arrow which joins two states. It is 
triggered by an event. 
 The general syntax for a transition is m[c]/a where: 
m is the event which triggers the transition; 
c is the guard, that is to say the condition (or set of 
conditions) which guards the transition; 
a is the action (or the set of actions) which must be executed 
when the transition fires. 
The values in square brackets are guards, and we use them 
in our approach to express possibilities on transitions. 
An initial state is shown as a black filled circle, it cannot 
have any incoming transitions i.e. once this state left, it is 
not possible to re-enter it. 
A final state is shown as a circle surrounding a small solid 
filled circle. Once entered in this state, it is not possible to 
go back (i.e. it can only have incoming transitions, and it 
cannot have any outgoing transitions). In other words, it is 
the end of the simulation. 
A state can be associated to an action, or several actions: 
they are written under the name of the state. 
 
2.3. Fuzzy Reasoning 
 Fuzzy logic was introduced by Goguen (1968-1969) 
and presented by Zadeh [13,14] as a framework for 
approximate reasoning, and in particular to handle 
knowledge expressed using the natural language. Thus, 
fuzzy logic can be seen as an approach of human reasoning. 
 Fuzzy logic is a set of mathematical theories which 
allow representing and handling inaccurate or uncertain 
data. 
 

2.3.1. Fuzzy Sets Theory 
 Zadeh introduced in 1965 the fuzzy sets theory [13,14], 
the first theory of fuzzy logic, which gives to an element the 
possibility to belong to a set, according to a membership 
degree. This membership degree belongs to the [0...1] 

interval, where 0 is the case where the condition can not be 
fulfilled, and where 1 is the case where the condition is 
always fulfilled.  Classical logic handles Boolean variables, 
which possible values are 0 or 1. 
 

 
Figure 2:  Membership function example. This 
representation allows us to define the membership degree of 
an element in a set. 
 
As the purpose of fuzzy logic is to reason with partial 
knowledge, it replaces Boolean variables by Fuzzy 
variables. A fuzzy variable can be represented by an interval 
described as follows: 
a = value, expresses the membership degree = 1; 
b = value, expresses the membership degree = 1; 
alpha = confidence interval; 
beta =  confidence interval. 
 Thanks to this representation mode, we are able to 
represent a real value by fixing a=b=constant and 
alpha=beta=0. 
 

2.3.2. Possibilities Theory 
 As we said before, fuzzy sets theory was the first theory 
of fuzzy logic, it extends the classical set theory in order to 
take into account inaccuracy, it is based on membership 
functions. 
 Possibilities theory is a part of fuzzy logic which 
enables to take into account uncertainties which are 
impossible to describe with probabilistic theory. It is based 
on possibility functions. 
Reasoning using probabilities implies to be able to define, 
for each event, its probability. 
 Hence, events must be well known. If this knowledge is 
not totally available, another possible solution is to reason in 
terms of possibilities. 
 Let X be a reference set, P(X) the set of parts. Each 
element of P(X) is given a possibility coefficient between 0 
(impossible) and 1 (always possible). 
 

2.3.3. Fuzzy-DEVS  
 In this subsection we focus on Fuzzy-DEVS, an initial 
extension of DEVS which takes into account the fuzzy 
transitions between states. 
The Fuzzy-DEVS formalism was introduced by Kwon in 
[4], drifts DEVS formalism while keeping its semantics, 
some of its concepts and its modularity. It is based on fuzzy 
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logic, the "Max-Min" rules shown in [4] and the methods of 
fuzzification and defuzzification. 
 To allow the simulation, imprecise parameters must be 
transformed into crisp parameters (defuzzification) ; to be 
exploited, the output data is again transformed into fuzzy 
data (fuzzification). 
 A Fuzzy-DEVS model takes into account the different 
possibilities of transitions (!ext and !int) between states. The 
various possibilities of input, output and state update are 
represented by matrices and the evolution of the model by 
possibilities trees [4,15]. Fuzzy-DEVS does not address 
the fuzzy values of a model, but proposes a methodology 
that provides a tree of options describing various transitions 
between the states of the system. Fuzzy-DEVS is a 
theoretical formalism still in research phasis. This approach 
does not appear fully consistent with the DEVS formalism, 
but it provides avenues for good work, like the ability to 
define the lifespan of a state (ta) with a linguistic label. 
 
In the following part we describe our modeling approach. 
DEVS can be seen as a multi formalism: it is the core of our 
works. 
 There are often several uncertainties when a natural 
system is being modeled using a state/transitions method. 
We chose to simplify the problem by taking into account 
only uncertainties linked to transitions. Fuzzy-DEVS, as a 
DEVS extension, is a part of the DEVS multi formalism and 
offers the possibility to include such uncertainties during the 
modeling and simulation process. 
 As we want to work at an higher level than DEVS, we 
use State Machine Diagrams  which, thanks to its properties 
(it is graphical and located at an higher level than DEVS), is 
a good modeling tool which fulfills many criteria as shown 
in [16]. 
 
3. OUR APPROCH 
 We chose to focus on the modeling phasis, because 
once the system is described, the simulator is provided (cf. 
DEVS properties). 
 Our approach tries to use both Fuzzy-DEVS and State 
Machine Diagrams to help a scientist to describe models. It 
is an intermediate approach, because the final purpose is to 
use a high-level language [17]. State Machine Diagrams, 
such as DEVS, is a formalism based on states and 
transitions. Moreover, it is graphical : hence, it is easier to 
represent a system with State Machine Diagrams than 
DEVS. It could be a good intermediate language to specify 
DEVS models. 
 
 We thought it was interesting to add to the description 
of the model the possibility for the scientist to express 
inaccurate data using linguistic terms.  
 We consider that once the states known, the only 
differences will be on the way they will connect to each 

other, in other terms inaccuracies will be expressed only in 
the transitions between those states.  
 That is why Fuzzy-DEVS will help to specify for the 
transitions: the possible date before a transition fires, using 
linguistically terms; an execution coefficient. 
 
3.1. Goals 
In this section we give a graphical representation of the 
goals of this paper, shown in figure 3. The main part of our 
approach is to give a method to model a system using both 
State Machine Diagrams and a linguistic description. 
Moreover, uncertainties on transitions are taken into 
account.  
 

 
Figure 3: Linguistic description to specify UML State 
Machine Diagrams models 
 
3.2. General Reasoning 
 Before starting the modeling phasis, some steps have to 
be followed. 
 The first step for the scientist is to identify all the states 
of the model, and among them the one which will be the 
initial state. The second one is to define how those states 
will behave with each other, i.e. he will have to define the 
transitions.  
 The last step is to define both the inputs and the outputs 
of the system, and how the simulation can be started or 
stopped. 
 Once those steps finished, we are able to begin the 
modeling phasis. 
 The states become blobs : for every different state, there 
is a different blob. 
 In order to take into account the lambda function, we 
chose to represent it with actions on transitions and the 
variable out.   
 The delta int and delta ext functions are always defined 
on transitions, because delta functions describe how to 
change from one state to another (i.e. a transition). 
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The delta int function can be translated using the keyword 
after (followed by a duration). 
Some times, the expert who wants to model the system does 
not know exactly the lifetime of a state, represented by ta 
function. 
Thanks to fuzzy logic, we can represent ta using a 
membership function, composed of several typical durations 
expressed with fuzzy words. 
So, instead of giving a numerical duration after the keyword 
after, the scientist will be given the possibility to give a 
fuzzy word. 
Fuzzy logic also provides the ability to put a possibility on a 
transition. Using state machine diagrams, such a possibility 
can be expressed with a guard. A high possibility will have 
a value close to 1, and a possibility which value is 1 is 
certain to happen. 
 
4. EXAMPLE 
 In this part we apply our method on a simple two-state 
example. The studied system is a reset-set system, with 
uncertainties on transition durations. 
 In the first part, we textually describe the system, as a 
non-computer scientist could have described it. We provide 
a list of fuzzy words (to describe durations) to help him 
during the description process. 
 In the second part, we create the model using the 
method explained in chapter III. 
 In the last part, we translate our model into a DEVS 
atomic model. 
 
4.1. System 
 This system is a simple Reset-Set system. It can be 
described by an expert as follows : the system remains in the 
reset state (which is the initial state), until it receives an 
external event which sends a 1 to the input port (for 
instance, an event from another model). When this external 
event is received, the set state is activated.  
 The system waits into this state for an unknown 
duration and then and goes back to the reset state. This 
duration is not exactly known but can be described with a 
word. Moreover, the transitions between the two states are 
not certain, even if their possibility is very high.  
4.2. Modeling the system 
 With the expert’s textual description given in A there 
are two states (reset and set) when we model the system 
with State Machine Diagrams.  
 In this example, there is an unknown duration on the 
transition from set to reset. The duration is defined by a 
membership function and linked to a keyword chosen from 
the list {null; short; medium; long}. 
 
The membership function is described as follows (Figure 4): 
- Null = [0,1] 
- Short = [2,4,1] 

- Medium = [6,8,1] 
- Long = [10, ,1] 
 

 

0       1  2          4   5   6         8    9  10            time(s) 

Null Short Medium long

 
Figure 4: Time membership function 
 
This unknown duration will be translated and applied to the 
transition from set to reset as a time event, using the 
keyword after.  Moreover, the two transitions between reset 
and set, are not certain.  
 They are given a probability degree, expressed with a 
guard. When an external event arrives on the input port of 
the system, the transition from reset to set is triggered. The 
probability degree of this transition is high but not certain. 
The final model is given in Figure 5. 
 

 
Figure 5: Representation of the system using State Machine 
Diagrams and Fuzzy-DEVS for the transitions.  
 
4.3. DEVS model 
 AtomicRS  = < X, Y, S, ta, !int, !ext, ">  
X = {In} 
Y = {Out} 
S = {Reset,Set} 
!ext(Reset,In=1) = {Set} 
!int(Set) = {Reset} 
"(Set) = {Out=1} 
 
 The following diagram is a possibilities tree which 
gives us an idea of the most possible path followed by the 
model (Figure 6). 
 

Reset Set 

         After(short)[0.9]/(Out=1) 

                 (In=1)[0.9] 
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Figure 6: The possibilities tree for the simulation of the 
model defined by Min-Max Rules Fuzzy-DEVS 
 
5. REMARKS AND DISCUSSIONS  
 This example was chosen as simple as possible: it 
represents an atomic model. The number of states is finite 
and not too high. 
 Increasing the number of states would increase the size 
of the possibilities tree, and of course the computation time 
to create it. 
 The “classical” transitions are modified because we use 
possibilities as guards, and fuzzy words instead of absolute 
(or relative) numerical values to specify the lifespan of a 
state. So we think it would be useful to create a specific 
profile, or make an extension of State Machine Diagrams 
meta model. 
 We only treated possibilities on transitions, and we will 
try in a near future to include imprecise data on 
inputs/outputs using iDEVS method [18]. 
We also plan to implement an automatic code generation 
between this intermediate language and DEVS formalism. 
 

 
Figure 7: Our global approach. 
 
6. CONCLUSION  
 DEVS is an interesting tool for M&S. A community of 
scientists works all around the world in order to add DEVS 
other modules which can fit several applications fields. 
 We think it is important to enable the largest part of the 
scientists to use DEVS formalism that is why we follow an 
approach which purpose is to offer the possibility to model 
systems using a more intuitive way. 
 In this paper, we proposed a new idea, using both the 
possibility theory and a high level specification language. 

 The ultimate goal of this idea is to enable a non-
computer scientist to create a model using a simple and 
intuitive specification language.  
To reach this goal, we use several tools: 
UML which allows the definition of models using a 
graphical way based on diagrams, because a graphical 
description is often easier than code writing. 
The possibilities theory, which enables the description of a 
system with pre-defined terms. Those pre-defined terms are 
useful to describe a system and its inaccuracies using a 
suitable language.  
 Those tools are linked to the M&S DEVS formalism, 
because the simulation of the models is easy to perform with 
DEVS. 
 This approach has to be replaced in a larger project, 
which is the definition of a high-level and intuitive 
language. UML State Machine Diagrams will only be used 
to create a link between this language and DEVS, as an 
intermediate formalism. We will probably define a UML 
profile for our intermediate language; this will be helpful to 
reuse some interesting parts of State Machine Diagrams , 
and to specialize them. This new language is being 
developed, and will be defined in order to be used by the 
largest part of the scientists. For instance, it will be possible 
to define models in a graphical way, or/and using a formal 
language. 
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