
A new approach to describe DEVS models using both UML State Machine
Diagrams and Fuzzy Logic

Stéphane Garredu P.-A. Bisgambiglia Evelyne Vittori Jean-François Santucci
University of Corsica – UMR CNRS 6132 - Dept. of Computer Science

Quartier Grossetti Batiment 018 - 20250 Corte FRANCE

garredu@univ-corse.fr bisgambiglia@univ-
corse.fr vittori@univ-corse.fr santucci@univ-corse.fr

Keywords: Discrete event simulation, DEVS, UML, MDA,
decision support systems.

Abstract
 This paper deals with a method which enables to
describe a system using both UML State Machine Diagrams
and Fuzzy-DEVS (to describe uncertain data) then to
perform its simulation using DEVS formalism. The goal of
the paper is to simplify the modeling of DEVS models, and
also to take into account possible uncertainties on the
transitions between states, by using a language based on
UML State Machine Diagrams . This language is a part of a
larger approach which final purpose is to create a high level
intuitive language to enable non-computer scientists to
describe DEVS models.

1. INTRODUCTION
 In some research fields, the importance of modeling
and simulation to describe complex systems has strongly
increased. The purpose of modeling is to make a system
study be more simple by considering only some of its
properties. Simulation makes the model evolve with time, in
order to get results.
Our research lab (CNRS SPE) has been working for several
years on DEVS formalism defined by Pr. Zeigler during the
70’s [1] .
 DEVS is a low-level formalism based on the general
systems theory; it was introduced by Pr. Zeigler. It allows to
describe a system in a modular and hierarchical way, and to
consider a global system as a set of other more simple
systems, in order to reduce the system’s complexity. The
simulation is “automatically” performed; the user does not
have to focus on the conception of the simulator [1].
DEVS also has great genericity properties, it can be used in
many study domains, always considering the fact that a
system evolves with events; moreover, DEVS has a good
evolutivity, and has often been extended to be able to take
into account various systems: dynamic systems (i.e. which
structure evolves with time) with DSDE [2] and DynDEVS
[3] , systems with uncertain parameters with Fuzzy-DEVS
[4] and min-max-DEVS [5], systems with evolutions in

their interfaces with Cell-DEVS (cellular approach) [6] and
Vector-DEVS (vectorial approach) [7].
 Our goal is to create a high level and intuitive
specification language for DEVS models, in order to enable
non-computer scientists to create their own models. This
language will take place in a Model Driven Architecture, it
means that mappings between it and DEVS will be
performed using a MDA approach.
 The purpose of this paper is to simplify the modeling
phasis by defining an intermediate language (based on UML
State Machine Diagrams and fuzzy logic) which will take
place between the intuitive language which is being
developed and DEVS models. This intermediate language
will be based on UML State Machine Diagrams (used to
describe states and transitions) and fuzzy logic (used to
describe uncertain transitions with a set of fuzzy words).
 In the first part, we will present the DEVS formalism;
we briefly describe Unified Modeling Language and
Approximate Reasoning. Those three formalisms can be
seen as a basis for this work. DEVS is the core of our
approach, and the main purpose of our work is to create a
different reasoning (included in our intermediate language)
to create DEVS models, using both UML State Machine
Diagrams and Fuzzy reasoning.
 The second part deals with the description of our
approach: we discuss about the importance of the modeling
phasis.
 The third part will show, through a simple example,
how our approach can be applied.
 Before giving a conclusion, we discuss in the last part
about our results and make some comments

2. BACKGROUND
 In this part we present some formalisms and theories
which will be used later to explain our approach. We begin
with DEVS formalism, the core of our works, then we
briefly introduce UML formalism and the State Machine
Diagrams included in UML 2.0.
After that, we present the fuzzy reasoning and explain its
interest when it is needed to introduce uncertainties when
modeling a system. Fuzzy sets theory and possibilities
theory are described, and we present Fuzzy-DEVS

Page 215

formalism which is an extension of DEVS formalism able to
take into account uncertainties.

2.1. DEVS formalism
 The basic concepts of DEVS approach are intended to
control the difficulty of the studied problem, by reducing the
analysis of the system to a study composed of a sum of
simpler subsystems. Our environment, based on the concept
of hierarchy, makes it possible to apprehend the complexity
of a problem in a completely gradual way.
 The representation of complex systems is generally
hard to implement. Indeed, it implies to take into account a
multitude of elements, linked themselves by many
connections. To reduce the impact of this problem, we use
the hierarchical approach of modeling introduced by B.P.
Zeigler [1], which aims at the gradual introduction of the
successive components of the system by successive masking
of under components.
 This approach uses the concepts of Atomic Model and
Coupled Model.
 An atomic model (black box see Figures 1) makes it
possible to account for the behaviours of inputs/outputs and
the changes of states of the studied system. The coupled
model describes how to connect in a hierarchical way
several components (atomic model and/or coupled model) to
get a higher level coupled model.

Figure 1: Atomic Model DEVS.

After receiving an input event, the external transition
function is executed. This function updates the state of the
system. If there was no entry, after the expiration of the
lifespan of the state (ta), the internal transition functions and
the output function are executed. The internal transition
function updates the state of the model.

The atomic model (see Figure 1) is defined by:
AM = < X, Y, S, ta, !int, !ext, " > (1) (1)
With:
X, the input ports set, through which external events are
received;
Y, the output ports set, through which external events are
sent;
S, the states set of the system;
ta, the time advance function (or lifespan of a state);
!int, the internal transition function;
!ext, the external transition function;

", the output function;

The simulation is carried out by associating to each
component a simulator making it possible to implement the
corresponding simulation algorithms.
 Thus, DEVS enables the specialist to be completely
abstracted from the simulators implementation. Once the
model is built and whatever its form is, B.P. Zeigler defined
a simulator able to take into account any model described
according to DEVS formalism, and developed the concept
of abstract simulator [1]. The architecture of such a
simulator represents an algorithmic description making it
possible to implement the implicit instructions of the models
resulting from formalism DEVS, in order to generate their
behaviour. The major advantage of such a simulator is the
fact that its construction is independent from the model.
 DEVS is a very good tool for the modeling and the
simulation of complex systems but it does not allow a
lambda user, who is not a computer scientist, to specify his
models.
 A specification language establishing the link between
knowledge of an expert and a DEVS environment would
make it possible to extend the advantages of DEVS.

2.2. UML
 Unified Modeling Language is a graphical modeling
language and provides a toolkit which enables to model the
structural aspects of a system as well as its behaviour [8].
 Its developpement is driven by the Object Management
Group, and its current version is UML 2.0.
One of the main interests of UML is that it is a part of the
Model Driven Architecture approach.
 MDA1 (Model Driven Architecture) is a software
design approach initiated by the OMG (Object Management
Group) in 2001 to introduce a new way of development
based upon models rather than code. It defines a set of
guidelines for defining models at different abstraction
levels, from platform independent models (PIMs) to
platform specific models (PSMs) tied to a particular
implementation technology. The translation between a PIM
and one or more PSMs is to be performed automatically by
using transformation tools.
Another interest of UML is a language which is provided to
model behavior, and can be used in software engineering
(for instance, to model the behavior of class instances) as
well as in modeling and simulation (to model states and
transitions): this language is named Statecharts (State
Machine Diagrams in UML 2.0).
Statecharts are a high-level graphical-oriented formalism
used to describe complex reactive systems. They were
developped by D. Harel [9] and are an extension of state-
transition diagrams (the diagrams representing a Finite State

1 http://www.omg.org/mda/

Page 216

Machine or Automaton) [10]. They were added three
concepts: orthogonality (the way parallel activities are
achieved), composition hierarchy (depth nesting of states)
and broadcast communication (events sent from one to
many elements).
Statecharts are composed of eight basic elements: Labels,
Transitions, States, Actions, Conditions, Events,
Expressions and Variables.
Statecharts formalism has been evolving for years now. The
most popular derived formalisms are the Classical UML,
and those implemented by Rhapsody [11, 12]. Moreover,
several other semantics provide them a pretty good
evolutivity.
We chose as an intermediate language UML State Machine
Diagrams, because they provide a set of graphical elements
to specify models. Of course we modified some aspects of
this formalism to take into account fuzzy logic.
A state is represented by a rounded rectangle named blob.
A transition is an arrow which joins two states. It is
triggered by an event.
 The general syntax for a transition is m[c]/a where:
m is the event which triggers the transition;
c is the guard, that is to say the condition (or set of
conditions) which guards the transition;
a is the action (or the set of actions) which must be executed
when the transition fires.
The values in square brackets are guards, and we use them
in our approach to express possibilities on transitions.
An initial state is shown as a black filled circle, it cannot
have any incoming transitions i.e. once this state left, it is
not possible to re-enter it.
A final state is shown as a circle surrounding a small solid
filled circle. Once entered in this state, it is not possible to
go back (i.e. it can only have incoming transitions, and it
cannot have any outgoing transitions). In other words, it is
the end of the simulation.
A state can be associated to an action, or several actions:
they are written under the name of the state.

2.3. Fuzzy Reasoning
 Fuzzy logic was introduced by Goguen (1968-1969)
and presented by Zadeh [13,14] as a framework for
approximate reasoning, and in particular to handle
knowledge expressed using the natural language. Thus,
fuzzy logic can be seen as an approach of human reasoning.
 Fuzzy logic is a set of mathematical theories which
allow representing and handling inaccurate or uncertain
data.

2.3.1. Fuzzy Sets Theory
 Zadeh introduced in 1965 the fuzzy sets theory [13,14],
the first theory of fuzzy logic, which gives to an element the
possibility to belong to a set, according to a membership
degree. This membership degree belongs to the [0...1]

interval, where 0 is the case where the condition can not be
fulfilled, and where 1 is the case where the condition is
always fulfilled. Classical logic handles Boolean variables,
which possible values are 0 or 1.

Figure 2: Membership function example. This
representation allows us to define the membership degree of
an element in a set.

As the purpose of fuzzy logic is to reason with partial
knowledge, it replaces Boolean variables by Fuzzy
variables. A fuzzy variable can be represented by an interval
described as follows:
a = value, expresses the membership degree = 1;
b = value, expresses the membership degree = 1;
alpha = confidence interval;
beta = confidence interval.
 Thanks to this representation mode, we are able to
represent a real value by fixing a=b=constant and
alpha=beta=0.

2.3.2. Possibilities Theory
 As we said before, fuzzy sets theory was the first theory
of fuzzy logic, it extends the classical set theory in order to
take into account inaccuracy, it is based on membership
functions.
 Possibilities theory is a part of fuzzy logic which
enables to take into account uncertainties which are
impossible to describe with probabilistic theory. It is based
on possibility functions.
Reasoning using probabilities implies to be able to define,
for each event, its probability.
 Hence, events must be well known. If this knowledge is
not totally available, another possible solution is to reason in
terms of possibilities.
 Let X be a reference set, P(X) the set of parts. Each
element of P(X) is given a possibility coefficient between 0
(impossible) and 1 (always possible).

2.3.3. Fuzzy-DEVS
 In this subsection we focus on Fuzzy-DEVS, an initial
extension of DEVS which takes into account the fuzzy
transitions between states.
The Fuzzy-DEVS formalism was introduced by Kwon in
[4], drifts DEVS formalism while keeping its semantics,
some of its concepts and its modularity. It is based on fuzzy

Page 217

logic, the "Max-Min" rules shown in [4] and the methods of
fuzzification and defuzzification.
 To allow the simulation, imprecise parameters must be
transformed into crisp parameters (defuzzification) ; to be
exploited, the output data is again transformed into fuzzy
data (fuzzification).
 A Fuzzy-DEVS model takes into account the different
possibilities of transitions (!ext and !int) between states. The
various possibilities of input, output and state update are
represented by matrices and the evolution of the model by
possibilities trees [4,15]. Fuzzy-DEVS does not address
the fuzzy values of a model, but proposes a methodology
that provides a tree of options describing various transitions
between the states of the system. Fuzzy-DEVS is a
theoretical formalism still in research phasis. This approach
does not appear fully consistent with the DEVS formalism,
but it provides avenues for good work, like the ability to
define the lifespan of a state (ta) with a linguistic label.

In the following part we describe our modeling approach.
DEVS can be seen as a multi formalism: it is the core of our
works.
 There are often several uncertainties when a natural
system is being modeled using a state/transitions method.
We chose to simplify the problem by taking into account
only uncertainties linked to transitions. Fuzzy-DEVS, as a
DEVS extension, is a part of the DEVS multi formalism and
offers the possibility to include such uncertainties during the
modeling and simulation process.
 As we want to work at an higher level than DEVS, we
use State Machine Diagrams which, thanks to its properties
(it is graphical and located at an higher level than DEVS), is
a good modeling tool which fulfills many criteria as shown
in [16].

3. OUR APPROCH
 We chose to focus on the modeling phasis, because
once the system is described, the simulator is provided (cf.
DEVS properties).
 Our approach tries to use both Fuzzy-DEVS and State
Machine Diagrams to help a scientist to describe models. It
is an intermediate approach, because the final purpose is to
use a high-level language [17]. State Machine Diagrams,
such as DEVS, is a formalism based on states and
transitions. Moreover, it is graphical : hence, it is easier to
represent a system with State Machine Diagrams than
DEVS. It could be a good intermediate language to specify
DEVS models.

 We thought it was interesting to add to the description
of the model the possibility for the scientist to express
inaccurate data using linguistic terms.
 We consider that once the states known, the only
differences will be on the way they will connect to each

other, in other terms inaccuracies will be expressed only in
the transitions between those states.
 That is why Fuzzy-DEVS will help to specify for the
transitions: the possible date before a transition fires, using
linguistically terms; an execution coefficient.

3.1. Goals
In this section we give a graphical representation of the
goals of this paper, shown in figure 3. The main part of our
approach is to give a method to model a system using both
State Machine Diagrams and a linguistic description.
Moreover, uncertainties on transitions are taken into
account.

Figure 3: Linguistic description to specify UML State
Machine Diagrams models

3.2. General Reasoning
 Before starting the modeling phasis, some steps have to
be followed.
 The first step for the scientist is to identify all the states
of the model, and among them the one which will be the
initial state. The second one is to define how those states
will behave with each other, i.e. he will have to define the
transitions.
 The last step is to define both the inputs and the outputs
of the system, and how the simulation can be started or
stopped.
 Once those steps finished, we are able to begin the
modeling phasis.
 The states become blobs : for every different state, there
is a different blob.
 In order to take into account the lambda function, we
chose to represent it with actions on transitions and the
variable out.
 The delta int and delta ext functions are always defined
on transitions, because delta functions describe how to
change from one state to another (i.e. a transition).

Experimental
data

DEVS
model

Result

Experimental
data

DEVS
model

Result

Linguistic
description

UML
SMD

V
a
l
i
d
a
t
i
o
n

Modelin

Simulation

Page 218

The delta int function can be translated using the keyword
after (followed by a duration).
Some times, the expert who wants to model the system does
not know exactly the lifetime of a state, represented by ta
function.
Thanks to fuzzy logic, we can represent ta using a
membership function, composed of several typical durations
expressed with fuzzy words.
So, instead of giving a numerical duration after the keyword
after, the scientist will be given the possibility to give a
fuzzy word.
Fuzzy logic also provides the ability to put a possibility on a
transition. Using state machine diagrams, such a possibility
can be expressed with a guard. A high possibility will have
a value close to 1, and a possibility which value is 1 is
certain to happen.

4. EXAMPLE
 In this part we apply our method on a simple two-state
example. The studied system is a reset-set system, with
uncertainties on transition durations.
 In the first part, we textually describe the system, as a
non-computer scientist could have described it. We provide
a list of fuzzy words (to describe durations) to help him
during the description process.
 In the second part, we create the model using the
method explained in chapter III.
 In the last part, we translate our model into a DEVS
atomic model.

4.1. System
 This system is a simple Reset-Set system. It can be
described by an expert as follows : the system remains in the
reset state (which is the initial state), until it receives an
external event which sends a 1 to the input port (for
instance, an event from another model). When this external
event is received, the set state is activated.
 The system waits into this state for an unknown
duration and then and goes back to the reset state. This
duration is not exactly known but can be described with a
word. Moreover, the transitions between the two states are
not certain, even if their possibility is very high.
4.2. Modeling the system
 With the expert’s textual description given in A there
are two states (reset and set) when we model the system
with State Machine Diagrams.
 In this example, there is an unknown duration on the
transition from set to reset. The duration is defined by a
membership function and linked to a keyword chosen from
the list {null; short; medium; long}.

The membership function is described as follows (Figure 4):
- Null = [0,1]
- Short = [2,4,1]

- Medium = [6,8,1]
- Long = [10, ,1]

0 1 2 4 5 6 8 9 10 time(s)

Null Short Medium long

Figure 4: Time membership function

This unknown duration will be translated and applied to the
transition from set to reset as a time event, using the
keyword after. Moreover, the two transitions between reset
and set, are not certain.
 They are given a probability degree, expressed with a
guard. When an external event arrives on the input port of
the system, the transition from reset to set is triggered. The
probability degree of this transition is high but not certain.
The final model is given in Figure 5.

Figure 5: Representation of the system using State Machine
Diagrams and Fuzzy-DEVS for the transitions.

4.3. DEVS model
 AtomicRS = < X, Y, S, ta, !int, !ext, ">
X = {In}
Y = {Out}
S = {Reset,Set}
!ext(Reset,In=1) = {Set}
!int(Set) = {Reset}
"(Set) = {Out=1}

 The following diagram is a possibilities tree which
gives us an idea of the most possible path followed by the
model (Figure 6).

Reset Set

 After(short)[0.9]/(Out=1)

 (In=1)[0.9]

Page 219

Figure 6: The possibilities tree for the simulation of the
model defined by Min-Max Rules Fuzzy-DEVS

5. REMARKS AND DISCUSSIONS
 This example was chosen as simple as possible: it
represents an atomic model. The number of states is finite
and not too high.
 Increasing the number of states would increase the size
of the possibilities tree, and of course the computation time
to create it.
 The “classical” transitions are modified because we use
possibilities as guards, and fuzzy words instead of absolute
(or relative) numerical values to specify the lifespan of a
state. So we think it would be useful to create a specific
profile, or make an extension of State Machine Diagrams
meta model.
 We only treated possibilities on transitions, and we will
try in a near future to include imprecise data on
inputs/outputs using iDEVS method [18].
We also plan to implement an automatic code generation
between this intermediate language and DEVS formalism.

Figure 7: Our global approach.

6. CONCLUSION
 DEVS is an interesting tool for M&S. A community of
scientists works all around the world in order to add DEVS
other modules which can fit several applications fields.
 We think it is important to enable the largest part of the
scientists to use DEVS formalism that is why we follow an
approach which purpose is to offer the possibility to model
systems using a more intuitive way.
 In this paper, we proposed a new idea, using both the
possibility theory and a high level specification language.

 The ultimate goal of this idea is to enable a non-
computer scientist to create a model using a simple and
intuitive specification language.
To reach this goal, we use several tools:
UML which allows the definition of models using a
graphical way based on diagrams, because a graphical
description is often easier than code writing.
The possibilities theory, which enables the description of a
system with pre-defined terms. Those pre-defined terms are
useful to describe a system and its inaccuracies using a
suitable language.
 Those tools are linked to the M&S DEVS formalism,
because the simulation of the models is easy to perform with
DEVS.
 This approach has to be replaced in a larger project,
which is the definition of a high-level and intuitive
language. UML State Machine Diagrams will only be used
to create a link between this language and DEVS, as an
intermediate formalism. We will probably define a UML
profile for our intermediate language; this will be helpful to
reuse some interesting parts of State Machine Diagrams ,
and to specialize them. This new language is being
developed, and will be defined in order to be used by the
largest part of the scientists. For instance, it will be possible
to define models in a graphical way, or/and using a formal
language.

References

[1] - Zeigler, B., H. Praehofer, and T. Kim. 2000. Theory of
Modeling and Simulation, Second Edition. Academic Press.
[2] - Barros, F. 1995. Dynamic structure discrete event
system specification : a new formalism for dynamic
structure modelling and simulation. In Proceeding of the
1994 Winter Simulation Conference.
[3] - Uhrmarcher, A. 2001. Dynamic Structures in Modeling
and Simulation : A Reflective Approach. ACM Transactions
on Modeling and Computer Simulation vol. 11 2001, 206-
232.
[4] - Kwon, Y., H. Park, S. Jung, and T. Kim. 1996. Fuzzy-
DEVS Formalism : Concepts, Realization and Application.
Proceedings AIS 1996, 227-234.
[5] - Hamri, A., N. Giambiasi, and C. Frydman. 2006. Min-
Max-DEVS modelling and simulation. Simulation
Modelling Practice and Theory (SIMPAT), vol. 14, pp.
909–929. Ed. Elsevier, ISSN 1569–190X.
[6] - Ameghino, J., E. Glinsky, and G. Wainer. 2003.
Applying cell-devs in models of complex systems.
In Summer Computer Simulation Conference, Montreal QC,
Canada.
[7] - Filippi, J. 2003. Une architecture logicielle pour la
multi-modélisation et la simulation à évènement discrets de
systèmes naturels complexes. PhD Thesis, University of
Corsica.

 R

R

S

R

 S

R

S

0.9 0.1

0.9

 0.1

0.1

0.9

R : Reset
S : Set

DEVS

Intermediate
language

Validation

Language

Mapping Mapping

Validation

Mode
l/Si

Page 220

[8] - Booch, G., J. Rumbaugh, and I. Jacobson. 1998. The
Unified Modeling Language User Guide. Addison-Wesley.
[9] - Harel, D. 1987. Statecharts : A visual formalism for
complex systems. Science of Computer Programming,
8(3):231-274.
[10] - Hopcroft, J.E., R. Motwani, and J.D. Ullman. 2001.
Introduction to Automata Theory, Languages, and
Computation, 2nd edition. Addison Wesley.
[11] - Crane M.L. and J. Dingel. 2005. UML vs. Classical
vs. Rhapsody Statecharts: Not All Models are Created
Equal. Model Driven Engineering Languages and Systems:
8th.
[12] - Harel, D., and H.Kugler. 2004. The Rhapsody
Semantics of Statecharts. Integration Of Software
Specification Techniques for Applications in Engineering.
[13] - Zadeh, L. A. 1975. Fuzzy logic and approximate
reasoning. Synthese 30 : 407-428.
[14] - Zadeh, L. A. 1965. Fuzzy sets. Information and
Control 8: 338-353.
[15] - Anglani, A., P. Caricato, A. Grieco, F. Nucci, A.
Matta, G. Semeraro, and T. Tolio. 2000. Evaluation of
capacity expansion by means of fuzzy-devs.
(citeseer.ist.psu.edu/499458.html), 14th European
Simulation MultiConference. Ghent, Belgium.
[16] - Garredu, S., V. Evelyne, J.F. Santucci, A. Muzy.
2006. Specification languages as front-ends towards the
DEVS formalism. In Proceeding of the Environment
Identities and Mediterranean Area, ISEIMA '06. 104-109.
[17] - Garredu, S., P.A. Bisgambiglia, E. Vittori and J.F.
Santucci. 2007. Towards the definition of an intuitive
specification language. In Proceeding of the Simulation and
Planning in High Autonomy Systems (AIS) & Conceptual
Modeling and Simulation (CMS).
[18] - Bisgambiglia, P.A., E. De Gentili, J.F. Santucci, and
P. Bisgambiglia. 2006. DEVS-Flou: a discrete events and
fuzzy sets theory-based modeling environment.
International Symposium on Systems and Control in
Aeronautics and Astronautics – Harbin (China). 95-100.

Biography
 Stéphane Garredu born in 1981. Graduates from the
University of Corsica - Research Master of Computer
Science option Integrated Information Systems 2006, phd.
student since 2006. SCS member’s since 2008. His main
research interests are modelling and simulation of complex
systems and modeling high level of abstraction. He makes
his researches in the laboratory of the UMR CNRS 6134.

 Paul-Antoine Bisgambiglia born on 14 September
1981 at Peri in Southern Corsica. Graduates from the
University of Corsica – Research Master of Computer
Science option Integrated Information Systems 2005, phd
degree in 2008. IEEE member’s since 2007. His main
research interests are modelling and simulation of complex

systems and fuzzy systems. He makes his researches in the
laboratory of the UMR CNRS 6134.

 Evelyne Vittori is Associate Professor in Computer
Sciences at the University of Corsica. She holds a PhD in
computer science. Her research activities concern the
techniques of modelling and simulation of complex systems
and the Unified Modeling Language. She makes his
researches in the laboratory of the UMR CNRS 6134.

 Jean-François Santucci is Professor in Computer
Sciences at the University of Corsica since 1996. His main
research interests are modelling and simulation of complex
systems. He has been author or co-author of more than 100
papers published in international journals or conference
proceedings. He has been the scientific manager of several
research projects corresponding to European or industrial
contracts. Furthermore he has been the advisor or co advisor
of more than 20 PhD students and since 1998 he has been
involved in the organization of more than 10 international
conferences.

Page 221

Page 222

