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ABSTRACT 
Nowadays, many companies tend to minimize 
inventories throughout the entire logistic process by 
adopting a cross-docking policy, i.e. preferring direct 
shipping rather than to store products.  

In these systems the objective is to maintain 
synchronization between production and shipping 
processes, but storage areas are still necessary in 
practice to work as buffers able to compensate short 
period mismatches. 

The paper proposes a stochastic approach to design 
such storage areas. In particular, the case in which a 
good trade-off between the number of storage zones 
(called bins in the following) and their size is addressed. 
The simulation is adopted to determine storage 
requirements from a stochastic point of view, and an 
analytic formulae is derived to evaluate an approximate 
coverage probability. 
 
Keywords: cross-docking, storage requirements, 
stochastic aspects, block-stacking , lane depths 
 
1. INTRODUCTION 
The situation addressed in this paper is  representative 
of many industrial companies, especially companies 
producing final goods with a shelf life quickly absorbed 
by market (e.g. beverage, foods). In this case, cross-
docking policies are generally preferred (see Apte and 
Viswanathan 2000; Baker 2007).  

In this paper it is assumed that Stock-Keeping 
Units (SKUs) are placed in specific zones of the storage 
area called bins. Such bins are limited zones where a 
number of pallets of the same SKU type can be stored. 
We assume that each bin has a single access point. 
Usually, bins are positioned on the ground or by gravity 
shelves.  

Bins are not dedicated to a particular SKU type, 
but once just one pallet of a certain type of SKU is 
placed into a bin, that bin must hold that specific SKU 
type only. Once a bin gets empty again, it could be 
assigned to another SKU type as needed. 

Configurations with an high number of low-
capacity bins allow to hold different SKU types 
contemporaneously but the space available for storing 
products is reduced as a consequence of an high number 
of aisles needed to access the bins. On the other hand 
configurations with few high-capacity bins makes it 
possible to have an increased total storage space but it 
can hold only few SKU types. A trade off should be 
found to determine a good configuration. 

This paper deals with the design and management 
of such storage areas. Thus, tactical decisions, i.e. 
medium term decisions regarding the dimensioning of 
the system and the layout determination (see the 
classification by Rouwenhorst et al. 2000) are 
addressed.  

Even if various frameworks about warehouse 
design are available in the literature (refer as exemples 
to Baker and Canessa 2009; Ashayeri and Gelders 
1985), the problem addressed in this paper is quite 
innovative and it is related to the pallet block-stacking 
problem.  Block-stacking refers to unit loads stacked on 
top of each other and stored on the warehouse floor in 
lanes. 

Gu et al. (2010) provided a comprehensive review 
of existing research results about warehouse design and 
performance evaluation, in particular for what concerns 
the pallet block-stacking problem.   

This specific problem was treated by several 
authors and in particular the decision about the selection 
of lane depths was addressed.  

Moder and Thornton (1965) developed 
mathematical models to evaluate ways of stacking 
pallets. Berry (1968) proposed an analytic model to 
evaluate a tradeoff between the material handling costs 
and the space utilization. Marsh (1979)  provided a 
simulation model to estimate the space utilization of 
different lane depths. Marsh (1983) compared the layout 
design found using these two aforementioned 
approaches. A dynamic algorithm to maximize the 
space utilization by selecting lane depths was developed 
by Goetschalckx and Radliff (1991). Larson et al. 
(1997)  proposed a heuristic approach to this problem, 
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having the purpose to maximize the utilization of the 
storage space minimizing material handling costs.  

Thus, the specific problem is of interest but it was 
mainly approached in a deterministic way and, as Gu et 
al. (2010) pointed out, it was addressed usually with 
restrictive assumptions. Thus, further improvement is 
needed taking into account the uncertainty of storage 
and retrieval requirements. 

The aim of this paper is the development of an 
approach and a methodology to define a good 
configuration of bins in the storage area. The goodness 
of a specific configuration is evaluated in terms of 
capacity of meeting storage requirements, under a 
stochastic point of view. Space constraints, SKUs’ 
storage requirements and the contemporary presence of 
different SKUs in the storage area are taken into 
account. 

 
2. THE METHODOLOGY 

The methodological approach proposed in this 
paper aims to compare different bin configurations by 
taking into account stochastic aspects (e.g. production 
and shipping patterns).  

In particular the methodology provides: 
 
• a framework to model input data so that a 

stochastic representation of the space 
requirements in the storage area is given. This 
phase is carried out by using a simulation 
approach; 

• the individuation of a performance function 
able to evaluate the satisfaction of the storage 
requirements. 

The methodology, applied to a significant case 
study in Section 3, is organized in the following steps: 

 
• Step 1: data collection; 
• Step 2: analysis of  production and shipping; 
• Step 3: simulation model for each SKU type; 
• Step 4: simulation campaign; 
• Step 5: simulation output analysis; 
• Step 6: bin configuration evaluation. 
 
Each of the above steps is described in more detail 

in the following. 
  
Step 1: Data collection. Production and shipping 

data referring to a specific period of time can be 
collected from the Enterprise Resource Planning (ERP) 
of the system under study.  
 The focus is on those SKU types that are frequently 
produced but not in a continuous manner, i.e. when the 
risk of temporary mismatches between production and 
shipping is significant. In this case, a proper storage 
area decoupling the two processes is needed.   
 

Step 2: Analysis of production and shipping. 
Production and shipping are stochastic processes. We 
assume that the processes under study behave according 
to the conceptual model reported in Figure 1.  

 
Production 

patterns 
profile

Shipping 
patterns 
profile

Production 
rate

Pallets in 
the system

 
Figure 1: Conceptual model. 

 
On-field production and shipping data can be 

grouped according to the SKU type so that both order 
sizes and interarrival times can be derived.  

Then, these sequences of interarrival times and 
sizes of both production and shipping orders are fitted 
to achieve characteristic mass probability distributions. 
The probability distributions are the key input data of 
Step 3 where a simulation model of the system is 
developed according to the above conceptual model.  

Therefore, in order to model realistic operative 
conditions, the conservation of the mean flow across the 
system must be guaranteed by the following equation: 
 

Mean production flow = Mean shipping flow (1) 

 
Moreover, any unrealistic values that can derive 

from the above distributions (e.g. too much large order 
sizes) are neglected. 
 

Step 3: Simulation model for each SKU type. A 
simulation model is developed for each SKU type using 
the discrete-events simulator Fleχsim™, in which 
production and shipping processes are represented by 
the mass probability distributions obtained in previous 
steps (Figure 2).  The production orders can be satisfied 
on different production lines, even at the same time. 
Pallets processed by production lines enter endless 
queues waiting to be shipped. Thus, the queues between 
production and shipping provide the storage 
requirements over time for each SKU type. 

 
Production 
patterns profile

Lines with a 
production rate

Shipping 
patterns profile

Pallets in the 
system

 
Figure 2: Simulation model. 

 
Step 4: Simulation campaign. The simulation 

campaign consist in a long simulation run for each SKU 
type. Periodically, during the run, storage requirements 
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are logged to obtain a representative sample for each 
SKU type.  

  
Step 5: Simulation output analysis. The 

simulation output is the trend of storage requirements 
for each SKU type. Note that the values of interest are 
those related to the steady state and do not include the 
warm-up period. As shown in Figure 3 the warm-up 
period can be easily identified. 
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Figure 3: Example of the identification of the warm-up 
period. 

 
Similarly as input data, output data are fitted as 

well, so as to achieve the probabilistic representation of 
the required storage space for each SKU type of 
interest. Thus, probability distributions of such space 
requirements are obtained and denoted as ( )xf i , 

, where is the number of SKU types. An 
example is shown in Figure 4. 

Ni ,...,1= N

 
Figure 4: Example of mass probability distribution of  
storage requirements. 

 
Note that the contemporary presence of different 

SKU types in the storage area must be taken into 
account. As an example, if some SKU types are very 
rarely present at the same time in the storage are (e.g. 
they are produced in different periods of time), the 

actual required storage space may be less than the sum 
of the single space requirements. 

 
Step 6: Bin configuration evaluation. Given the 

probability distributions related to all the SKU types 
under study, this step provides a method to evaluate the 
goodness (or badness) of a certain bin configuration.  

Specifically, let k be the number of bins in the 
storage area and y be the capacity of each bin, the 
objective is to compute the service level of the possible 
storage requirements that may occur at the storage area 
according to a certain probability. Note that the 
probability of any storage requirement depends on the 
SKUs’ probability distributions.  

By varying the parameters k and y, a set of bin 
configurations, denoted as the  set, is generated. 
Among the bin configurations belonging to , the 
feasible ones are that satisfying the following 
constraint: the space occupied by a certain bin 
configuration 

BC
BC

( )yk,  (considering both the zones for 
storing pallets and the aisles) must be at most equal to 
the space available in the storage area. Thus, a set of 
feasible bin configurations  is obtained. CB ′

Each bin configuration (  belonging to )yk, CB ′  can 
be evaluated considering the mass probability 
distributions of  storage requirements for all the SKU 
types and the contemporary presence of different SKU 
types in the storage area. 

For the sake of clarity, we focus on the 
approximate probability of not satisfying the storage 
requirements (i.e. of exceeding the required storage 
space) related to a certain bin configuration ( )yk, , i.e. a 
badness function ( )ykBF ,  is formulated. The lower the 
obtained BF value, the better the bin configuration is. 

The following notation is adopted: 
Ni ,...,1=  SKU type; 

k    number of bins; 
y    bin capacity; 

 ( )xf i     probability distribution of SKU i, for 
Ni ,...,1= ; 

iz =0,1,…,k variable identifying the number of 
bins assigned to SKU i, for Ni ,...,1= . 

 
The proposed method consists in selecting all the 

possible combinations { } Niiz ,...,1=
 so that . As an 

example, a possible combination consists in assigning 
all the k bins to the first SKU and none of them to the 
other SKUs, i.e. 

kz
i i =∑

kz =1  and  for . 0=iz Ni ,...,2=
Then, the badness function can be formulated for a 

certain bin configuration ( ) as follows: yk,

( )
{ }
∑ ∏ ∫

=∀ =

∞

⋅
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

Nii iz

N

i zy

i dxxfykBF
,...,1 1

)(, .  (2) 

Among all the bin configurations belonging to 
CB ′ , the one with the lowest BF value is selected. 
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3. CASE STUDY 
In the case study, we apply the methodology for 
designing bin configurations proposed in the previous 
section to the actual storage area of a company 
operating in the beverage field.  

The company under study produces different SKU 
types (e.g. 1 l still water bottle, 1.5 l still water bottle, 1 
l sparkling water bottle, etc.). They can be divided into 
three SKU classes. 

The SKU class I includes all the SKU types 
produced in high and constant volumes. Such SKUs 
present a continuous flow from the production process 
to the shipment area so that they are not significant for 
the specific problem addressed in this paper, i.e. it is 
possible to manage both the processes so that the 
synchronization between them is guarantee.  

The SKU class II involves SKU types with a less 
regular demand. In this case the difficulty in 
maintaining synchronization between the production 
process and the shipping process leads to the necessity 
of an intermediate storage area.  

The SKU class III includes SKU types 
occasionally produced, i.e. only when a specific order is 
coming. 

The methodology proposed in this paper is suitable 
for the SKU class II. Specifically, seven SKU types are 
identified in the proposed case study and denoted as 
SKU A, SKU B, …., SKU G.  

The application of all the methodology steps 
introduced in Section 2 is described in the following. 

 
Step 1: Data collection. Data on a 6 months 

period are collected from the Enterprise Resource 
Planning (ERP) of the system. Data are arranged so that 
production and shipment orders of each SKU type are 
available over time.  

 
Step 2: Analysis of production and shipping. 

Data from the previous step are fitted by using a 
statistical software tool so that the mass probability 
distributions of both size and interarrival times of  
production and shipping orders are obtained for each 
SKU type. In this case, Gamma distributions (location 
equal to zero) are selected to represent these processes.  

The parameters of the Gamma distributions 
representing the production process are reported in 
Table 1 as regards the interarrival times and in Table 2 
as regards the order sizes. The corresponding Gamma 
distribution parameters for the shipping process are 
given in Table 3 and 4. 

 
 
 
 
 
 
 
 
 

Table 1: Gamma distribution parameters of the 
production process – Interarrival times [min] 

SKU Type Shape Scale Mean 
SKU A 0.743 3001 2229 
SKU B 0.104 22878 2372 
SKU C 0.140 19061 2667 
SKU D 0.380 9376 3567 
SKU E 0.290 15845 4593 
SKU F 0.155 26365 4089 
SKU G 0.228 28561 6521 

 
Table 2: Gamma distribution parameters of the 

production process – Order sizes [pallets] 
SKU Type Shape Scale Mean 

SKU A 1.360 87 119 
SKU B 1.421 78 111 
SKU C 1.404 96 135 
SKU D 1.690 77 130 
SKU E 1.546 68 105 
SKU F 2.161 41 88 
SKU G 1.672 69 116 

 
Table 3: Gamma distribution parameters of shipping 

process – Interarrival times [min] 
SKU Type Shape Scale Mean 

SKU A 0.133 2050 273 
SKU B 0.040 13012 520 
SKU C 0.052 13497 698 
SKU D 0.133 6447 859 
SKU E 0.116 12317 1424 
SKU F 0.139 6950 969 
SKU G 0.067 19378 1305 

 
Table 4: Gamma distribution parameters of shipping 

process – Order sizes [pallets] 
SKU Type Shape Scale Mean 

SKU A 0.642 23 15 
SKU B 1.021 24 24 
SKU C 3.947 9 35 
SKU D 2.117 15 31 
SKU E 1.647 20 33 
SKU F 1.365 15239 21 
SKU G 1.085 21 23 

 
The obtained probability distributions are used to 

choose, in a probabilistic way, appropriate and realistic 
input data for the simulation model explained in the 
next step.  

Thus, it is important to assure that the balancing 
equation (1) is satisfied. Moreover, to avoid unrealistic 
values for the order size and the interarrival times, 
proper limits are adopted for the probability 
distributions describing both the production process 
(see Table 5) and the shipping process (see Table 6). 
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Table 5: Distribution limits for the production process 
SKU type Max interarrivaltime 

[min] 
Max size 
[pallets] 

SKU A 11963 470 
SKU B 36997 430 
SKU C 35619 525 
SKU D 27504 465 
SKU E 41186 391 
SKU F 51697 282 
SKU G 66753 418 

 
Table 6: Distribution limits for the shipping process  

SKU type Max interarrivaltime 
[min] 

Max size 
[pallets] 

SKU A 3745 84 
SKU B 12286 111 
SKU C 14976 89 
SKU D 11775 101 
SKU E 21012 118 
SKU F 12964 82 
SKU G 25028 103 

 
Step 3: Simulation model for each SKU type. 

The simulation model consists in parallel production 
lines processing pallets of a certain SKU type at a 
predefined production rate and according to the order 
size and interarrival times obtained from the previous 
step. Similarly, shipment orders are generated according 
to the related probability distributions.  

Pallets from the production lines enter a queue 
waiting for the shipment. When a new shipping order 
arrives and the number of waiting pallets matches the 
order size, the queue is reduced of this amount. 

 
 
Step 4: Simulation campaign. The simulation 

run, for each SKU type, corresponds to a period of 
10.000.000 minutes. During the run, space requirements 
(i.e. the length of pallets queues) are logged every 100 
minutes to obtain a representative sample for each SKU 
type. 

 
Step 5: Simulation output analysis. Once the 

warm-up period have been identified and cut-off, data 
about space requirements of each SKU type are fitted in 
order to find a representative mass probability 
distribution.  

Figure 5 shows the probability distributions for all 
the SKU types of interest. Note that Gamma 
distributions are chosen and the corresponding 
parameters are reported in Table7. 
 

 

 

 

 
 

Figure 5: Mass probability distributions of storage 
requirements for the SKU types of interest 

 
Table 7: Gamma distribution parameters – Storage 

requirements    
SKU types Shape Scale Mean 

SKU A 0.392 15 6 
SKU B 0.379 18 7 
SKU C 0.964 10 10 
SKU D 0.728 15 11 
SKU E 0.701 17 12 
SKU F 0.446 14 6 
SKU G 0.461 16 7 

 
Step 6: Bin configuration evaluation. Given the 

probability distribution  for i=A,…,G by Step 5, it 
is possible to apply equation (2) for any couple 

( )xf i

( ) so 
that the badness value is compute for a specific number 
of bins k having capacity y each.  

yk,

Since functions ( )xf i  are continuous functions 
while the number of pallets to store into the bins is an 
integer, a further observation is needed: the x-axis can 
be divided into intervals centered on any integer value 
so that if 5.0<x  we consider not to have any pallet to 
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store, if  we consider to have at most 1 pallet to 
store, and so on. 

5.1<x

Then, various possible solutions ) belonging to 
the set of feasible bin configurations  can be 
examined. 

( yk,
CB ′

Specifically, Table 8 shows the BF values for 7=k  
bins of different capacities, i.e.  21,...,10,9=y

 
Table 8: BF solutions for k=7 and different capacities y 

Solution # y BF 
1 9 0.705 
2 10 0.400 
3 11 0.229 
4 12 0.132 
5 13 0.077 
6 14 0.045 
7 15 0.026 
8 16 0.015 
9 17 0.009 

10 18 0.005 
11 19 0.003 
12 20 0.002 
13 21 0.001 

 
We notice from Table 8 that if a BF value less than 

0.01 is considered to be acceptable, Solution #9 ( 17=y ) 
is the first feasible solution. Note that from Solution #9 
to Solution #13 the BF values are low and closed to 
each other so that it may be convenient to avoid 
occupying too much space by choosing the Solution #9, 
i.e. the one with the less capacity y associated. 

Similarly, Table 9 reports the BF value for a 
different k, i.e. 8 bins in the storage area. 

 
Table 9: BF solutions for k=8 and different capacities y 

Solution # y BF 
1 9 0.557 
2 10 0.294 
3 11 0.156 
4 12 0.084 
5 13 0.045 
6 14 0.025 
7 15 0.014 
8 16 0.007 
9 17 0.004 

10 18 0.002 
11 19 0.001 
12 20 0.001 
13 21 0.000 

 
In this case, having one more bin, assuming the 

same BF limit of acceptance 0.01, Solution #8 ( 16=y ) 
is the more convenient. 

Therefore, solutions (k=7,y=17) and (k=8,y=16) are 
both able to assure an acceptable BF value.   

The same procedure can be applied to other bin 
configurations. 

4. CONCLUSIONS 
The paper proposes a methodological approach to 
design storage areas in cross-docking systems. 
Stochastic aspects of the production and shipping 
processes are taken into account. The approach consists 
in identifying storage requirements from a statistical 
point of view, and then in formalizing a function to 
compare different bin configurations. 
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