
GENERAL PURPOSE DATA MONITORING SOFTWARE

FOR PLATFORM INDEPENDENT REMOTE VISUALIZATION

Andreas Gschwandtner
(a)

, Michael Bogner
(b)

, Franz Wiesinger
(c)

, Martin Schwarzbauer
 (d)

(a, b, c, d)
Upper Austria University of Applied Sciences, Hagenberg Austria,

Hardware/Software Design & Embedded Systems Design

(a)

andreas.gschwandtner@fh-hagenberg.at,
(b)

michael.bogner@fh-hagenberg.at,
(c)

franz.wiesinger@fh-hagenberg.at,
(d)

martin.schwarzbauer@fh-hagenberg.at

ABSTRACT
This paper presents a novel general purpose data

monitoring software for remote visualization. This tool

can be used broadly in practical applications to record,

trace, and display measurement information from any

data source. It covers a wide range of use cases through

the support of various chart types such as line graphs,

pie charts, and bar graphs. Although designed as general

purpose monitoring tool, it was specially intended for

dedicated applications as embedded devices with

limited resources with possibly no graphical output

interface. The underlying idea is to develop a tool that

can process data from any device, completely

independent from its hardware, operating system, or

software. Next to data monitoring, it can be used as

central recording platform where the data will be

evaluated later. This feature is especially useful during

the development and debugging phase. Measurements,

in particular erroneous values, can be easily detected

using visual support.

Keywords: visualization, embedded system, remote,

network

1. INTRODUCTION
“A picture is worth a thousand words” (Barnard, F.,

1927) is an often used phrase that emerged in the USA

in the early part of the 20
th

 century. The meaning of it is

that a picture tells a story just as well as a large amount

of descriptive text. The advantages of information

visualization compared to information description are as

follows (Colin Ware, 2004):

1. Images can provide simultaneous information.

2. Images have expressions that are linguistically

hard to describe.

3. Images can condense information very strong.

4. Images can easily identify or focus on

important information.

The fictive example in Fig. 1 shall depict the difference

in data visualization opposing a diagram to a tabular

presentation form. The introduced example consists of a

random voltage profile of an electronic component

recorded by an embedded system. On the left side of the

figure we can see the tabular presentation of the

individual voltage levels over time. On the right, the

same information is presented, but in difference visually

processed (Otto-von-Guericke, 2008). In fact, the line

diagram is much easier to comprehend.

Figure 1: Different types of data visualization; tabular

presentation (left), diagram presentation (right).

Due the fact, that human beings are more familiar with

visually processed information, the line chart in Fig. 1 is

the preferred method to turn the data into information.

Furthermore, information has nothing to do with the

amount of data; it is all about the appropriate

representation (Schwarz, 2008). The main aim of this

paper is the development of a platform independent

visualization tool for displaying any kind of data. It can

capture continuous, discrete, and instantaneous values.

In order to be a general purpose tool, the supported

chart types can be freely configured by the data source.

The DataMonitor is not only tied to technical issues, but

also generally usable. There exists no limitation of the

visualization, which corresponds to semantics or

meaning of data. This flexibility can be practical in

many other fields, e.g.:

1. Automotive development (motor speed,

exhaust gas temperature, torque measurements,

system diagnostic, oil pressure...)

2. Chemistry and Biology

3. Geography (elevation profile)

Page 19

4. Weather information (water level standings,

CO2 emissions, temperature patterns...)

5. Home Automation (heating curves, heating

duration…)

6. Financial economic (stock data)

2. COMMUNICATION

In computing, inter-process communication (IPC) is a

set of techniques for the exchange of data among

multiple threads in one or more processes. These

processes may also run on different devices connected

by a network. Due to the fact that we cover a large

scope of applications, the platform independency is an

important requirement of the visualization tool. The

main objective was to support local and remote devices

across heterogeneous platforms. Therefore we will

basically focus on remote IPC techniques (Koch, 1993).

After deeper investigations on different communication

techniques (Microsoft Corporation, 2005), four main

requirements were figured out. Tab. 1 shows an

overview of the results of the elaboration of remote IPC

methods.

Table 1: Rating of communication methods.

criteria Remote

procedure call

Named

Pipe

Socket

flexibility - X X

duplex

operation

X X X

Connection-

orientated

X X X

platform

independent

- - X

Recently, to meet the required independency of the

platform, the socket communication is prioritized. In

particular, the socket communication (BSDZone, 2008)

meets all criteria as shown in Tab.1. However, the

software can be extended by other communications

such as serial (RS232) or USB interfaces. In difference

to common workstations where the serial port has

largely been replaced by USB, embedded systems still

count on this interface because of the low resource

consumption. The advantage of the DataMontitor is the

extensibility for other communication devices to

support especially limited devices with different kinds

of communication ports.

3. VISUALIZATION
Data visualization is the study of the visual

representation of data. The main goal of data

visualization is to communicate information in a clear

and effective way through graphical means (Gregory,

Hagen, Müller, 1997). It helps to provide insights into a

rather sparse and complex data set by communicating

its key aspects in a more intuitive way. With the support

of graphical illustration of data, key-aspects can be

filtered, meaning a simplification to the user. In general

the different representations can be divided into

conventional and innovative techniques:

1. Conventional techniques of data visualization

are graph-based diagrams (as tree diagrams

and flowcharts), chart types (as pie charts,

beam diagrams and line diagrams) and many

other variations and types of diagrams (e.g.

exploded view, density map). Fig. 2 and Fig. 3

show three chart-like diagrams and an analog

display. These kinds of diagrams display the

relationship between two variables that take

either discrete continuous or instantaneous

values.

2. Innovative techniques are often in conjunction

with scientific visualization and used for

specific applications.

The fundamental idea of this work was to create a

general purpose tool. In fact, it is focused on

conventional presentation techniques.

Figure 2: pie chart (left), line chart (right)

Figure 3: bar chart (left), analog display (right)

The DataMonitor supports commonly used chart-like

diagrams and analog/digital display controls. In terms

of flexibility, the tool can be easily extended to support

further charts and remains backward compatibility.

Because of the modular design concept, specific chart

types can be easily integrated into the system. Moreover

it doesn’t interfere with the existing applications.

4. DESIGN AND IMPLEMENTATION

The software was designed as client/server system to

assist in the creation of a platform independent system.

The design consists essentially of two parts: the

communication and the visualization.

Page 20

4.1. Communication

To meet the requirements of an easy-to-use application,

we use an ordinary communication protocol without

request acknowledgments. The communication protocol

implemented in this design is a TLV-protocol (Type,

Length, and Value) to fulfill the communication and the

data transfer. On the one hand, the TLV is a simple and

sparse protocol, but on the other hand it allows the

creation of a very flexible design. Because of the

modular design of the TLV, we can integrate new

features in the packet by using the value part of it,

where another TLV packet can be inserted.

Furthermore, we can generate new keywords (e.g. for

specific charts) to extend the functionality and still

remain backward compatibility.

In order to keep the effort for configuration at a

minimum, there were only a few keywords defined for

setting up a communication channel between the server

and the client. This makes the DataMonitor applicable

especially for limited devices with low memory and

restricted communication resources. As described

before, the server doesn’t send an acknowledgment

after a request at all. If the communication protocol was

misinterpreted by the data source, the data sink will

discard incoming data. In figure 4, the directed stream

(one way) from the data source to the data sink can be

seen. As the Internet Protocol (IP) defines a standard

network byte order used for numeric values, we intend

to use the same Big Endian format too. By default, the

software supports socket communication over TCP/IP,

but to be backward compatible to earlier software

applications of the “Upper Austria University of

Applied Sciences” the tool also supports the remote

procedure call communication (RPC). The application

is capable to switch the communication on the fly

without the need to restart the program. The integration

of other communication channels as RS232 or USB is

described later in the implantation section.

Figure 4: The DataMonitor mainly supports

communication either via sockets or via RPC.

Next to the well-defined and easy-to-use protocol, we

developed a class called ProtocolBuilder in C++. This

class should ease the first use of the DataMontitor. It

supports the user working with our predefined protocol.

Every configuration can be set by functions provided by

the ProtocolBuilder. Once familiar with all the settings,

the user can easily change the system, the application

and the programming language.

4.2. Visualization

The monitoring tool supports different kinds of charts

and displays. The data source can configure the desired

chart by sending the appropriate control info to the data

sink. Visual controls such as analog and digital

displays, line charts, bar charts, scatter plots, and pie

charts are supported. Instantaneous values are

visualized either with the self written analog or digital

display. Visualization of the continuous values is

accomplished by the use of the free ZedGraph-Graphic

library. This library supports a various amount of

different chart types. As stated in previous section, the

DataMonitor basically supports common chart types, as

shown in Fig. 5. Although different applications got

different demands on data presentation, the

DataMonitor covers a wide range of diagrams. In order

to enhance it by a new feature, it has to be integrated in

data sink and the data source. Although the monitoring

tool was modified, existing applications are not affected

by that.

Figure 5: Overview of the system and its supported

chart types.

4.3. Implementation

The basic structure of the design is shown in Fig. 6. The

design has a clear separation between the

communication and the visualization part. Only by that,

we can ensure a modular and thus extendable

application.

Figure 6: Internal structure and information flow of the

DataMonitor.

The core of the software design is the class

WinController. It is responsible for controlling the

communication and the visualization. Moreover it

Page 21

contains the state machine shown in Fig. 7.

The state diagram of the defined protocol is as follows:

1. NoChart

Transition from NoChart state to ChartCreated

by NewChart.

2. ChartCreated

Sending measurement data. State remains until

CloseChart.

The initial state NoChart is reached after the software

has been initialized and started up correctly. It is then

waiting for incoming requests delivered by the data

source. While the server is in the initial state, the only

acceptable transition is the creation of a new chart. All

other incoming data will be discarded. When creating a

new chart, the data source can set the type, the range of

the axis, labels, and the amount of input sources, colors,

and a few more parameters. While the system is in the

Chartcreated state, the data source can send chart

values, recreate a new chart or close the chart in order to

quit or interrupt the measurement phase.

Figure 7: State diagram of the monitoring tool.

The controller acts as a master for the visualization and

as a slave for the communication as shown in the

information flow in Fig. 6 by the orange arrows.

The communication concept uses the Strategy pattern

(Gamma, Helm, Johnson, Vlissides, 1994) in order to

select the different interfaces at runtime. Thus it is

possible to swap dynamically between the implemented

interfaces. After the desired interface was selected and

the server started, a thread within the chosen

communication object begins running and waits for

incoming data. Incoming requests are handed over the

protocol engine, which only checks the correctness and

the semantic (e.g. keywords, hierarchical order and

proper nesting) of the TLV packets. Wrong data is

discarded and if the TLV packet was incomplete, the

server closes the connection to the client. In every other

case, the WinController gets informed about arriving

data packets. The new data is processed by the

WinController in form of a transition in the internal

state machine on the condition of possible transitions.

The development of the state machine provides us on

the one hand with a clearly structured control sequence

and on the other hand makes it is to maintain and extend

for future purpose. In order to extend the DataMonitor

by a new communication interface, the ICommIF in

Fig. 8 has to be implemented.

Figure 8: Interface definition for communication

classes.

The interface consists mainly of two functions to start

and stop the communication port. Next to these, there

are two more functions for sending data, which are

currently obsolete but integrated for future purpose (e.g.

extension of bidirectional communication). Incoming

data or occurring errors are signaled by three events:

StatusChanged, DataReceived and Error. The fourth

event DataSent is currently obsolete, because of the

unidirectional communication. These signals are either

captured by the ProtocolEngine or the WinController.

By using the Observer (Gamma, Helm, Johnson,

Vlissides, 1994) pattern, we can define this one-to-

many dependency between objects so that when one

object changes (e.g. new data arrived), all its

dependents are notified and updated automatically.

Because of this design pattern, the DataMonitor

receives data in a non-blocking way.

The visualization component consists of three different

libraries: analog display control library, digital display

control library, and the ZedGraph library. The analog

and digital display controls were developed specifically

as dial indicators for speed (analog control) and time

(digital control). Nevertheless, the analog control can be

used to display pressure values, static state values like

ON/OFF and other measurement data (e.g. voltage

level). In addition, the digital display control can be

used to present textual information as running text (e.g.

error messages during a system test, which can be very

useful in terms of failures). With the integration of the

Open-Source library ZedGraph (ZedGraph, 2008), the

functional range could be greatly expanded by many

different diagrams. Although it is very powerful, you

can create diagrams with a few parameters. This

approach fits perfectly into the overall concept of our

design – little configuration effort, but a large spectrum

of diagrams. For the addition of new charts, the

ZedGraph library still offers enough potential. For

further details we refer to the online documentation.

5. EXPERIMENTAL RESULTS
In order to provide some results, we intend to give a

simple example on the usage of this tool.

The example code snippets show, that a few lines

suffice to produce well-to-understand visualization of

measurement data. Before the client can connect to the

server, the desired communication interface has to be

selected. After that, the client can start the control

sequence to generate a diagram. Fig. 9 shows us the

connection routine for a client using socket

Page 22

communication.

Figure 9: Connect to the server using socket

communication.

After the connection to the server was established, the

client can send control information to the DataMonitor.

In the example shown in Fig. 10, a bar chart with main

title, axis title, bar count and elements is created. This

information is send to the DataMonitor.

Figure 10: Creation of a bar chart.

When the DataMonitor receives the NewChart control

information, the visualization configures the

corresponding diagram and the diagram configuration

can immediately be check by the user. At this point, the

DataMonitor state machine is ready for receiving

measurement values. In a few lines, Fig. 11 shows how

to generate and send the measurement values to

DataMonitor.

Figure 11: Generation of measurement values.

The result of the presented lines of code is shown in

Fig. 12. There you see all labels, the configured

coloring and some random bars.

Figure 12: Generation of measurement values.

6. CONCLUSION
The main aim of this work was the development of an

easy-to-use, remote and simple to integrate and access

(so to speak platform independent) visualization tool.

Because of the modular concept of the software design

and the user-friendly handling, we assume that the

DataMonitor is in addition to the technology field

useful in many other areas. Whenever embedded

devices, especially restricted devices or so called

display-less devices, are used, the need for output types

except textual increases. The DataMonitor has been

developed exactly for this purpose.

A typical use case for embedded systems in

combination with the monitoring tool is to process

system information as processor utilization, memory

utilization, and power consumption. While running

performance tests to identify the maximum throughput

of embedded systems, computationally intensive

visualization or communication tracers will influence

the result. Compared to other common interfaces like

Ethernet, the communication effort for data transfer is

far less with the simple protocol and will therefore

hardly influence the trace of the performance counters.

REFERENCES
BSDZone, 2008. Berkely Software Distribution.

University of California. Available from:

http://www.bsdzone.org [accessed April 2008]

Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.,

1994. Design Patterns. Elements of Reusable

Object-Oriented Software., 1st ed, Addison-

Wesley.

Otto-von-Guericke, 2008. Grundlagen Visualisierung

und Wahrnehmung. University of Magdeburg.

Available from:

http://wwwisg.cs.unimagdeburg.de/cv/lehre/Visual

Analytics/material/Bade_Grundlagen-Vis-

Wahrnehmung+Infovis.pdf [accessed April 2008]

Colin Ware, 2004. Information Visualization –

Perception for design, 2nd ed, Kaufman.

Microsoft Corporation, 2005. Interprocess

communications. Available from:

http://msdn.microsoft.com/en-

us/library/aa365574(VS.85).aspx [accessed June

2008]

Schwarz, D., 2008. Mehr Information durch

Visualisierung von Daten? University library

Bochum. Available from: http://www.b-i-t-

online.de/ [accessed June 2008]

Koch, A., 1993. Offene Systeme –

Interprozesskommunikation in verteilten Systemen.

Springer Verlag.

Barnard, F., 1927. One picture is worth a thousand

words. Printers’ Ink trade journal, pp. 114-115.

Gregory M.N., Hagen, H., Müller, H., 1997. Scientific

Visualization: Overview, Methodologies, and

Techniques. IEEE Computer Society, 1997.

ZedGraph, 2008. Zegraph – Overview, Samples and

Class Documentation from:

http://zedgraph.org/wiki/index.php?title=MainPag

e [accessed June 2008]

Page 23

Page 24

