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ABSTRACT 
Genetic programming is a powerful search method 
which can be applied to the typical data mining task of 
finding hidden relations in datasets. We describe the 
architecture of a distributed data mining system in 
which genetic programming agents create a large 
amount of structurally different models which are stored 
in a model database. A search engine for models that is 
connected to this database allows interactive exploration 
and analysis of models, and composition of simple 
models to hierarchical models. The search engine is the 
crucial component of the system in the sense that it 
supports knowledge discovery and paves the way for 
the goal of finding interesting hidden causal relations. 

 
Keywords: distributed data mining, genetic 
programming, knowledge discovery 

 
1. INTRODUCTION 

 
1.1. Data Mining and Genetic Programming 
Hand et al. give the following definition of data mining: 
“Data mining is the analysis of (often large) 
observational data sets to find unsuspected 
relationships and to summarize the data in novel ways 
that are both understandable and useful to the data 
owner.” (Hand, Mannila and Smyth 2001). Data mining 
is just one step in the more comprehensive process of 
knowledge discovery. Other equally important steps 
include the preparation of data for the mining process 
and subsequent interpretation of generated models; cf. 
(Fayyad, Piatetsky-Shapiro and Smyth 1996). The goal 
of the whole process is to gain new knowledge about 
the observed system which can be utilized consequently 
to improve aspects of the system, for instance to gain a 
competitive advantage. 

Genetic programming is an optimization technique 
that works by imitating aspects of natural evolution to 
generate a solution that maximizes or minimizes a 
fitness function. A population of solution candidates 
evolves through many generations towards a solution 
using three evolutionary operators: selection, 
recombination and mutation. Genetic programming is 
based on genetic algorithms the main difference is the 

representation of solution candidates, whereas genetic 
algorithms are intended to find an array of characters or 
integers representing the solution of a given problem, 
the goal of GP is to produce a computer program 
solving the problem at hand.  

Genetic programming has been used successfully 
for data mining tasks using different forms of solution 
representations. One approach is symbolic regression to 
build formulas that describe the behavior of systems 
from measured data, see for example (Koza 1992; 
Keijzer and Babovic 1999; Langdon and Poli 2002; del 
Re, Langthaler, Furtmüller, Winkler and Affenzeller 
2005; Winkler, Affenzeller and Wagner 2007a; 
Winkler, Affenzeller and Wagner 2007b). Other 
approaches use GP to discover predictive IF-THEN-
rules typically with prior discretization of variables 
(Freitas 1999; Wong and Leung 2000) or to evolve 
decision trees (Fu 1999; Ryan and Rayward-Smith 
1998; Papagelis and Kalles 2001). 

In this paper we describe a system to support and 
improve the knowledge discovery process based on 
distributed data mining agents which concurrently run 
genetic programming processes. In section 2 we 
describe the main problems of GP-based data mining 
and describe potential benefits of a distributed data 
mining system. In section 3 we describe the architecture 
of this system and its major components while sections 
4 and 5 conclude this paper with ideas to further 
improve the knowledge discovery process by 
integrating a priori knowledge and user feedback. 
 
2. MOTIVATION 
A frustrating aspect of GP is that it takes a long time 
until the result of a run is available. Especially for non-
trivial datasets it is usually necessary to analyze the 
result of a previous run before a new run can be started 
for instance to counteract over or under fitting or to 
exclude dominant input variables. This is an even 
bigger problem for domain experts who do not fully 
understand the internal details of GP and thus often 
have problems to configure the algorithm correctly. 
Usually a few iterations are necessary until a 
configuration for the algorithm is found that works for 
data mining task at hand. However, even when such a 
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configuration has been found there is another aspect that 
causes friction in the knowledge discovery process. 

Multiple genetic programming runs with the same 
settings and the same input data typically result in a 
diverse set of structurally different models with similar 
predictive accuracy. This behavior is caused by the fact 
that GP is a stochastic method which searches for a 
model that fits the target variable as well as possible. 
GP specifically doesn't search for the simplest or most 
compact model, on the contrary internal dynamics of 
the evolutionary process cause the models to become 
overly complex. This effect is known in the GP 
community as “bloat”; cf. (Langdon and Poli 2002). 
Various strategies to combat bloat have been discussed 
in GP literature, one recent addition is (Dignum and 
Poli 2008), giving a full overview would go beyond the 
scope of this paper. For the task at hand the effect can 
be alleviated through simplification of the resulting 
models. However the basic problem remains because 
there are often implicit dependencies between input 
variables and there is usually an infinite number of 
ways to express the same function. 

The result is that it is difficult to extract knowledge 
out of the generated models because the relevant 
information about the underlying structure in the data is 
blurred by the large amount of possible mathematical 
representations of that structure. The knowledge gained 
from these experiments is often limited to the insight 
into which variables play an important role in models 
for the target variable. While this insight can be 
valuable in itself it can also be reached with statistical 
methods with a lot less effort. One important feature of 
GP that distinguishes it from many other optimization 
methods is that it is able to automatically optimize the 
model structure while at the same time optimizing the 
model parameters. This characteristic cannot be utilized 
to its full extent when the analyzed models are all 
structurally different and thus difficult to analyze which 
thwarts the effort spent to build the model structure. 

One approach to improve the discovery of more 
detailed knowledge is to run many independent GP 
processes to generate a large number of models for each 
possible target variable with different complexities and 
to extend the data mining process to search for implicit 
dependencies between input variables. In combination 
with an interactive user-interface to filter and analyze 
the generated models and to compose simple models to 
hierarchic models the user gains new knowledge step by 
step while investigating the set of models. 

Evolutionary algorithms especially genetic 
programming are often slower than other more 
specialized data mining algorithms while reaching 
comparable predictive accuracy. However it's easy to 
parallelize evolutionary algorithms. In the proposed 
data mining system this is even simpler since the 
independent genetic programming processes can be 
executed concurrently. Depending on the complexity 
and extent of the dataset it can still take hours or even a 
few days to generate enough models to start interpreting 
the generated models, however as Freitas states: “Data 

mining is typically an off-line task, and in general the 
time spent with running a data mining algorithm is a 
small fraction (less than 20%) of the total time spent 
with the entire knowledge discovery process. [...] 
Hence, in many applications, even if a data mining 
algorithm is run for several hours or several days, this 
can be considered an acceptable processing time, at 
least in the sense that it is not the bottleneck of the 
knowledge discovery process.” (Freitas 2002). A 
benefit of the system is that the user can already start to 
analyze preliminary results while the background GP 
processes are still refining models.  

The design goals of the system can be summarized 
in the following four points: 

 
• Find all potentially interesting (non-linear) 

relations of variables of a dataset. 
• Store models of different complexity and 

accuracy. 
• Provide functionality to explore, analyze and 

compose such models. 
• Record all steps in the mining process which 

led to a given result. 
 

These goals are closely related to the goals given 
by Blumenstock, Schweiggert and Müller 2007 in that 
they result out of similar considerations regarding the 
focus and breadth of the search process and the 
transparency and ease of use of the system.  

In the following section we describe the 
architecture of the proposed system and its components. 

 
3. DISTRIBUTED DATA MINING 

ARCHITECTURE 
The system is made up of three parts: a central model 
database, a mesh of distributed genetic programming 
agents and a component to import new datasets into the 
system and to navigate, explore and search models 
stored in the central database. 

 
3.1. Layout of the Generic Model Database 
Figure 1 shows an entity-relationship diagram of the 
generic data model of the model database. The two most 
important entities in the data model are the dataset and 
the model. It is often the case that a dataset once 
imported is preprocessed for instance to scale all 
variable values to a predefined range. For sake of 
transparency each dataset is linked back to its source. 
Later all processing steps can be retraced with this 
relation. Additionally the person who imported or 
manipulated the dataset is linked to each dataset. Each 
model is linked to the process that generated it to make 
the origin of that model transparent. Each process is 
also linked back to a person who is the controller of that 
process. By adding the algorithm that each process 
executes in the data model it is possible to repeat each 
experiment at a later point in time.  

The layout of the data model is kept very generic 
on purpose to make it easy to add new data mining 
algorithms with different model representations to the 
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system. Algorithms could be different genetic 
programming variants or even other (non-evolutionary) 
data mining algorithms like C4.5, kNN, CART or SVM. 

The main design goal of the model database is 
transparency. It must be possible to reproduce every 
single result that is stored in the database. For this 
reason the algorithm implementation and the parameter 
settings are also stored in the database. 

 

 
Figure 1: Entity-relationship diagram showing the 
generic data model of the model database. 

 
3.2. Distributed Genetic Programming Agents 
Figure 2 shows the typical cycle of data mining with 
genetic programming. The user supplies the dataset and 
configures the parameters of the algorithm. The most 
important parameters are the set of allowed input 
variables the target variable and the set of functions that 
should be used to compose the models. After a few 
hours the result of the algorithm in the form of a 
formula is available. Through the analysis of this result 
the user gains new knowledge and starts a new GP run 
with different settings (for instance removing an input 
variable).  

 

 
Figure 2: The usual way of GP-based data mining has a 
cycle with a long feedback loop. 

 

 
Figure 3: In the proposed system distributed GP agents 
continuously analyze the dataset and store new models 
in the database. The user interactively explores and 
analyzes available models. 

 
Figure 3 shows how this process could be 

improved by using parallelism to run different GP 
processes at the same time. Each of the distributed 
genetic programming agents has different settings for 
the target variable, maximally allowed model 
complexity and the set of allowed input variables. 
Controller agents create new GP jobs and coordinate the 
running GP agents.  

It would be interesting to have more intelligent 
controller agents which try to predict which models are 
more interesting for the user and guide the GP agents to 
search especially for such models; this remains a topic 
for future research. 

 
3.3. Interactive Model Exploration and Analysis 
The mesh of distributed genetic programming agents 
generates a flood of potentially interesting models. 
However only a few of these models will actually be 
interesting for the user and it is usually impossible to 
automatically recognize the relevant models and throw 
out the rest. So an user-interface for the interactive 
exploration and analysis of all available models is 
essential. It is the most crucial component for the 
knowledge discovery process because the facts the user 
is searching for are likely hidden and can only be 
uncovered when it is possible to arbitrarily filter and 
sort the available models and drill down to uncover 
alternative representations of a model. 

The quality of any model can be inspected visually 
through line charts of the estimated and the original 
value of the target variable and through scatter plots 
showing the correlations of estimated vs. original 
values. The relative complexity of models can be 
visualized through different colors. 

We plan to implement a kind of search engine for 
models which allows filtering and sorting available 
models for a given dataset by at least the following 
attributes:  

 
 

97



• Target variable 
• Input variables 
• Accuracy 
• Complexity 

 
Search queries can be freely combined and negated 

for instance to create the search request “Find models 
for variable X which do not contain variable Y and Z 
sorted by accuracy” or “Find models for variable Z 
using variable A and B with a maximal tree-depth of 
four” . Additionally to the basic filtering and sorting 
functionality it is interesting to explicitly search for 
similar models to a given model. This can be 
implemented by searching for models with the same 
target variable and the same input variables. Searching 
for structural similarity could also be useful but remains 
an open topic. 

To make the search process transparent to the user 
it will be possible to display which algorithm in 
combination with which settings produced a given 
model. Going a step further it's also interesting to show 
the internal state of the algorithm when it produced the 
given model. This information is especially helpful to 
refine and improve the distributed data mining system 
itself. 

 
4. FUTURE WORK 
The first step towards an interactive data mining 
environment for practical application is the 
implementation and roll-out of the system described in 
the previous sections. We plan to combine the 
distributed data mining system with HeuristicLab 
(available at http://www.heuristiclab.com) (Wagner, 
Affenzeller 2005), a modern framework for prototyping 
and analyzing optimization techniques for which both 
generic concepts of evolutionary algorithms and many 
functions to evaluate and analyze algorithms are 
available. HeuristicLab makes it very easy to create 
customized algorithms from predefined components. It 
is a close to ideal environment for the data mining 
system because as Hand et al. stated: “When faced with 
a data mining application, a data miner should think 
about which components fit the specifics of his or her 
problem, rather than which specific "off-the-shelf" 
algorithm to choose. In an ideal world, the data miners 
would have available a software environment within 
which they could compose components (from a library 
of model structures, score functions, search methods, 
etc.) to synthesize an algorithm customized for their 
specific applications. Unfortunately this remains a ideal 
state of affairs rather than the practical norm; current 
data analysis software packages often provide only a 
list of algorithms, rather than a component-based 
toolbox for algorithm synthesis.” (Hand, Mannila and 
Smyth 2001). 

Once the basic infrastructure is implemented and 
running there are a few more possible research 
directions additionally to the open topics mentioned 
above.  

One interesting aspect is to enhance the 
cooperation between the distributed GP agents by 
reusing models from the model database generated by 
other agents. These models could be integrated into 
other models as virtual variables replacing the actual 
training data with predictive models for those variables. 
This scheme enhances reuse of learned concepts and 
knowledge and enables the creation and composition of 
successively higher-level models. This idea  is related to 
automatically defined functions (Koza 1992) and 
similar to adaptive representation through learning 
(Rosca and Ballard 1996). 

A possible direction for future research is 
extending the user-interface to automatically learn and 
recognize which models are interesting for the user. 
One possible approach is to track user search actions 
and using a form of online data mining to analyze and 
predict the interestingness of a given model based on 
previous user actions. 

 
5. SUMMARY 
In this paper we describe the architecture of a 
distributed data mining system utilizing genetic 
programming agents to compose a diverse set of 
predictive models for a given dataset. The system is 
made up of three parts: a central model database, a 
mesh of distributed genetic programming agents and a 
component to import new datasets into the system and 
to navigate, explore and search models stored in the 
central database.  

In the proposed system distributed genetic 
programming agents continuously process available 
datasets and create models of different complexity for 
different target variables and for different sets of input 
variables. These agents store potentially interesting 
models in a database together with meta-data to filter 
and sort models. Because of the the high volume and 
diversity of the model database an interactive user-
interface to navigate, filter and analyze the models is 
necessary. This interface is the crucial component in the 
knowledge discovery process in the sense that it allows 
interactive exploration of results and paves the way for 
the goal of finding interesting hidden causal relations.  
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