
DATA MINING VIA DISTRIBUTED GENETIC PROGRAMMING AGENTS

Gabriel K. Kronberger(a), Stephan M. Winkler(b), Michael Affenzeller(c), Stefan Wagner(d)

(a) (b) (c) (d)Heuristic and Evolutionary Algorithms Laboratory
School of Informatics, Communications and Media

Upper Austria University of Applied Sciences
Softwarepark 11, 4232 Hagenberg, Austria

(a)gkronber@heuristiclab.com, (b)swinkler@heuristiclab.com, (c)maffenze@heuristiclab.com, (c)swagner@heuristiclab.com

ABSTRACT
Genetic programming is a powerful search method
which can be applied to the typical data mining task of
finding hidden relations in datasets. We describe the
architecture of a distributed data mining system in
which genetic programming agents create a large
amount of structurally different models which are stored
in a model database. A search engine for models that is
connected to this database allows interactive exploration
and analysis of models, and composition of simple
models to hierarchical models. The search engine is the
crucial component of the system in the sense that it
supports knowledge discovery and paves the way for
the goal of finding interesting hidden causal relations.

Keywords: distributed data mining, genetic
programming, knowledge discovery

1. INTRODUCTION

1.1. Data Mining and Genetic Programming
Hand et al. give the following definition of data mining:
“Data mining is the analysis of (often large)
observational data sets to find unsuspected
relationships and to summarize the data in novel ways
that are both understandable and useful to the data
owner.” (Hand, Mannila and Smyth 2001). Data mining
is just one step in the more comprehensive process of
knowledge discovery. Other equally important steps
include the preparation of data for the mining process
and subsequent interpretation of generated models; cf.
(Fayyad, Piatetsky-Shapiro and Smyth 1996). The goal
of the whole process is to gain new knowledge about
the observed system which can be utilized consequently
to improve aspects of the system, for instance to gain a
competitive advantage.

Genetic programming is an optimization technique
that works by imitating aspects of natural evolution to
generate a solution that maximizes or minimizes a
fitness function. A population of solution candidates
evolves through many generations towards a solution
using three evolutionary operators: selection,
recombination and mutation. Genetic programming is
based on genetic algorithms the main difference is the

representation of solution candidates, whereas genetic
algorithms are intended to find an array of characters or
integers representing the solution of a given problem,
the goal of GP is to produce a computer program
solving the problem at hand.

Genetic programming has been used successfully
for data mining tasks using different forms of solution
representations. One approach is symbolic regression to
build formulas that describe the behavior of systems
from measured data, see for example (Koza 1992;
Keijzer and Babovic 1999; Langdon and Poli 2002; del
Re, Langthaler, Furtmüller, Winkler and Affenzeller
2005; Winkler, Affenzeller and Wagner 2007a;
Winkler, Affenzeller and Wagner 2007b). Other
approaches use GP to discover predictive IF-THEN-
rules typically with prior discretization of variables
(Freitas 1999; Wong and Leung 2000) or to evolve
decision trees (Fu 1999; Ryan and Rayward-Smith
1998; Papagelis and Kalles 2001).

In this paper we describe a system to support and
improve the knowledge discovery process based on
distributed data mining agents which concurrently run
genetic programming processes. In section 2 we
describe the main problems of GP-based data mining
and describe potential benefits of a distributed data
mining system. In section 3 we describe the architecture
of this system and its major components while sections
4 and 5 conclude this paper with ideas to further
improve the knowledge discovery process by
integrating a priori knowledge and user feedback.

2. MOTIVATION
A frustrating aspect of GP is that it takes a long time
until the result of a run is available. Especially for non-
trivial datasets it is usually necessary to analyze the
result of a previous run before a new run can be started
for instance to counteract over or under fitting or to
exclude dominant input variables. This is an even
bigger problem for domain experts who do not fully
understand the internal details of GP and thus often
have problems to configure the algorithm correctly.
Usually a few iterations are necessary until a
configuration for the algorithm is found that works for
data mining task at hand. However, even when such a

95

configuration has been found there is another aspect that
causes friction in the knowledge discovery process.

Multiple genetic programming runs with the same
settings and the same input data typically result in a
diverse set of structurally different models with similar
predictive accuracy. This behavior is caused by the fact
that GP is a stochastic method which searches for a
model that fits the target variable as well as possible.
GP specifically doesn't search for the simplest or most
compact model, on the contrary internal dynamics of
the evolutionary process cause the models to become
overly complex. This effect is known in the GP
community as “bloat”; cf. (Langdon and Poli 2002).
Various strategies to combat bloat have been discussed
in GP literature, one recent addition is (Dignum and
Poli 2008), giving a full overview would go beyond the
scope of this paper. For the task at hand the effect can
be alleviated through simplification of the resulting
models. However the basic problem remains because
there are often implicit dependencies between input
variables and there is usually an infinite number of
ways to express the same function.

The result is that it is difficult to extract knowledge
out of the generated models because the relevant
information about the underlying structure in the data is
blurred by the large amount of possible mathematical
representations of that structure. The knowledge gained
from these experiments is often limited to the insight
into which variables play an important role in models
for the target variable. While this insight can be
valuable in itself it can also be reached with statistical
methods with a lot less effort. One important feature of
GP that distinguishes it from many other optimization
methods is that it is able to automatically optimize the
model structure while at the same time optimizing the
model parameters. This characteristic cannot be utilized
to its full extent when the analyzed models are all
structurally different and thus difficult to analyze which
thwarts the effort spent to build the model structure.

One approach to improve the discovery of more
detailed knowledge is to run many independent GP
processes to generate a large number of models for each
possible target variable with different complexities and
to extend the data mining process to search for implicit
dependencies between input variables. In combination
with an interactive user-interface to filter and analyze
the generated models and to compose simple models to
hierarchic models the user gains new knowledge step by
step while investigating the set of models.

Evolutionary algorithms especially genetic
programming are often slower than other more
specialized data mining algorithms while reaching
comparable predictive accuracy. However it's easy to
parallelize evolutionary algorithms. In the proposed
data mining system this is even simpler since the
independent genetic programming processes can be
executed concurrently. Depending on the complexity
and extent of the dataset it can still take hours or even a
few days to generate enough models to start interpreting
the generated models, however as Freitas states: “Data

mining is typically an off-line task, and in general the
time spent with running a data mining algorithm is a
small fraction (less than 20%) of the total time spent
with the entire knowledge discovery process. [...]
Hence, in many applications, even if a data mining
algorithm is run for several hours or several days, this
can be considered an acceptable processing time, at
least in the sense that it is not the bottleneck of the
knowledge discovery process.” (Freitas 2002). A
benefit of the system is that the user can already start to
analyze preliminary results while the background GP
processes are still refining models.

The design goals of the system can be summarized
in the following four points:

• Find all potentially interesting (non-linear)

relations of variables of a dataset.
• Store models of different complexity and

accuracy.
• Provide functionality to explore, analyze and

compose such models.
• Record all steps in the mining process which

led to a given result.

These goals are closely related to the goals given
by Blumenstock, Schweiggert and Müller 2007 in that
they result out of similar considerations regarding the
focus and breadth of the search process and the
transparency and ease of use of the system.

In the following section we describe the
architecture of the proposed system and its components.

3. DISTRIBUTED DATA MINING

ARCHITECTURE
The system is made up of three parts: a central model
database, a mesh of distributed genetic programming
agents and a component to import new datasets into the
system and to navigate, explore and search models
stored in the central database.

3.1. Layout of the Generic Model Database
Figure 1 shows an entity-relationship diagram of the
generic data model of the model database. The two most
important entities in the data model are the dataset and
the model. It is often the case that a dataset once
imported is preprocessed for instance to scale all
variable values to a predefined range. For sake of
transparency each dataset is linked back to its source.
Later all processing steps can be retraced with this
relation. Additionally the person who imported or
manipulated the dataset is linked to each dataset. Each
model is linked to the process that generated it to make
the origin of that model transparent. Each process is
also linked back to a person who is the controller of that
process. By adding the algorithm that each process
executes in the data model it is possible to repeat each
experiment at a later point in time.

The layout of the data model is kept very generic
on purpose to make it easy to add new data mining
algorithms with different model representations to the

96

system. Algorithms could be different genetic
programming variants or even other (non-evolutionary)
data mining algorithms like C4.5, kNN, CART or SVM.

The main design goal of the model database is
transparency. It must be possible to reproduce every
single result that is stored in the database. For this
reason the algorithm implementation and the parameter
settings are also stored in the database.

Figure 1: Entity-relationship diagram showing the
generic data model of the model database.

3.2. Distributed Genetic Programming Agents
Figure 2 shows the typical cycle of data mining with
genetic programming. The user supplies the dataset and
configures the parameters of the algorithm. The most
important parameters are the set of allowed input
variables the target variable and the set of functions that
should be used to compose the models. After a few
hours the result of the algorithm in the form of a
formula is available. Through the analysis of this result
the user gains new knowledge and starts a new GP run
with different settings (for instance removing an input
variable).

Figure 2: The usual way of GP-based data mining has a
cycle with a long feedback loop.

Figure 3: In the proposed system distributed GP agents
continuously analyze the dataset and store new models
in the database. The user interactively explores and
analyzes available models.

Figure 3 shows how this process could be

improved by using parallelism to run different GP
processes at the same time. Each of the distributed
genetic programming agents has different settings for
the target variable, maximally allowed model
complexity and the set of allowed input variables.
Controller agents create new GP jobs and coordinate the
running GP agents.

It would be interesting to have more intelligent
controller agents which try to predict which models are
more interesting for the user and guide the GP agents to
search especially for such models; this remains a topic
for future research.

3.3. Interactive Model Exploration and Analysis
The mesh of distributed genetic programming agents
generates a flood of potentially interesting models.
However only a few of these models will actually be
interesting for the user and it is usually impossible to
automatically recognize the relevant models and throw
out the rest. So an user-interface for the interactive
exploration and analysis of all available models is
essential. It is the most crucial component for the
knowledge discovery process because the facts the user
is searching for are likely hidden and can only be
uncovered when it is possible to arbitrarily filter and
sort the available models and drill down to uncover
alternative representations of a model.

The quality of any model can be inspected visually
through line charts of the estimated and the original
value of the target variable and through scatter plots
showing the correlations of estimated vs. original
values. The relative complexity of models can be
visualized through different colors.

We plan to implement a kind of search engine for
models which allows filtering and sorting available
models for a given dataset by at least the following
attributes:

97

• Target variable
• Input variables
• Accuracy
• Complexity

Search queries can be freely combined and negated

for instance to create the search request “Find models
for variable X which do not contain variable Y and Z
sorted by accuracy” or “Find models for variable Z
using variable A and B with a maximal tree-depth of
four” . Additionally to the basic filtering and sorting
functionality it is interesting to explicitly search for
similar models to a given model. This can be
implemented by searching for models with the same
target variable and the same input variables. Searching
for structural similarity could also be useful but remains
an open topic.

To make the search process transparent to the user
it will be possible to display which algorithm in
combination with which settings produced a given
model. Going a step further it's also interesting to show
the internal state of the algorithm when it produced the
given model. This information is especially helpful to
refine and improve the distributed data mining system
itself.

4. FUTURE WORK
The first step towards an interactive data mining
environment for practical application is the
implementation and roll-out of the system described in
the previous sections. We plan to combine the
distributed data mining system with HeuristicLab
(available at http://www.heuristiclab.com) (Wagner,
Affenzeller 2005), a modern framework for prototyping
and analyzing optimization techniques for which both
generic concepts of evolutionary algorithms and many
functions to evaluate and analyze algorithms are
available. HeuristicLab makes it very easy to create
customized algorithms from predefined components. It
is a close to ideal environment for the data mining
system because as Hand et al. stated: “When faced with
a data mining application, a data miner should think
about which components fit the specifics of his or her
problem, rather than which specific "off-the-shelf"
algorithm to choose. In an ideal world, the data miners
would have available a software environment within
which they could compose components (from a library
of model structures, score functions, search methods,
etc.) to synthesize an algorithm customized for their
specific applications. Unfortunately this remains a ideal
state of affairs rather than the practical norm; current
data analysis software packages often provide only a
list of algorithms, rather than a component-based
toolbox for algorithm synthesis.” (Hand, Mannila and
Smyth 2001).

Once the basic infrastructure is implemented and
running there are a few more possible research
directions additionally to the open topics mentioned
above.

One interesting aspect is to enhance the
cooperation between the distributed GP agents by
reusing models from the model database generated by
other agents. These models could be integrated into
other models as virtual variables replacing the actual
training data with predictive models for those variables.
This scheme enhances reuse of learned concepts and
knowledge and enables the creation and composition of
successively higher-level models. This idea is related to
automatically defined functions (Koza 1992) and
similar to adaptive representation through learning
(Rosca and Ballard 1996).

A possible direction for future research is
extending the user-interface to automatically learn and
recognize which models are interesting for the user.
One possible approach is to track user search actions
and using a form of online data mining to analyze and
predict the interestingness of a given model based on
previous user actions.

5. SUMMARY
In this paper we describe the architecture of a
distributed data mining system utilizing genetic
programming agents to compose a diverse set of
predictive models for a given dataset. The system is
made up of three parts: a central model database, a
mesh of distributed genetic programming agents and a
component to import new datasets into the system and
to navigate, explore and search models stored in the
central database.

In the proposed system distributed genetic
programming agents continuously process available
datasets and create models of different complexity for
different target variables and for different sets of input
variables. These agents store potentially interesting
models in a database together with meta-data to filter
and sort models. Because of the the high volume and
diversity of the model database an interactive user-
interface to navigate, filter and analyze the models is
necessary. This interface is the crucial component in the
knowledge discovery process in the sense that it allows
interactive exploration of results and paves the way for
the goal of finding interesting hidden causal relations.

ACKNOWLEDGMENTS
The research presented in this paper is funded by the
Upper Austrian University of Applied Sciences in the
scope of the project “Cooperative Evolutionary Data
Mining Agents”.

REFERENCES
Blumenstock, A., Schweiggert F., Muller M., 2007.

Rule cubes for causal investigations. Proceedings
of the 7th IEEE International Conference on Data
Mining (ICDM 2007), pp. 53 – 62. October 28-31
2007, Omaha, Nebraska, USA.

Del Re, L., Langthaler, P., Furtmüller, C., Winkler, S.,
Affenzeller, M., 2005. NOx Virtual Sensor Based
on Structure Identification and Global
Optimization. Proceedings of the SAE World

98

Congress 2005, paper number 2005-01-0050.
April 11-14 2005, Detroit, MI, USA.

Dignum, S., Poli, R., 2008. Operator equalisation and
bloat free GP. Genetic Programming, 11th
European Conference, EuroGP 2008, pp. 110 –
121. March 26-28 2008, Naples, Italy.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., 1996.
From data mining to knowledge discovery: an
overview. In Fayyad, U. M., Piatetsky-Shapiro, G.,
Smyth, P., Uthurusamy, R., eds. Advances in
knowledge discovery and data mining: pp. 1 – 34.
Menlo Park, CA, USA:AAAI

Freitas, A. A., 1999. A genetic algorithm for
generalized rule induction. In Roy, R., Furuhashi,
T., Chawdhry, P. K., eds. Advances in Soft
Computing: Engineering Design and
Manufacturing. Berlin:Springer-Verlag, pp. 340 –
353.

Freitas, A. A., 2002. Data Mining and Knowledge
Discovery with Evolutionary Algorithms.
Secaucus, NJ, USA: Springer-Verlag New York,
Inc.

Fu, Z., 1999. An innovative GA-based decision tree
classifier in large scale data mining. Principles of
Data Mining and Knowledge Discovery, pp. 348 –
353.

Hand, D. J., Mannila, H., Smyth, P., 2001. Principles of
Data Mining. The MIT Press

Keijzer, M., Babovic, V., 1999. Dimensionally aware
genetic programming. Proceedings of the Genetic
and Evolutionary Computation Conference 1990,
pp. 1069 – 1076. July 13-17, 2005, Orlando, FL,
USA.

Koza, J., 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA, USA: The MIT Press.

Langdon, W. B., Poli, R., 2002. Foundations of Genetic
Programming. Berlin, Germany:Springer-Verlag.

Papagelis, A., Kalles, D., 2001. Breeding decision trees
using evolutionary techniques. Proceedings of the
Eighteenth International Conference on Machine
Learning (ICML ’01), pp. 393 – 400. June 28 –
July 1 2001, Williamstown, MA, USA.

Rosca, J. P., Ballard, D. H., 1996. Discovery of
subroutines in genetic programming. In Angeline,
P. J., Kinnear, K. E., eds. Advances in Genetic
Programming 2, pp. 177 – 202. Cambridge, MA,
USA: The MIT Press.

Ryan, M. D., Rayward-Smith, V. J., 1998. The
evolution of decision trees. In Koza, J. R.,
Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M.,
Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba,
H., Riolo, R., eds. Genetic Programming 1998:
Proceedings of the Third Annual Conference, pp.
350 – 358, University of Wisconsin, Wisconsin,
USA:Morgan Kaufmann.

Wagner, S., Affenzeller, M., 2005. HeuristicLab: A
generic and extensible optimization environment.
Proceedings of the International Conference on

Adaptive and Natural Computing Algorithms, pp.
538 – 541. March 21-23 2005, Coimbra, Portugal.

Winkler, S., Affenzeller, M., Wagner, S., 2007a.
Advanced Genetic Programming Based Machine
Learning. Journal of Mathematical Modelling and
Algorithms, Vol. 6: pp. 455 – 480.

Winkler, S., Affenzeller, M., Wagner, S., 2007b.
Selection Pressure Driven Sliding Window
Genetic Programming. Computer Aided Systems
Theory – EUROCAST 2007, Lecture Notes in
Computer Science, Vol. 4739: pp. 788 – 795.

Wong, M. L., Leung, K. S. 2000. Data Mining Using
Grammar Based Genetic Programming and
Applications, Norwell, MA, USA: Kluwer
Academic Publishers

AUTHORS BIOGRAPHY
GABRIEL K. KRONBERGER received
his MSc. in computer science in 2005 from
Johannes Kepler University Linz, Austria.
His research interests include parallel
evolutionary algorithms, genetic
programming, machine learning and data

mining. Currently he is a research associate at the
Research Center Hagenberg of the Upper Austrian
University of Applied Sciences.

STEPHAN M. WINKLER received his
MSc in computer science in 2004 and his
PhD in engineering sciences in 2008, both
from JKU Linz, Austria. His research
interests include genetic programming,
nonlinear model identification and

machine learning. Currently he is research associate at
the Research Center Hagenberg of the Upper Austrian
University of Applied Sciences, working on the
research program L284-N04 “GP-Based Techniques for
the Design of Virtual Sensors”, a research project
funded by the Austrian Science Fund (FWF).

MICHAEL AFFENZELLER has
published several papers and journal
articles dealing with theoretical aspects of
evolutionary computation and genetic
algorithms. In 1997 he received his MSc in
mathematics and in 2001 his PhD in

engineering sciences, both from JKU Linz, Austria. He
is professor at the Upper Austria University of Applied
Sciences (Campus Hagenberg) and associate professor
at the Institute of Formal Models and Verification at
JKU Linz since his habilitation in 2004.

STEFAN WAGNER also received his
MSc in computer science in 2004 from
Johannes Kepler University Linz, Austria.
He currently holds the position of an
associate professor at the Upper Austrian
University of Applied Sciences (Campus

Hagenberg). His research interests include evolutionary
computation and heuristic optimization, theory and
application of genetic algorithms, machine learning and
software development.

99

