
AN APPROACH FOR FAULT DETECTION IN DEVS MODELS

Diego M. Llarrull(a), Norbert Giambiasi (b)

(a) CIFASIS - CCT-CONICET. 27 de Febrero 210 bis. S2000EZP - Rosario
(b) LSIS - UMR CNRS 6168. University Paul Cézanne

(a) diego.llarrull@lsis.org, (b) norbert.giambiasi@lsis.org

ABSTRACT

The aim of this paper is to present a first approach for
building distinguishing, homing, and synchronizing
sequences for a subset of DEVS models, in order to
apply to them the fault detection techniques developed
on Mealy machines. After the definition of the
considered subset of DEVS (called MealyDEVS), we
present the extension of fault detection techniques on
this DEVS subset.

Keywords: DEVS, fault detection, Mealy machines,
black-box testing.

1. INTRODUCTION
The design of real-time discrete event control systems is
a process that requires dedicated formalisms and
adapted tools. In particular, the DEVS formalism is
convenient for the low-level phase of the design process
since it provides a suitable simulation framework, thus
enabling the possibility of validating models by
simulation.
 In (Dacharry and Giambiasi 2005), a formal
methodology for the design and verification of control
systems is presented. With this methodology, a high-
level specification of a system to be designed is
constructed using a network of timed automata, and the
corresponding implementation is expressed as a coupled
DEVS model. This makes it possible to formally verify
the conformance of critical components (atomic DEVS
models against timed automata) and the conformance of
the whole model. Nevertheless, due to the state
explosion problem that frequently appears in the
verification of models that deal with a dense time base,
the automatic verification of the conformance between
the high-level and the low-level models is unfeasible in
the general case.
 Despite this discouraging result, a partial automatic
validation of the conformance relation between an
implementation and its specification is possible, for
example, by generating test cases on a high-level
specification and applying these tests to the low-level
model description. Several formalisms have a
developed theory of fault detection techniques. Most of
them are related to Mealy Machines, which have been
widely used for testing purposes in various domains.
Mealy Machines are based on the hypothesis of
simultaneous input/output events and are untimed
models.

 Our proposal is then to allow the use of fault
detection techniques on timed models of higher
complexity. In this paper we will extend the theory
presented by (Kohavi 1978) to a subset of the models
that can be represented using the DEVS formalism.
The paper is organized as follows: in Section 1 we
recall the existing theory, together with the tools and
concepts that will be necessary to extend it. In Section
2, we introduce a subset of the DEVS formalism that we
take under consideration, and we adapt and extend the
existing methods, concepts and definitions to this
subset. In Section 3, we propose an extension of the
first subset of models in order to enlarge the spectrum
of models to which the theory of fault detection can be
applied, and we briefly show some considerations about
the implementation of these testing methods. Finally,
we conclude the paper.

2. PRELIMINARIES

2.1. Mealy Machines
A Mealy Machine (Kohavi 1978, Lee et al 1996) is
formally stated as a quintuple (, , , ,)M I O S where I,
O and S are finite and nonempty sets of input symbols,
output symbols, and states respectively, : S I S is
the state transition function and : S I O is the
output function.

When the machine is in a current state is S and
receives an input a I it moves to the next state

js specified by (,)i js a s and produces immediately the
output y specified by (,)is a y .

2.1.1. Execution fragments and Traces
In the following, some concepts that will be useful in
the subsequent sections are recalled (Kohavi 1978,
Lynch and Vaandrager 1993a, Lynch and Vaandrager
1993b) in order to adjust them to the syntax used by the
DEVS formalism and the concepts of executions and
traces as defined in (Dacharry and Giambiasi 2005).
Definition 2.1 (Execution fragment) Let

(, , , ,)X Y S be a Mealy machine. Then an
execution fragment for M is a finite or infinite
alternating sequence of the form 0 0 0 1 1 1, , , , , ,...s x y s x y
beginning with a state (and if it is finite also ending
with a state), such that

1{0.. } • , , , (,)i i i i i ii n x X y Y s S s x s

(,)i i is x y

831

Definition 2.2 (Execution of a Mealy machine) Let
(, , , ,)X Y S be a Mealy machine. Then an

execution for is a finite execution fragment of that
begins with a starting state. We denote with *()execs ,

()execs , and execs(M) the sets of finite, infinite, and
all executions of , respectively
Definition 2.3 (Reachability of a state) Let

(, , , ,)X Y S be a Mealy machine, and
last a function such that plast() is the last element of
the finite sequence . Then a state is S is reachable
if s last() for some finite execution of
Definition 2.4 (Trace) Let (, , , ,)X Y S be
a Mealy machine, an execution fragment of and

states() the set of states that appear in . Let be
the sequence consisting of the events in . Then

trace() is defined to be the tuple I O (,) consisting of
the members of , where

j j j jO O I I j j I Oa a s states s a a , , () • (,)
Moreover, a finite or infinite tuple is a trace of
if has an execution with = traces () . We
denote with * ()traces , () traces and ()traces
the sets of finite, infinite, and all traces of ,
respectively.

2.1.2. Minimality - State Equivalence (Kohavi 1978)
Definition 2.5 (Distinguishing sequence) Two states

is and js of a Mealy machine are distinguishable
if and only if there exist at least two execution
fragments and of with () = (,)I O

 traces ,

() = (,)I O
 traces where first() = is ,

first() = js , =I I
 and O O

 . I
 (= I

) is

called a distinguishing sequence of the pair (,)i js s . If
there exists for pair (,)i js s a distinguishing sequence
of length k, then the states in (,)i js s are said to be k-
distinguishable.
Definition 2.6 (k-equivalence of states) Two states si

and js of a Mealy machine M are k-equivalent if and
only if they are not k-distinguishable.
Definition 2.7 (Equivalence of states) Two states is
and js of a Mealy machine are equivalent if and

only if they are k-equivalent 0k . In other words,
is and js are equivalent if and only if, for every

possible input sequence, the same output sequence will
be produced regardless of whether is or js is the
initial state.

Definition 2.8 (Equivalence of Mealy machines) Two
Mealy machines 1 and 2 are equivalent if and only

if, for every state in 1 , there is a corresponding
equivalent state in 2 , and vice-versa.
Definition 2.9 (Minimal Mealy machine) A Mealy
Machine is minimal (reduced) if and only if no two
states in it are equivalent. Additionally, the Mealy
machine 1 which contains no equivalent states and is
equivalent to the Mealy machine 2 is said to be the
minimal, or reduced form of 2 .

Figure 1: Mealy machine (a) with its associated
transition table (b). Resulting minimal Mealy machine
(c) after the deletion of 2p which is equivalent to 3p
and the resulting transition table (d).

2.2. Labelled Timed Transition Systems

Definition 2.10 (Labelled Timed Transition System) A
labelled timed transition system t is an automaton
whose alphabet includes . The transitions

832

corresponding to symbols from are referred to as
time-passage transitions, while non-time-passage
transitions are referred to as discrete transitions. So, a
labelled timed transition system consists of:

S a possibly infinite set of states,
INIT an initial state,
 a set of discrete actions,

D a set of discrete transitions, noted
x

s s , where

t
x

and ,
t

s s S , asserting that

 “from state s the system can instantaneously
move to state s' via the occurrence of the event
x”, and

T a set of time-passage transitions, noted
t

s s ,
where t and ,

t
s s S , asserting that

 “from state s the system can move to state s'
during a positive amount of time t in which no
discrete events occur”.

 A labelled timed transition system is assumed to
satisfy two axioms.

S1 If
t

s s and
t

s s

 , with ,t t , then
t t

s s

 .

S2 Each time-passage step,
t

s s , with t ,
has a trajectory, where a trajectory describes
the state changes than can occur during time-
passage transitions. If I is any closed interval of

0
 beginning with 0, an Itrajectory is defined

as a function, :v I S such that:

 () () , | <
t t

v t v t t t I t t

 It will be useful for our purposes to abstract away
the quantitative aspect of time in LTSs. The relationship
concerned is called Delay Time-Abstracting
Bisimulation (Tripakis 2001).

Definition 2.11 (Delay Time-Abstracting
Bisimulation) Consider a labelled timed transition
system A with sets of discrete transitions D and time-
passage transitions E. A binary relation on the states
of A is a delay time-abstracting bisimulation (DTaB) if,
for all states 1 2s s , the following conditions hold:

1. if
1

1 3

d

s s , for some 1d D then there exists

1 E and 2d D such that
1 2

2 4

d

s s

 and

3 4s s ;

2. if
1

1 3s s

 , for some 1 E then there exists

2 E such that
2

2 4s s

 and 3 4s s ;

3. The above conditions also hold if the roles of
1s and 2s are reversed.

 Then, the states 1s and 2s are said to be DTa-
bisimilar. In general, two TTSs 1 and 2 are said to
be DTa-bisimilar if there exists a DTaB on the states
of 1 and 2 such that 1 2

0 0s s , where 0
is is the initial

state of i .

2.3. DEVS formalism
A DEVS model (Zeigler 2000) is a structure

= , , , , , ,int extM X S Y ta where

 X is the set of input values
 S is a set of states,
 Y is the set of output values
 :int S S is the internal transition function
 :ext Q X S is the external transition

function, where
 = {(,) | , 0 ()}Q s e s S e ta s is the total

state set
 e is the time elapsed since the last transition
 : S Y is the output function
 0:ta S is the time advance function.

 The interpretation of these elements is the
following: at any time the model is in some state, s. If
no external event occurs the model stay in state s for
time ta(s). Notice that ta(s) could be a real number. But
it can also take on the values 0 and . Depending on the
value of ta(s), an atomic DEVS model has two kinds of
states:

 Passive States: A state s S is called passive
iff ta(s) = and no internal transition is
defined in it. The set of all passive states of a
DEVS model is referred to as pS .

 Active States: A state sS is called active iff
ta(s) . The set of all active states of a
DEVS model is referred to as aS .

When the elapsed time in the current state, e, equals
ta(s), the system outputs the value, (s), and changes to
state ()int s . If an external event x occurs before
e = ta(s), the model transits into the state (, ,)ext s e x .

 The dense-time characteristics of DEVS models
impose a restriction in the tractability of the problem of
fault detection techniques in the most general case. It is
then necessary to reduce the subset of DEVS models to
those models where these techniques can be applied in
an efficient way.

2.3.1. Execution fragments and Traces for DEVS

model (Giambiasi and Dacharry 2007):

833

Definition 2.12 (Execution fragment of a DEVS
model) Let = (, , , , , ,)ext intX Y S ta
be a DEVS model. Then an execution fragment for D is
a finite alternating sequence 0 1 1 2 2= n nv x v x v x v
where:

 time-passage transitions: Each vi is a

function from a real interval = [0,]i iI t to the
set of total phases of D, such
that , | <ij j I j j , if () = (,)iv j s e then

() = (,)iv j s e j j
 event transitions: Each xi is an input or output

event, and if 1 1(,) = ((),i is e v sup I
(,0) = (())i is v inf I , one of the following
conditions hold:

1. , () = ,i intx Y s s ta(s)=e, and () = is x .
2. , (, ,) = ,i ext ix X s e x s and e ta(s).

The definitions of execution and state reachability of
DEVS models are analogous to those of Mealy
machines. However, due to the timed nature of DEVS
models, the definitions of traces and distinguishability
of states are more complex (Giambiasi and Dacharry
2007):

Definition 2.13 (Trace of a DEVS) Let

= (, , , , , ,)ext intX Y S ta be a DEVS model,
0 1 1 2 2= n nv x v x v x v an execution fragment of D.

Then trace () is defined to be a tuple , ,)I O t (such
that I and O are sequences consisting of all pairs of
events of and their time of occurrence, sorted in
chronological order of occurrence, and t is the total
time of execution, defined as

0 j n (sup ()jI).

Formally, the time of occurrence of an event ix of is
equal to

0 <j i (sup ()jI), with jI the domain of jv .

The set of all traces of a DEVS model is
defined as traces () = { trace () | execs () } .

2.3.2. Associated Transition System for a DEVS

model
The semantics of a DEVS model can be clearly stated
by means of its associated Timed-Transition System
(Giambiasi and Dacharry 2007).

Definition 2.14 (Associated Transition System) Given
a DEVS model D its associated transition system is
defined over the alphabet = X Y , Taut(D) as a
labeled timed transition system t , where:

1. the set of states,
 t
S , consists of the set of total

phases of D , Q ,

2. the initial phase, init(t) is (s,0), where
s S , and s is the discrete phase defined as
the initial phase of the DEVS model,

3. the set of discrete transitions,
t

D

= {(,) (,0)|(() =
x

intt
D s e s s s

() = = ())s x e ta s or
(((,),) = ())}ext s e x s e ta s

4. the set of time-passage transitions,
t

T ,

5. = {(,) (,) | (,) , = ,
t

t
T s e s e s e Q e e t

0 ()e t ta s }

The labelled timed transition system associated with a
DEVS model, as defined above, specifies the same set
of traces as its corresponding DEVS model (Giambiasi
and Dacharry 2007).

3. MEALYDEVS
The basic idea for constructing a DEVS model which
behaves exactly like a Mealy machine is that of forcing
an immediate input/output response. As a consequence,
the subset of DEVS models that we consider first
consists only of such models where as S ta(s)=0.
For the models of this subset, all active states are
transitory. Transitory states are said to be input-
blocking (Giambiasi and Dacharry 2005). That is, the
MealyDEVS model does not stay in an active state; it
appears (externally) to be always ready for input. Then,
every state transition of a Mealy machine

= (, , , ,)I O S that has the form
/x y

i js s , where x I , y O , is , js S

and x/y means that the input event x is received and the
output event y is sent in this transition, is translated into
two transitions in the corresponding DEVS model

=< , , , , , , >int extX Y S ta
 :

 An external transition of the form
/

,

x

i i xs s

where ,(, ,) =ext i i xs e x s

, i ss S

,

0 { }e , x X and ,i x as S

.

 An internal transition of the form
/

,

y

i x js s

where ,() =int i k js s

, ,() =i ks y , ,i k as S

,

y Y and j ss S

.

This translation is possible provided the following
constraints are satisfied: firstly, it is needed that both
models have the same input and output event sets (that
is, = =I X O Y), and the set of passive states of
D has to be equal to the set of all states of M
(= sS S

). It is also required that for each possible

834

transition (,) =i js x s of M there exist two transitions
in D ,

(, ,)ext is e x

 and ,()int i xs

 such that

0 ,(,) = { } (, ,) =i j ext i i xs x s e s e x s

and ,() =int i x js s

. Finally, for each possible output

event y I such that (,) =is x y it is required an
analogous output event in D (in symbols,

,(,) = () =i i xs x y s y).
Note that in this subset of atomic DEVS models the

external transition function does not depend on the
elapsed time. That is, 0; , { }i ps S e e

(, ,) = (, ,)ext i ext is e x s e x .
The subset of DEVS models which capture this

behaviour is called MealyDEVS and is formally defined
as:

Definition 3.1 (MealyDEVS) A DEVS model

= (, , , , , ,)ext intX Y S ta is a MealyDEVS
model if and only if

 = aS S (active states) pS (passive
states).

 0: { }ext p aS X S where

 0; , { }i ps S e e

(, ,) = (, ,)ext i ext is e x s e x
 :int a pS S
 : aS Y where

() = 0j a js S ta s
(All active states are transitory)

Figure 2: Transition diagram for a Mealy machine and
its corresponding MealyDEVS model.

We consider only completely specified models.

 It is straightforward that every Mealy machine has
the same input/output behaviour as its corresponding
MealyDEVS model.
Remark: The previous definitions and procedures can
be applied to untimed DEVS (Giambiasi and Dacharry
2007).

4. EXTENDED MEALYDEVS
It should be clear that the MealyDEVS subset represents
a tiny subset of the systems than can be modelled using
the DEVS formalism. It is then of major interest to

expand this subset in order to apply fault detection
techniques for a wider range of DEVS models.

We consider now a subset called Extended
MealyDEVS. In this subset, the considered DEVS
models have a time advance function which can take
arbitrary finite values on active states (in symbols:

i as S ta ()is 0
).

Definition 4.1 (Extended MealyDEVS) A DEVS
model = (, , , , , ,)ext intX Y S ta is an
Extended MealyDEVS if and only if

 = a pS S S where
 =a pS S

 0: { }ext p aS X S where

0; , { }i ps S e e
 (, ,) = (, ,)ext i ext is e x s e x

 :int a pS S
 : aS Y
 0: { }ta S where

() =i p is S ta s and

0 | () <j a jk s S ta s k (ta takes
finite real values on active states).

It is necessary to define a special kind of timed input

sequence so that it ensures that the input events always
occur when the model is in a passive state. In order to
ensure that a model is in a passive state, the input
has to be delayed for at least kt units of time, where kt =
min { | > }x t and = { () | }i i at max ta s s S , which
is the maximum time that can elapse before the model
reaches another passive state. Such a sequence is called
a slow timed input sequence:

Definition 4.2 (Slow timed sequence) Let

=< , , , , , , >int extX Y S ta
 be a DEVS

model, where aS S . A timed sequence for is a
finite series of the form 0 0 1 1< (,), (,),.., (,) >n nx t x t x t
such that

0 1{0.. } {0.. } >i i i ii n x X i n t t t k

where = (() |)a a ai i
k max ta s s S

In order to formally explicit the relation between a
MealyDEVS model and an Extended MealyDEVS
model, we show subsequently the existence of a Delay
Time-Abstracting Bisimulation (Tripakis and Yovine
2001) between them.

Theorem 4.1: The MealyDEVS model

= (, , , , , ,)ext intX Y S ta is DTa-bisimilar to
the Extended MealyDEVS model

= (, , , , , ,)ext intX Y S ta which only differs
from D in the values of ta(s).

835

Proof: Since and have identical ext and int
functions, it is straightforward that:

 For each time-passage transition of the form
1

s s

 in , where 1 0 there is a

corresponding transition
1

s s

 in , where
s is a passive state and since there are no
internal transitions in this kind of states.

 For each discrete transition of the form

0 0,

xi

xi
s s where = 1..i xx X i n there is a

corresponding discrete transition of the form

0 0,

xi

xi
s s in .

 For each discrete transition of the form

0, 1

yi

x xi i
s s

 where = 1..i yy Y i n there is a

pair composed of a time-passage transition of

the form
2

0, 0,x xi i
s s

 , where 2 0,= ()xi
ta s

and the corresponding discrete transition of the

form 0, 1

yi

x xi i
s s

 .

Then, the relation : X X
 such that

[]i is s provides a DTaB between and .

4.1. Minimality on Extended MealyDEVS models
For an Extended MealyDEVS model D, if two passive
states of D are distinguishable, all the active states to
where they can transition will be distinguishable among
each other. Then, for our distinguishing purposes, we
consider only passive states

Definition 4.3 (Distinguishing sequence) Two passive
states is and js of an extended MealyDEVS model D
are distinguishable if and only if there exists at least
two execution fragments

0 1 1 2 2
=

n n
v x v x v x v and

0 1 1 2 2
=

n n
v x v x v x v of with trace()

= (, ,)I O t
 , trace() = (, ,)I O t

 where

0
() = (,iv e s ta ())is

0
e I ,

0
() = (,jv e s ta ())js

0
e I , =I I

 and

()O O
 . The timed sequence I

 (and I
) is

called a distinguishing sequence of the pair (,)i js s . If
there exists for pair (,)i js s a distinguishing sequence of
length k, then the states in (,)i js s are said to be k-
distinguishable.

Lemma 4.1 In the previous definition, I
 (and also

I
) are slow timed input sequences.

 It should be straightforward to verify that this
definition takes into account the discrepancies in the
values of ta for active states: if ta ,()i xs ta ,()j xs for
some , ,,i x j x as s S then they will unavoidably force

,i j ps s S to be distinguishable, since the output trace
of ,i Osi

s , will have the form

(=< , (,), >) (=< , (,), >)O i O isi sj
x t x t ,

where Osj
 is the output trace of js and

| |> 0 () > 0it .
This lemma allows us to define a procedure to be

used for distinguishing states in Extended MealyDEVS
models.

4.1.1. Minimization procedure for Extended

MealyDEVS models
A state transition table can be used to represent the
functions of an Extended MealyDEVS model, but in
this case, we add, in the table, the value of the lifetime
of the next active state (
Figure 3). The minimization procedure defined in
(Kohavi 1978) is extended in order to take into account
the value of ()ita s (lifetime of the state is).

State x = a x = b
s1 s2, 5, v s3, 6, u
s2 s4, 5, u s4, 3, v
s3 s4, 5, u s4, 3, v
s4 s4, 3, v s4, 3, u

Figure 3: An Extended MealyDEVS model with its
associated transition table.

836

State x = a x = b
s1 s3, 5, v s3, 6, u
s3 s4, 5, u s4, 3, v
s4 s4, 3, v s4, 3, u

Figure 4: Resulting minimal Extended MealyDEVS
model (c) after the deletion of 2s (which is equivalent to

3s), 2,as and 2b
s , and the resulting transition table (d).

4.2. Fault detection techniques on Extended

MealyDEVS models

4.2.1. Experiments on Extended MealyDEVS
models

We introduce the concept of a timed relative input
sequence in order to refer not to the absolute time of
each event, but to its relative time with respect to the
previous input event. Given a timed input sequence

0 0 1 1= (,), (,), , (,)n nx t x t x t , we refer not to , but to
rel(), where the function rel is defined as follows:

rel 0 0 1 1((,), (,), , (,))n nx t x t x t

0 0 1 1 0 1= (,), (,), , (,)n n nx t x t t x t t

It is easy to show that rel is bijective, so it is
equivalent to talk either about or about rel() as we
can easily define rel 1 () . Then, we say that a timed
relative input sequence is slow on an Extended
MealyDEVS model D iff rel 1 () is slow on D .

With the previous remark, we will define the
experiments for Extended MealyDEVS models:

Definition 4.4 (Preset Experiment) A timed relative
input sequence *

0()X of the form

0 0(,),.., (,)n nx t x t defines a preset experiment when an
Extended MealyDEVS model D receives it as input. The
sequence of output events (the output trace) that D
generates in response to is the result of the
experiment.
 For example, the following sequence constitutes an
experiment when inputted:

= (,0)(, 2)(,1) .a b c
This experiment is to be interpreted as follows:

Issue input a; wait 0 units of time; issue
input b; wait 2 units of time; issue c; wait 1
unit of time; collect the observed output.

It is straightforward that not all sequences that belong to
*

0()X can be applied to a given Extended
MealyDEVS model. The subset of sequences that can
be accepted constitutes the set of valid experiments:

Definition 4.5 (Valid Preset Experiment) A timed
relative input sequence *

0()X of the form

0 0(,),.., (,)n nx t x t defines a valid preset experiment

when an Extended MealyDEVS model D receives it as
input iff = 0.. > =ii n t k max { () | }ata s s S .

That is to say, a timed input sequence will define a valid
experiment if and only if it is slow on D.
An adaptive experiment is defined as follow:

Definition 4.6 (Adaptive Experiment) A timed
relative input sequence *

0()X of the form

0 0(,),.., (,)n nx t x t defines an adaptive experiment when
an Extended MealyDEVS model D receives it as input,
and provided that there exists a function

:f Seq ()X Y X

such that 0 1= 2.. | = (,.., ,)i i i ii n y Y x f x x y

 That is to say that the value of the thi input event in
 depends on all the previous input events and on an
(unspecified) output event. The sequence of output
events (the output trace) that D generates in response to
 is the result of the experiment.

Definition 4.7 (Valid Adaptive Experiment) An
adaptive experiment which consists of inputting the
sequence 0 0= (,), .., (,)n nx t x t into an Extended
MealyDEVS model = (, , , , , ,)ext intX Y S ta
is considered to be valid if it is slow on D and its
function f satisfies the following property:

 1 0 0 0 0 0= (,) = ((, ,))extx f x y y s e x

 0 1 1= (,.., ,)i i ix f x x y

1 0 2 2 1= (((,.., ,), ,))i ext i i iy f x x y e x

 That is to say that the value of the thi input event in
 depends on all the previous input events and the last
output event that the model generated. This is equal to
saying that the thi input event depends on all the output
events that the Extended MealyDEVS model has
generated so far.

Depending on the results obtained at the end of an
experiment, it can be classified into different categories:
let state be the function defined as:

0: pstate S

0(0) =state s

1() = (((1), ,))int ext nstate n delta state n e x
 > 0n

then the following categories of experiments are
defined:

Definition 4.8 (Distinguishing Experiment) A valid
experiment which consists of inputting the timed
relative sequence 0 0= (,), .., (,)n nx t x t into an

837

Extended MealyDEVS model
= (, , , , , ,)ext intX Y S ta , and whose result

is the output sequence is distinguishing if there exists
an injective function : () () pfirst Seq X Seq Y S
such that first(,) = state(0) .

Definition 4.9 (Homing Experiment) A valid
experiment which consists of inputting the timed
relative sequence 0 0= (,), .., (,)n nx t x t into an
Extended MealyDEVS model

= (, , , , , ,)ext intX Y S ta , and whose result
is the output sequence is homing if there exists an
injective function : () () plast Seq X Seq Y S such
that last(,) = state(n+1) .

Definition 4.10 (Synchronizing Experiment) A valid
experiment which consists of inputting the timed
relative sequence 0 0= (,), .., (,)n nx t x t into an
Extended MealyDEVS model

= (, , , , , ,)ext intX Y S ta , and whose result
is the output sequence is synchronizing for state

k ps S if there exists a function
: () () plast Seq X Seq Y S such that last(,)

= ks .

4.2.2. Sequence Finding

In order to perform a homing experiment for an
Extended MealyDEVS model, the procedure described
in (Kohavi 1978) can be utilized in a straightforward
way, by considering the uncertainty of the model to be
composed of all passive states in it.

By applying the algorithm given in (Kohavi 1978), a
preset homing sequence can be designed for minimal
Extended MealyDEVS models by adjoining, to each
input event, a value > =kt t max {ta ()s | }as S .
Thus, we extend the requirements on the models to be
tested (Kohavi 1978, Lee and Yannakakis 1996) so as
to have t as a given value.

As an example, we give a Mealy machine M, its
associated homing tree, and the resulting homing
sequence for this machine (Figure 5). Secondly, we give
(Figure 6) an Extended MealyDEVS model (which has
a delay time-abstracting bisimulation relation with M),
and the resulting homing sequence (note that

= { () | } = 9a a ai i
k max ta s s S . Then, every waiting

value after an input event should be > 9).

Figure 5: A Mealy machine with its homing tree,
associated transition table, and a homing sequence for
it.

838

Figure 6: Extended MealyDEVS model derived from
the one in Figure 5 with its homing tree, associated
transition table, and one possible homing sequence ()
for it.

Given the previous considerations on the timed nature
of sequences, both distinguishing and synchronizing
sequences can be obtained by using the methods and
algorithms described in (Kohavi 1978, Lee and
Yannakakis 1996) and afterwards adjoining the time
components as was previously described in this section.
It is straightforward to prove that all the properties and
theorems are valid for Extended MealyDEVS models.
In particular, the following results are valid also for
Extended MealyDEVS models:

Theorem 4.2: A preset homing sequence, whose length
is at most 2(1)n , exists for every minimal Extended
MealyDEVS model , where n is the number of
passive states in .
Theorem 4.3: If there exists a synchronizing sequence
for an Extended MealyDEVS model D that has n
passive states, then its length is at most 2(1) / 2n n .

Proof: See (Kohavi 1978).
The following result sums up the preceding discussion:

Theorem 4.4: Let 1 2= .. nx x x be either a
synchronizing, homing, preset distinguishing or
adaptive distinguishing sequence for a Mealy Machine
M. Then the sequence 1 1 2 2= (,) (,)..(,)n nx t x t x t
obtained from is, respectively, either a synchronizing,
homing, preset distinguishing or adaptive
distinguishing sequence for the Extended MealyDEVS
model D obtained from M if =t max
{ ()| } < , = 1..a ita p p S t i n .

4.2.3. Testing procedure
In order to be able to represent the behaviour defined by
the semantics of a timed sequence, it is necessary to
model a tester (Krichen and Tripakis 2005), that is, a
DEVS model that emits the events (at a specified time)
needed to test a given Extended MealyDEVS model.

The general scheme of the coupling between a tester
and the model to be tested is:

Figure 7: Coupling scheme of an Extended MealyDEVS
model and a valid tester for it.

And the tester for a given PX is defined as follows:

Definition 4.11 (DEVS tester model) Given a PX

0 0 1 1= (,), (,), , (,)n nx t x t x t , its associated tester is the
DEVS model =< , , , , , , >int extX Y S ta

 ,

where:
 = { }X Reset (Event that restores the tester to

its initial state)
 0 1= , , , nY x x x
 0 1= , , , n STOPS s s s s
 0(, ,)ext is e x s

 (Restores the tester to its

initial state)

 1
 int () i

i
STOP i STOP

s if i n
s

s if i n s s

 1

0 0
 1

() ..i i i STOP

i STOP

if i
ta s t if i n s s

if s s

() i i STOP
i

i STOP

x if s s
s

if s s

(() ,

())
i

T STOP

The case s never happens
as ta s

 As an example, the tester that implements the
experiment = (a,0)(b,2)(c,1) is given in figure 8.

Figure 8: Tester for the preset experiment (PX)
 = (a,0)(b,2)(c,1).

If we take into account the fact that after the tester
sends the output event ix , the Extended MealyDEVS

839

model under test will transition up to the passive state
1is , then it is assured that the Extended MealyDEVS

model will remain in the same state until the tester
issues the output event 1ix (in case it exists).

In order to implement a valid adaptive experiment
for an Extended MealyDEVS model, the basic idea is to
define a tester which represents the decision tree
associated with the adaptive experiment (Kohavi 1978).
It is then required to have one active state for each node
in the tree (that is, one node for each possible
uncertainty in the tree). Each such state will output the
event that the Extended MealyDEVS model under test
is going to receive in order to solve the uncertainty.
Additionally, each of these states will (internally)
transition to a passive state that represents the response
of the model under test. That is, it will be able to receive
any of the possible output events that the Extended
MealyDEVS model will generate (in order to do this,
the output of the tested model needs to be connected to
the tester’s input). Depending on the value of the
received event, the tester will transition to one of the
active states that represent the consequential
uncertainties (the nodes one that are one level lower).
Finally, all the leaf nodes have to be represented as
passive states which only accept the RESET event in
order to reinitialize the experiment. The following
figure shows a concrete example of an adaptive tester:

Figure 9: Sample adaptive experiment and
corresponding DEVS tester model.

5. CONCLUSION

In this paper, we have proposed a first approach,
on a subset of DEVS models, on which we can apply
extensions of fault detection techniques from Mealy
machines.

For the given subset of DEVS models to which the
theory of black-box testing can be applied, we have
proposed:

 a proper extension and formalization of the
concepts of homing, distinguishing and
synchronizing sequences,

 the preset and adaptive experiments that the
three previously mentioned types of sequences
allow for.

 Finally, we have given the procedure and structure
of the DEVS models that implement the testing
procedure for both preset and adaptive fault detection
experiments.

 Further lines of work involve expanding the
proposed approach to more general DEVS and to define
the limitations of these techniques in a timed formalism
as DEVS in order to clearly define the broadest possible
subset of DEVS models which can be black-box tested.

REFERENCES
Dacharry, H. P. and Giambiasi, N., 2005. Formal

verification with timed automata and DEVS
models: a case study. ASSE 2005 Simposio
Argentino de Ingeniería de Software - 34 JAAIO
Jornadas Argentinas de Informatica e
Investigacion Operativa, pp. 251–265. August 24
– September 2, Rosario (Santa Fe, Argentina).

Dacharry, H.P. and Giambiasi, N., 2007. DEVS based
timed hierarchy of formalisms. Proceedings of the
International Modeling and Simulation
Multiconference 2007 (IMSM07). SCS -- The
Society for Modeling and Simulation
International. February 8-10. Buenos Aires
(Argentina).

Giambiasi, N., Dacharry, H.P., 2007. DEVS and Timed
Automata for the Design of Control Systems.
Robotics Research Trends, Xing P. Guo (Ed.),
Nova Science Publishers, ch. 5, pp. 193-222.

Kohavi, Z., 1978. Switching and Finite Automata
Theory: Computer Science Series. McGraw-Hill
Higher Education.

Krichen, M. and Tripakis, S., 2005. State identification
problems for timed automata. In The 17th IFIP
Intl. Conf. on Testing of Communicating Systems
(TestCom’05), volume 3502 of LNCS. Springer.

Lee, D. and Yannakakis M., 1996. Principles and
methods of testing finite state machines - A
survey. Proceedings of the IEEE, volume 84,
pages 1090–1126.

Lynch, N. A. and Vaandrager, F. W., 1993. Forward
and backward simulations – part I: untimed
systems. Technical Report: CS-R9313, page 35.
Centrum voor Wiskunde en Informatica (CWI).

Lynch, N. A. and Vaandrager, F. W., 1993. Forward
and backward simulations – part II: timing-based
systems. Technical Report: CS-R9314, page 36.
Centrum voor Wiskunde en Informatica (CWI).

Springintveld, J, Vaandrager, F. and D’Argenio, P. R.,
2001. Testing timed automata. Theoretical
Computer Science, 254(1–2):225–257.

Tripakis, S., and Yovine, S., 2001. Analysis of timed
systems using time-abstracting bisimulations.
Formal Methods in System Design, 18(1):25–68.

Zeigler B. P., Praehofer, H. and Kim, T. G., 2000.
Theory of Modeling and Simulation, Second
Edition. Academic Press.

840

