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ABSTRACT 

 
The aim of this paper is to present a first approach for 
building distinguishing, homing, and synchronizing 
sequences for a subset of DEVS models, in order to 
apply to them the fault detection techniques developed 
on Mealy machines. After the definition of the 
considered subset of DEVS (called MealyDEVS), we 
present the extension of fault detection techniques on 
this DEVS subset. 
 
Keywords: DEVS, fault detection, Mealy machines, 
black-box testing. 

 
1. INTRODUCTION 
The design of real-time discrete event control systems is 
a process that requires dedicated formalisms and 
adapted tools. In particular, the DEVS formalism is 
convenient for the low-level phase of the design process 
since it provides a suitable simulation framework, thus 
enabling the possibility of validating models by 
simulation. 
 In (Dacharry and Giambiasi 2005), a formal 
methodology for the design and verification of control 
systems is presented. With this methodology, a high-
level specification of a system to be designed is 
constructed using a network of timed automata, and the 
corresponding implementation is expressed as a coupled 
DEVS model. This makes it possible to formally verify 
the conformance of critical components (atomic DEVS 
models against timed automata) and the conformance of 
the whole model. Nevertheless, due to the state 
explosion problem that frequently appears in the 
verification of models that deal with a dense time base, 
the automatic verification of the conformance between 
the high-level and the low-level models is unfeasible in 
the general case. 
 Despite this discouraging result, a partial automatic 
validation of the conformance relation between an 
implementation and its specification is possible, for 
example, by generating test cases on a high-level 
specification and applying these tests to the low-level 
model description. Several formalisms have a 
developed theory of fault detection techniques. Most of 
them are related to Mealy Machines, which have been 
widely used for testing purposes in various domains. 
Mealy Machines are based on the hypothesis of 
simultaneous input/output events and are untimed 
models. 

 Our proposal is then to allow the use of fault 
detection techniques on timed models of higher 
complexity. In this paper we will extend the theory 
presented by (Kohavi 1978) to a subset of the models 
that can be represented using the DEVS formalism. 
The paper is organized as follows: in Section 1 we 
recall the existing theory, together with the tools and 
concepts that will be necessary to extend it. In Section 
2, we introduce a subset of the DEVS formalism that we 
take under consideration, and we adapt and extend the 
existing methods, concepts and definitions to this 
subset. In Section 3, we propose an extension of the 
first subset of models in order to enlarge the spectrum 
of models to which the theory of fault detection can be 
applied, and we briefly show some considerations about 
the implementation of these testing methods. Finally, 
we conclude the paper. 
 
2. PRELIMINARIES 

 
2.1. Mealy Machines 
A Mealy Machine (Kohavi 1978, Lee et al 1996) is 
formally stated as a quintuple ( , , , , )M I O S   where I, 
O and S are finite and nonempty sets of input symbols, 
output symbols, and states respectively, : S I S    is 
the state transition function and : S I O    is the 
output function. 

When the machine is in a current state is S and 
receives an input a I it moves to the next state 

js specified by ( , )i js a s  and produces immediately the 
output y specified by ( , )is a y  .  

 
2.1.1. Execution fragments and Traces 
In the following, some concepts that will be useful in 
the subsequent sections are recalled (Kohavi 1978, 
Lynch and Vaandrager 1993a, Lynch and Vaandrager 
1993b) in order to adjust them to the syntax used by the 
DEVS formalism and the concepts of executions and 
traces as defined in (Dacharry and Giambiasi 2005). 
Definition 2.1 (Execution fragment) Let 

( , , , , )X Y S        be a Mealy machine. Then an 
execution fragment for M is a finite or infinite 
alternating sequence of the form 0 0 0 1 1 1, , , , , ,...s x y s x y  
beginning with a state (and if it is finite also ending 
with a state), such that 

1{0.. } • , ,  , (  , )i i i i i ii n x X y Y s S s x s          

( , )i i is x y   
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Definition 2.2 (Execution of a Mealy machine) Let 
( , , , , )X Y S        be a Mealy machine. Then an 

execution for is a finite execution fragment of  that 
begins with a starting state. We denote with *( )execs  , 

( )execs  , and execs(M) the sets of finite, infinite, and 
all executions of  , respectively 
Definition 2.3 (Reachability of a state) Let 

( , , , , )X Y S        be a Mealy machine, and 
last a function such that plast( ) is the last element of 
the finite sequence  . Then a state is S   is reachable 
if s  last( )  for some finite execution   of   
Definition 2.4 (Trace) Let ( , , , , )X Y S        be 
a Mealy machine,   an execution fragment of   and 

states( )  the set of states that appear in  . Let   be 
the sequence consisting of the events in  . Then 

trace( )  is defined to be the tuple I O ( , )  consisting of 
the members of  , where 

j j j jO O I I j j I Oa a s states s a a       , , ( ) • ( , )  
Moreover, a finite or infinite tuple   is a trace of   
if   has an execution   with =   traces ( )  . We 
denote with * ( )traces , ( ) traces  and ( )traces  
the sets of  finite, infinite, and all traces of  , 
respectively. 
 
2.1.2. Minimality - State Equivalence (Kohavi 1978) 
Definition 2.5 (Distinguishing sequence)  Two states 

is  and js  of a Mealy machine   are distinguishable 
if and only if there exist at least two execution 
fragments   and  of   with ( ) = ( , )I O 

  traces , 

( ) = ( , )I O 
  traces  where first() = is , 

first() = js , =I I 
   and O O 

  . I
  ( = I

 ) is 

called a distinguishing sequence of the pair ( , )i js s . If 
there exists for pair ( , )i js s  a distinguishing sequence 
of length k, then the states in ( , )i js s  are said to be k-
distinguishable.  
Definition 2.6 (k-equivalence of states) Two states si 

and js  of a Mealy machine M are k-equivalent if and 
only if they are not k-distinguishable.  
Definition 2.7 (Equivalence of states)  Two states is  
and js  of a Mealy machine   are equivalent if and 

only if they are k-equivalent 0k   . In other words,  
is  and js  are equivalent if and only if, for every 

possible input sequence, the same output sequence will 
be produced regardless of whether is  or js  is the 
initial state.  

 
Definition 2.8 (Equivalence of Mealy machines)  Two 
Mealy machines 1  and 2 are equivalent if and only 

if, for every state in 1 , there is a corresponding 
equivalent state in 2 , and vice-versa.  
Definition 2.9 (Minimal Mealy machine) A Mealy 
Machine is minimal (reduced) if and only if no two 
states in it are equivalent. Additionally, the Mealy 
machine 1  which contains no equivalent states and is 
equivalent to the Mealy machine 2  is said to be the 
minimal, or reduced form of 2 .  

 

 
Figure 1: Mealy machine (a) with its associated 
transition table (b). Resulting minimal Mealy machine 
(c) after the deletion of 2p  which is equivalent to 3p  
and the resulting transition table (d). 

 
2.2. Labelled Timed Transition Systems 
 
Definition 2.10 (Labelled Timed Transition System) A 
labelled timed transition system t  is an automaton 
whose alphabet includes  . The transitions 

832



corresponding to symbols from   are referred to as 
time-passage transitions, while non-time-passage 
transitions are referred to as discrete transitions. So, a 
labelled timed transition system consists of: 

S a possibly infinite set of states,  
INIT an initial state,  
 a set of discrete actions,  

D a set of discrete transitions, noted 
x

s s , where 

t
x  

and ,
t

s s S  , asserting that  

  “from state s the system can instantaneously 
move to state s' via the occurrence of the event 
x”, and  

T a set of time-passage transitions, noted 
t

s s , 
where t  and ,

t
s s S  , asserting that 

  “from state s the system can move to state s' 
during a positive amount of time t in which no 
discrete events occur”.  

 
 A labelled timed transition system is assumed to 
satisfy two axioms. 

S1 If 
t

s s  and 
t

s s


  , with ,t t  , then 
t t

s s

 .  

S2 Each time-passage step, 
t

s s , with t  , 
has a trajectory, where a trajectory describes 
the state changes than can occur during time-
passage transitions. If I is any closed interval of 

0
  beginning with 0, an Itrajectory is defined 

as a function, :v I S  such that:  

 ( ) ( ) , | <
t t

v t v t t t I t t


       

 It will be useful for our purposes to abstract away 
the quantitative aspect of time in LTSs. The relationship 
concerned is called Delay Time-Abstracting 
Bisimulation (Tripakis 2001). 

 
Definition 2.11 (Delay Time-Abstracting 
Bisimulation) Consider a labelled timed transition 
system A with sets of discrete transitions D and time-
passage transitions E. A binary relation  on the states 
of A is a delay time-abstracting bisimulation (DTaB) if, 
for all states 1 2s s , the following conditions hold:  

1. if 
1

1 3

d

s s , for some 1d D then there exists 

1 E   and 2d D  such that 
1 2

2 4

d

s s


  and 

3 4s s ;  

2. if 
1

1 3s s


 , for some 1 E  then there exists 

2 E   such that 
2

2 4s s


  and 3 4s s ;  

3. The above conditions also hold if the roles of 
1s  and 2s  are reversed.  

 Then, the states 1s  and 2s  are said to be DTa-
bisimilar. In general, two TTSs 1  and 2  are said to 
be DTa-bisimilar if there exists a DTaB  on the states 
of 1  and 2  such that 1 2

0 0s s , where 0
is  is the initial 

state of i .  
 

2.3. DEVS formalism 
A DEVS model (Zeigler 2000) is a structure 

= , , , , , ,int extM X S Y ta    where 
 
 X is the set of input values  
 S is a set of states,  
 Y is the set of output values  
 :int S S   is the internal transition function  
 :ext Q X S    is the external transition 

function, where  
 = {( , ) | , 0 ( )}Q s e s S e ta s   is the total 

state set  
 e is the time elapsed since the last transition  
 : S Y  is the output function  
 0:ta S   is the time advance function. 

 The interpretation of these elements is the 
following: at any time the model is in some state, s. If 
no external event occurs the model stay in state s for 
time ta(s). Notice that ta(s) could be a real number. But 
it can also take on the values 0 and . Depending on the 
value of ta(s), an atomic DEVS model has two kinds of 
states:  

 Passive States: A state s S is called passive 
iff ta(s) =  and no internal transition is 
defined in it. The set of all passive states of a 
DEVS model is referred to as pS .  

 Active States: A state sS is called active iff 
ta(s) . The set of all active states of a 
DEVS model is referred to as aS . 

When the elapsed time in the current state, e, equals 
ta(s), the system outputs the value, (s), and changes to 
state ( )int s . If an external event x occurs before           
e = ta(s), the model transits into the state ( , , )ext s e x . 

 The dense-time characteristics of DEVS models 
impose a restriction in the tractability of the problem of 
fault detection techniques in the most general case. It is 
then necessary to reduce the subset of DEVS models to 
those models where these techniques can be applied in 
an efficient way.  

 
2.3.1. Execution fragments and Traces for DEVS 

model (Giambiasi and Dacharry 2007): 
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Definition 2.12 (Execution fragment of a DEVS 
model)  Let = ( , , , , , , )ext intX Y S ta          
be a DEVS model. Then an execution fragment for D is 
a finite alternating sequence 0 1 1 2 2= n nv x v x v x v   
where: 

 
 time-passage transitions: Each vi is a 

function from a real interval = [0, ]i iI t to the 
set of total phases of D, such 
that , | <ij j I j j    , if ( ) = ( , )iv j s e  then 

( ) = ( , )iv j s e j j    
 event transitions: Each xi is an input or output 

event, and if 1 1( , ) = ( ( ),i is e v sup I   
( ,0) = ( ( ))i is v inf I , one of the following 
conditions hold: 

 
1. , ( ) = ,i intx Y s s    ta(s)=e, and ( ) = is x . 
2. , ( , , ) = ,i ext ix X s e x s     and e ta(s).  

The definitions of execution and state reachability of 
DEVS models are analogous to those of Mealy 
machines. However, due to the timed nature of DEVS 
models, the definitions of traces and distinguishability 
of states are more complex (Giambiasi and Dacharry 
2007): 

 
Definition 2.13 (Trace of a DEVS) Let 

= ( , , , , , , )ext intX Y S ta          be a DEVS model,  
0 1 1 2 2= n nv x v x v x v   an execution fragment of D. 

Then trace ( )  is defined to be a tuple , , )I O t (  such 
that I  and O are sequences consisting of all pairs of 
events of   and their time of occurrence, sorted in 
chronological order of occurrence, and t is the total 
time of execution, defined as 

0 j n  (sup ( )jI ). 

Formally, the time of occurrence of an event ix  of   is 
equal to 

0 <j i ( sup ( )jI ), with jI  the domain of jv . 

The set of all traces of a DEVS model is 
defined as traces ( )  = { trace ( ) |    execs ( ) } .  

 
2.3.2. Associated Transition System for a DEVS 

model 
The semantics of a DEVS model can be clearly stated 
by means of its associated Timed-Transition System 
(Giambiasi and Dacharry 2007). 

 
Definition 2.14 (Associated Transition System) Given 
a DEVS model D its associated transition system is 
defined over the alphabet = X Y   , Taut(D ) as a 
labeled timed transition system t , where:  

1. the set of states,
 t
S , consists of the set of total 

phases of D , Q ,  

2. the initial phase, init( t ) is (s,0), where 
s S  , and s is the discrete phase defined as 
the initial phase of the DEVS model,  

3. the set of discrete transitions, 
t

D  

= {( , ) ( ,0)|( ( ) =
x

intt
D s e s s s 

( ) = = ( ))s x e ta s     or 
( (( , ), ) = ( ))}ext s e x s e ta s    

4. the set of time-passage transitions, 
t

T , 

5.  = {( , ) ( , ) | ( , ) , = ,
t

t
T s e s e s e Q e e t      

0 ( )e t ta s   }   

The labelled timed transition system associated with a 
DEVS model, as defined above, specifies the same set 
of traces as its corresponding DEVS model (Giambiasi 
and Dacharry 2007). 
 
3. MEALYDEVS 
The basic idea for constructing a DEVS model which 
behaves exactly like a Mealy machine is that of forcing 
an immediate input/output response. As a consequence, 
the subset of DEVS models that we consider first 
consists only of such models where as S   ta(s)=0. 
For the models of this subset, all active states are 
transitory. Transitory states are said to be input-
blocking (Giambiasi and Dacharry 2005). That is, the 
MealyDEVS model does not stay in an active state; it 
appears (externally) to be always ready for input. Then, 
every state transition of a Mealy machine 

= ( , , , , )I O S        that has the form 
/x y

i js s , where x I  , y O  , is , js S    

and x/y means that the input event x is received and the 
output event y is sent in this transition, is translated into 
two transitions in the corresponding DEVS model 

=< , , , , , , >int extX Y S ta       
 : 

 An external transition of the form 
/

,

x

i i xs s


  
where ,( , , ) =ext i i xs e x s


, i ss S


, 

0 { }e    , x X   and ,i x as S


. 

 An internal transition of the form 
/

,

y

i x js s


   
where ,( ) =int i k js s


, ,( ) =i ks y , ,i k as S


, 

y Y   and j ss S


.  

This translation is possible provided the following 
constraints are satisfied: firstly, it is needed that both 
models have the same input and output event sets (that 
is, = =I X O Y    ), and the set of passive states of 
D has to be equal to the set of all states of M 
( = sS S 

). It is also required that for each possible 
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transition ( , ) =i js x s  of M there exist two transitions 
in D , 

 
( , , )ext is e x


  and ,( )int i xs


  such that 

0 ,( , ) = { } ( , , ) =i j ext i i xs x s e s e x s      
 

and ,( ) =int i x js s


. Finally, for each possible output 

event y I   such that ( , ) =is x y  it is required an 
analogous output event in D (in symbols, 

,( , ) = ( ) =i i xs x y s y   ).  
Note that in this subset of atomic DEVS models the 

external transition function does not depend on the 
elapsed time. That is,  0; , { }i ps S e e        

( , , ) = ( , , )ext i ext is e x s e x    .  
The subset of DEVS models which capture this 

behaviour is called MealyDEVS and is formally defined 
as:  

 
Definition 3.1 (MealyDEVS) A DEVS model 

= ( , , , , , , )ext intX Y S ta          is a MealyDEVS 
model if and only if 

 = aS S   (active states) pS  (passive 
states). 

 0: { }ext p aS X S         where  

 0; , { }i ps S e e      

( , , ) = ( , , )ext i ext is e x s e x       
 :int a pS S     
 : aS Y     where  

( ) = 0j a js S ta s      
(All active states are transitory)  

 
 
Figure 2: Transition diagram for a Mealy machine and 
its corresponding MealyDEVS model. 

 
We consider only completely specified models.  

 It is straightforward that every Mealy machine has 
the same input/output behaviour as its corresponding 
MealyDEVS model. 
Remark: The previous definitions and procedures can 
be applied to untimed DEVS (Giambiasi and Dacharry 
2007). 

 
4. EXTENDED MEALYDEVS 
It should be clear that the MealyDEVS subset represents 
a tiny subset of the systems than can be modelled using 
the DEVS formalism. It is then of major interest to 

expand this subset in order to apply fault detection 
techniques for a wider range of DEVS models.  

We consider now a subset called Extended 
MealyDEVS. In this subset, the considered DEVS 
models have a time advance function which can take 
arbitrary finite values on active states (in symbols: 

i as S     ta ( )is  0
 ). 

  
Definition 4.1 (Extended MealyDEVS)  A DEVS 
model = ( , , , , , , )ext intX Y S ta          is an 
Extended MealyDEVS if and only if 

 = a pS S S    where  
 =a pS S     

 0: { }ext p aS X S        where  

0; , { }i ps S e e        
 ( , , ) = ( , , )ext i ext is e x s e x      

 :int a pS S     
 : aS Y     
 0: { }ta S      where  

( ) =i p is S ta s     and 

0 | ( ) <j a jk s S ta s k       (ta takes 
finite real values on active states).  

 
It is necessary to define a special kind of timed input 

sequence so that it ensures that the input events always 
occur when the model is in a passive state. In order to 
ensure that a model   is in a passive state, the input 
has to be delayed for at least kt units of time, where kt = 
min { | > }x t  and = { ( ) | }i i at max ta s s S  , which 
is the maximum time that can elapse before the model 
reaches another passive state.  Such a sequence is called 
a slow timed input sequence: 
 
Definition 4.2 (Slow timed sequence) Let 

=< , , , , , , >int extX Y S ta       
  be a DEVS 

model, where aS S  . A timed sequence for   is a 
finite series of the form 0 0 1 1< ( , ), ( , ),.., ( , ) >n nx t x t x t  
such that 

0 1{0.. } {0.. } >i i i ii n x X i n t t t k
         

where = ( ( ) | )a a ai i
k max ta s s S   

In order to formally explicit the relation between a 
MealyDEVS model and an Extended MealyDEVS 
model, we show subsequently the existence of a Delay 
Time-Abstracting Bisimulation (Tripakis and Yovine 
2001) between them.  

 
Theorem 4.1: The MealyDEVS model 

= ( , , , , , , )ext intX Y S ta         is DTa-bisimilar to 
the Extended MealyDEVS model 

= ( , , , , , , )ext intX Y S ta          which only differs 
from D in the values of ta(s). 
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Proof: Since   and   have identical ext  and int   
functions, it is straightforward that:  

 For each time-passage transition of the form 
1

s s


   in   , where 1 0   there is a 

corresponding transition 
1

s s


  in  , where 
s is a passive state and since there are no 
internal transitions in this kind of states.  

 For each discrete transition of the form 

0 0,

xi

xi
s s   where = 1..i xx X i n  there is a 

corresponding discrete transition of the form 

0 0,

xi

xi
s s   in  . 

 For each discrete transition of the form 

0, 1

yi

x xi i
s s


   where = 1..i yy Y i n   there is a 

pair composed of a time-passage transition of 

the form 
2

0, 0,x xi i
s s



  , where 2 0,= ( )xi
ta s 
   

and the corresponding discrete transition of the 

form 0, 1

yi

x xi i
s s


  . 

Then, the relation : X X  
   such that 

[ ]i is s   provides a DTaB between   and  .  
 
 

4.1.  Minimality on Extended MealyDEVS models 
For an Extended MealyDEVS model D, if two passive 
states of D are distinguishable, all the active states to 
where they can transition will be distinguishable among 
each other. Then, for our distinguishing purposes, we 
consider only passive states 

 
Definition 4.3 (Distinguishing sequence)  Two passive 
states is  and js   of an extended MealyDEVS model D 
are distinguishable if and only if there exists at least 
two execution fragments 

0 1 1 2 2
=

n n
v x v x v x v         and 

0 1 1 2 2
=

n n
v x v x v x v         of   with trace() 

= ( , , )I O t 
  , trace() = ( , , )I O t 

   where 

0
( ) = ( ,iv e s ta ( ))is

0
e I  , 

0
( ) = ( ,jv e s ta ( ))js

0
e I  , =I I 

   and 

( )O O 
  .  The timed sequence I

  (and I
 )  is 

called a distinguishing sequence of the pair ( , )i js s . If 
there exists for pair ( , )i js s a distinguishing sequence of 
length k, then the states in ( , )i js s are said to be k-
distinguishable.  
 

Lemma 4.1 In the previous definition, I
 (and also 

I
 ) are slow timed input sequences.  

 It should be straightforward to verify that this 
definition takes into account the discrepancies in the 
values of ta for active states: if ta ,( )i xs     ta ,( )j xs  for 
some , ,,i x j x as s S   then they will unavoidably force 

,i j ps s S  to be distinguishable, since the output trace 
of ,i Osi

s  , will have the form 

( =< , ( , ), >) ( =< , ( , ), >)O i O isi sj
x t x t       , 

where Osj
  is the output trace of js  and 

| |> 0 ( ) > 0it   . 
This lemma allows us to define a procedure to be 

used for distinguishing states in Extended MealyDEVS 
models.  

 
4.1.1. Minimization procedure for Extended 

MealyDEVS models 
A state transition table can be used to represent the 
functions of an Extended MealyDEVS model, but in 
this case, we add, in the table, the value of the lifetime 
of the next active state ( 
Figure 3). The minimization procedure defined in 
(Kohavi 1978) is extended in order to take into account 
the value of ( )ita s  (lifetime of the state is ). 

 

 
 

State x = a x = b 
s1 s2, 5, v s3, 6, u 
s2 s4, 5, u s4, 3, v 
s3 s4, 5, u s4, 3, v 
s4 s4, 3, v s4, 3, u 

 
Figure 3: An Extended MealyDEVS model with its 
associated transition table. 
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State x = a x = b 
s1 s3, 5, v s3, 6, u 
s3 s4, 5, u s4, 3, v 
s4 s4, 3, v s4, 3, u 

 
Figure 4: Resulting minimal Extended MealyDEVS 
model (c) after the deletion of 2s (which is equivalent to 

3s ), 2,as  and 2b
s , and the resulting transition table (d). 

 
4.2. Fault detection techniques on Extended 

MealyDEVS models 
 

4.2.1. Experiments on Extended MealyDEVS 
models 

We introduce the concept of a timed relative input 
sequence in order to refer not to the absolute time of 
each event, but to its relative time with respect to the 
previous input event. Given a timed input sequence 

0 0 1 1= ( , ), ( , ), , ( , )n nx t x t x t   , we refer not to , but to 
rel(), where the function rel is defined as follows:  

rel 0 0 1 1( ( , ), ( , ), , ( , ) )n nx t x t x t   

0 0 1 1 0 1= ( , ), ( , ), , ( , )n n nx t x t t x t t      

It is easy to show that rel is bijective, so it is 
equivalent to talk either about  or about rel() as we 
can easily define rel 1 ( ) . Then, we say that a timed 
relative input sequence  is slow on an Extended 
MealyDEVS model D iff rel 1 ( )   is slow on D .  

With the previous remark, we will define the 
experiments for Extended MealyDEVS models: 
 
Definition 4.4 (Preset Experiment)   A timed relative 
input sequence *

0( )X    of the form 

0 0( , ),.., ( , )n nx t x t    defines a preset experiment when an 
Extended MealyDEVS model D receives it as input. The 
sequence of output events (the output trace) that D 
generates in response to  is the result of the 
experiment. 
 For example, the following sequence constitutes an 
experiment when inputted:  

= ( ,0)( , 2)( ,1) .a b c    
This experiment is to be interpreted as follows:  

Issue input a; wait 0 units of time; issue 
input b; wait 2 units of time; issue c; wait 1 
unit of time; collect the observed output.  

It is straightforward that not all sequences that belong to 
*

0( )X   can be applied to a given Extended 
MealyDEVS model. The subset of sequences that can 
be accepted constitutes the set of valid experiments:  
 
Definition 4.5 (Valid Preset Experiment) A timed 
relative input sequence *

0( )X    of the form 

0 0( , ),.., ( , )n nx t x t   defines a valid preset experiment 

when an Extended MealyDEVS model D receives it as 
input iff = 0.. > =ii n t k   max { ( ) | }ata s s S  .  

That is to say, a timed input sequence will define a valid 
experiment if and only if it is slow on D.  
An adaptive experiment is defined as follow: 
 
Definition 4.6 (Adaptive Experiment)  A timed 
relative input sequence *

0( )X    of the form 

0 0( , ),.., ( , )n nx t x t   defines an adaptive experiment when 
an Extended MealyDEVS model D receives it as input, 
and provided that there exists a function 

:f   Seq ( )X  Y X    
 

such  that 0 1= 2.. | = ( ,.., , )i i i ii n y Y x f x x y       

 That is to say that the value of the thi  input event in 
 depends on all the previous input events and on an 
(unspecified) output event. The sequence of output 
events (the output trace) that D generates in response to 
 is the result of the experiment.  

 
Definition 4.7 (Valid Adaptive Experiment)  An 
adaptive experiment which consists of inputting the 
sequence 0 0= ( , ), .., ( , )n nx t x t   into an Extended 
MealyDEVS model = ( , , , , , , )ext intX Y S ta          
is considered to be valid if it is slow on D and its 
function f satisfies the following property:  
 

 1 0 0 0 0 0= ( , ) = ( ( , , ))extx f x y y s e x       
 

 0 1 1= ( ,.., , )i i ix f x x y     

1 0 2 2 1= ( ( ( ,.., , ), , ))i ext i i iy f x x y e x        

 That is to say that the value of the thi  input event in 
 depends on all the previous input events and the last 
output event that the model generated. This is equal to 
saying that the thi  input event depends on all the output 
events that the Extended MealyDEVS model has 
generated so far.  

Depending on the results obtained at the end of an 
experiment, it can be classified into different categories: 
let state be the function defined as: 

 
0: pstate S   

0(0) =state s  

1( ) = ( ( ( 1), , ))int ext nstate n delta state n e x    
      > 0n  

  
then the following categories of experiments are 
defined: 

 
Definition 4.8 (Distinguishing Experiment) A valid 
experiment which consists of inputting the timed 
relative sequence 0 0= ( , ), .., ( , )n nx t x t   into an 
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Extended MealyDEVS model 
= ( , , , , , , )ext intX Y S ta          , and whose result 

is the output sequence  is distinguishing if there exists 
an injective function : ( ) ( ) pfirst Seq X Seq Y S     
such that first(,) = state(0)  . 

 
Definition 4.9 (Homing Experiment) A valid 
experiment which consists of inputting the timed 
relative sequence 0 0= ( , ), .., ( , )n nx t x t   into an 
Extended MealyDEVS model 

= ( , , , , , , )ext intX Y S ta         , and whose result 
is the output sequence  is homing if there exists an 
injective function : ( ) ( ) plast Seq X Seq Y S     such 
that last(,) = state(n+1)  . 

 
Definition 4.10 (Synchronizing Experiment) A valid 
experiment which consists of inputting the timed 
relative sequence 0 0= ( , ), .., ( , )n nx t x t    into an 
Extended MealyDEVS model 

= ( , , , , , , )ext intX Y S ta          , and whose result 
is the output sequence  is synchronizing for state 

k ps S   if there exists a function 
: ( ) ( ) plast Seq X Seq Y S     such that last(,) 

= ks  . 

 
4.2.2. Sequence Finding 

In order to perform a homing experiment for an 
Extended MealyDEVS model, the procedure described 
in (Kohavi 1978) can be utilized in a straightforward 
way, by considering the uncertainty of the model to be 
composed of all passive states in it.  

By applying the algorithm given in (Kohavi 1978), a 
preset homing sequence can be designed for minimal 
Extended MealyDEVS models by adjoining, to each 
input event, a value > =kt t max  {ta ( )s  | }as S  . 
Thus, we extend the requirements on the models to be 
tested (Kohavi 1978, Lee and Yannakakis 1996) so as 
to have t as a given value.  

As an example, we give a Mealy machine M, its 
associated homing tree, and the resulting homing 
sequence for this machine (Figure 5). Secondly, we give 
(Figure 6) an Extended MealyDEVS model (which has 
a delay time-abstracting bisimulation relation with M), 
and the resulting homing sequence (note that 

= { ( ) | } = 9a a ai i
k max ta s s S  . Then, every waiting 

value after an input event should be > 9).  
 

 

 
 
Figure 5: A Mealy machine with its homing tree, 
associated transition table, and a homing sequence  for 
it. 
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Figure 6: Extended MealyDEVS model derived from 
the one in Figure 5 with its homing tree, associated 
transition table, and one possible homing sequence () 
for it. 

Given the previous considerations on the timed nature 
of sequences, both distinguishing and synchronizing 
sequences can be obtained by using the methods and 
algorithms described in (Kohavi 1978, Lee and 
Yannakakis 1996) and afterwards adjoining the time 
components as was previously described in this section. 
It is straightforward to prove that all the properties and 
theorems are valid for Extended MealyDEVS models. 
In particular, the following results are valid also for 
Extended MealyDEVS models:  
 
Theorem 4.2:  A preset homing sequence, whose length 
is at most 2( 1)n  , exists for every minimal Extended 
MealyDEVS model   , where  n is the number of 
passive states in  .  
Theorem 4.3:  If there exists a synchronizing sequence 
for an Extended MealyDEVS model D that has n 
passive states, then its length is at most 2( 1) / 2n n . 

Proof: See (Kohavi 1978).  
The following result sums up the preceding discussion:  
 
Theorem 4.4: Let 1 2= .. nx x x    be either a 
synchronizing, homing, preset distinguishing or 
adaptive distinguishing sequence for a Mealy Machine 
M. Then the sequence 1 1 2 2= ( , ) ( , )..( , )n nx t x t x t     
obtained from  is, respectively, either a synchronizing, 
homing, preset distinguishing or adaptive 
distinguishing sequence for the Extended MealyDEVS 
model D obtained from M if =t max 
{ ( )| } < , = 1..a ita p p S t i n   .  

 
4.2.3. Testing procedure 
In order to be able to represent the behaviour defined by 
the semantics of a timed sequence, it is necessary to 
model a tester (Krichen and Tripakis 2005), that is, a 
DEVS model that emits the events (at a specified time) 
needed to test a given Extended MealyDEVS model. 

The general scheme of the coupling between a tester 
and the model to be tested is: 

 
 
Figure 7: Coupling scheme of an Extended MealyDEVS 
model and a valid tester for it. 

And the tester for a given PX is defined as follows: 
 
Definition 4.11 (DEVS tester model) Given a PX 

0 0 1 1= ( , ), ( , ), , ( , )n nx t x t x t  , its associated tester is the 
DEVS model =< , , , , , , >int extX Y S ta       

 , 

where: 
 = { }X Reset  (Event that restores the tester to 

its initial state) 
 0 1= , , , nY x x x  
 0 1= , , , n STOPS s s s s  
 0( , , )ext is e x s 


 (Restores the tester to its 

initial state) 

 1  
 int ( ) i

i
STOP i STOP

s if i n
s

s if i n s s
  

    
 

 1

0 0
 1

 
( ) ..i i i STOP

i STOP

if i
ta s t if i n s s

if s s



   
  

  

 
 
 

( ) i i STOP
i

i STOP

x if s s
s

if s s



  

  

     
  
( ( ) ,

( ) )
i

T STOP

The case s never happens
as ta s

  
 



 

 As an example, the tester that implements the 
experiment  = (a,0)(b,2)(c,1) is given in figure 8. 

 
 

Figure 8: Tester for the preset experiment (PX) 
  = (a,0)(b,2)(c,1). 

If we take into account the fact that after the tester 
sends the output event ix , the Extended MealyDEVS 
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model under test will transition up to the passive state 
1is  , then it is assured that the Extended MealyDEVS 

model will remain in the same state until the tester 
issues the output event 1ix   (in case it exists).  

In order to implement a valid adaptive experiment 
for an Extended MealyDEVS model, the basic idea is to 
define a tester which represents the decision tree 
associated with the adaptive experiment (Kohavi 1978). 
It is then required to have one active state for each node 
in the tree (that is, one node for each possible 
uncertainty in the tree). Each such state will output the 
event that the Extended MealyDEVS model under test 
is going to receive in order to solve the uncertainty. 
Additionally, each of these states will (internally) 
transition to a passive state that represents the response 
of the model under test. That is, it will be able to receive 
any of the possible output events that the Extended 
MealyDEVS model will generate (in order to do this, 
the output of the tested model needs to be connected to 
the tester’s input). Depending on the value of the 
received event, the tester will transition to one of the 
active states that represent the consequential 
uncertainties (the nodes one that are one level lower). 
Finally, all the leaf nodes have to be represented as 
passive states which only accept the RESET event in 
order to reinitialize the experiment. The following 
figure shows a concrete example of an adaptive tester: 

 

 
Figure 9: Sample adaptive experiment and 
corresponding DEVS tester model. 
 
5. CONCLUSION 

In this paper, we have proposed a first approach, 
on a subset of DEVS models, on which we can apply 
extensions of fault detection techniques from Mealy 
machines. 

For the given subset of DEVS models to which the 
theory of black-box testing can be applied, we have 
proposed: 

 a proper extension and formalization of the 
concepts of homing, distinguishing and 
synchronizing sequences,  

 the preset and adaptive experiments that the 
three previously mentioned types of sequences 
allow for. 

 Finally, we have given the procedure and structure 
of the DEVS models that implement the testing 
procedure for both preset and adaptive fault detection 
experiments. 

 Further lines of work involve expanding the 
proposed approach to more general DEVS and to define 
the limitations of these techniques in a timed formalism 
as DEVS in order to clearly define the broadest possible 
subset of DEVS models which can be black-box tested.  
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