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ABSTRACT 
Master Production Scheduling (MPS) is a very 

important activity in manufacturing planning and 

control because the quality of the MPS can significantly 

influence the total cost. Unfortunately, many companies 

do not know their future demands and have to rely on 

demand forecasts to make production planning 

decisions. Thus in many cases companies must first 

select a good forecasting method, and then use 

forecasted demand as input to the planning phase. The 

paper presents a simulation study, conducted on an 

industrial case, of these two phases: selection of the 

most appropriate forecasting method, and production 

planning through forecasted demands. The aim is 

double: to quantify improvements, in terms of total 

costs decrease, with respect to the actual company 

policy; to evaluate the impact on total costs of the 

demand forecasting method inaccuracy.  

 

Keywords: Master Production Scheduling, lot sizing,  

demand forecasting, inaccuracy. 

 

1. INTRODUCTION 
The paper presents an industrial case of a company in 

the wood floors sector of lot sizing under demand 

uncertainty. 

Numerous researches have studied lot sizing and 

setup scheduling problems, with reviews by Drexl and 

Kimms (1997) and Karimi, Fatemi Ghomi and Wilson 

(2003). Many of them assume deterministic demand, 

and measure performances of different production 

planning algorithms and procedures in terms of 

minimization of total costs and computational time. 

However in many real cases future demand is unknown, 

and master production scheduling is based on demand 

forecasts rather than on actual demand. 

In this study we simulate master production 

scheduling activities, performed by a lot sizing 

heuristic, using data originated by a forecasting 

procedure. Outputs from the simulation study are used 

both to evaluate improvements with respect to the actual 

company policy, and to evaluate the impact of demand 

forecasting inaccuracy on total costs. 

The simulation study considers the most 5 

representative items in terms of sales. The product is a 

two layers parquet. The top layer is constituted from 

noble wood, with thickness between 3.5 and 5 mm. The 

inferior layer, technologically more complex, has a 

support function and allows keeping the pavement 

without deformation, contrasting the natural tendency to 

the movement; it consists in a multilayer cross-sectional 

fiber that guarantees a final product not deformable.  

To investigate the impact of demand forecasting 

method on total costs through computer simulation, we 

must obtain the demand forecasts. Two alternative 

approaches have been used to produce the forecasts in 

previous studies. One approach is to generate the 

forecasting error according to some probability 

distribution and add it to the actual demand, as for 

example in Lee and Adam (1986). The other is to use a 

forecasting model to make forecasts based on previous 

demand (see Zhao, Goodale and Lee 1995; Xie, Lee and 

Zhao, 2004). In this paper we follow this second 

approach. 

For each item demand data on monthly base, for 

years 2003-2007, are available. 

Different demand forecasting methods (see next 

paragraph) are applied to each item. The first two years 

(2003-2004) are used for initialization. Then, each 

method is applied to obtain forecasts (always on a 

monthly base) for years 2005-2006 and to calculate per 

period forecasts errors. The method obtaining the 

minimum Mean Absolute Deviation for each item is 

selected to perform forecasts for year 2007. 

Note that the forecast models are tested with an 

entirely different set of data (year 2005-2006) from 

which the model is formed (2003-2004) 

Monthly forecasted demands for year 2007 are 

then used as input for the production planning 

algorithm. The production planning phase is performed 

each month, with a rolling time horizon of 4 months. 

This length is imposed by the lead time needed to 

obtain the inferior layer needed to manufacture the final 

product. If the inferior layer is available, requirements 

for a periods can be covered by the production planned 

for the same period; in effect, the application of the 
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noble wood layer can be performed in a relative small 

amount of time. 

The simulation study consisted in generating 

production plans for each months of year 2007. Outputs 

(inventory levels, setup costs, holding costs) have been 

compared to what has been done by the company during 

the same period. 

In order to evaluate the impact of demand 

forecasting methods inaccuracy on total costs, a Mixed 

Integer Programming model has been implemented to 

solve to optimality the lot sizing problem under 

deterministic demand (that is, the actual demand of year 

2007). By comparing the optimal solution (obtained 

with actual demand), and the one carried out by using 

forecasted demand, it is possible to quantify the 

influence of using a certain method to obtain forecasts. 

 

1.1. Notation 
t = months index 

A = setup cost [€] 

v = item value [€] 

ry = annual carrying rate [€/€/year] 

r = ry/12 = monthly carrying rate [€/€/month] 

dt = actual demand for period t 

Ft,j = forecasted demand at period t for period t+j 

It = inventory level at the end of period t 

Qt = quantity produced for period t 

The index indicating items is omitted because they 

are considered independently from each others. 

 

2. DEMAND FORECASTING 
Four demand forecasting methods have been tested: 

- Moving Average. 

- Simple Exponential Smoothing. 

- Trend Corrected Exponential Smoothing. 

- Trend and Seasonality Corrected Exponential 

Smoothing. 

Each of the above method has been implemented 

using different values of its characterizing parameters in 

order to find values that, for each item, minimize the 

MAD during 2005-2006. Four values for the number of 

preceding periods (N=2, N=3, N=4 and N=5) have been 

tested for moving averages, while as far as exponential 

smoothing methods are concerned, a search procedure 

has been performed in order to find optimal values for 

the smoothing parameters α, β and γ. 

Figure 1 summarizes the results obtained applying 

each forecasting method to each demand item historical 

data, measuring the MAD in years 2005-2006. It can be 

observed that in all cases the Trend and Seasonality 

Corrected Exponential Smoothing provides the smaller 

error, and it is therefore selected to forecast demand for 

year 2007. 

In particular, the values that provide better result, 

in terms of minimization of MAD, are respectively:  

α=0.3, β=0.1 and γ=0.1 for item#1; α=0.05, β=0.1 and 

γ=0.2 for item#2; α=0.05, β=0.01 and γ=0.5 for item #3; 

α=0.25, β=0.2 and γ=0.1 for item #4; α=0.001, β=0.2 

and γ=0.3 for item #5. 

Figures 2 to 6 shows, for each item, the actual 

demand against the forecasted demand obtained by 

applying the selected method for year 2007. 

 

 
Figure 1. MAD of different demand forecasting 

methods on 2002-2006 

 

 

 

 
Figure 2. Item#1: comparison between actual and 

forecasted demand during 2007. 

 
 

 

 
Figure 3. Item#2: comparison between actual and 

forecasted demand during 2007. 
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Figure 4. Item#3: comparison between actual and 

forecasted demand during 2007. 

 

 
Figure 5. Item#4: comparison between actual and 

forecasted demand during 2007. 

 

 
Figure 6. Item#5: comparison between actual and 

forecasted demand during 2007. 

 

3. PRODUCTION PLANNING 
The production planning phase is performed each 

month, with a rolling time horizon of 4 months. This 

length is imposed by the lead time needed to obtain the 

inferior layer needed to manufacture the final product. 

If the inferior layer is available, requirements for a 

periods can be covered by the production planned for 

the same period; in effect the application of the noble 

wood layer can be performed in a relative small amount 

of time. 

Starting for example by January 2007 (t = 1), the 

related production plan for this month will indicate 

production quantities that have to be delivered in 

January, February, March and April. To do this we need 

demand requirements for the same periods. Demand 

requirements for the first month, in this case January, 

are equal to orders already collected (d1) and do not 

need to be forecasted. On the contrary, demand 

requirements for February, March and April have to be 

forecasted (F1,1, F1,2, F1,3). We obtain these forecasts 

using, as mentioned in the previous paragraph, the 

Trend and Seasonality Corrected Exponential 

Smoothing: 

 

, ( )t j t t t jF L j T S += + ⋅  (1) 

 
where Lt and Tt, are respectively level and trend 

calculated at time t, and St+j is the seasonal factor 

estimated for period t + j. 
The four data, namely d1, F1,1, F1,2, F1,3, are used 

by the planning algorithm to generate (trying to 

minimize the sum of setup and holding costs, see 

Paragraph 3.1) productions requirements for periods t = 

1, 2, 3 ,4. However, only the first period is 
implemented, while period 2, 3 and 4 allow estimating 

raw material requirements. In particular period 4 will 

indicate the quantity of a new raw material requirement, 

while period 2 and 3 will be used to correct and refine 

previous estimates. Naturally, safety stocks of raw 

materials have to be provided to allow for uncertainty. 

The procedure is then repeated in the next month, 

February (t = 2), and so on. Table 1 shows orders 

collected for the current month (dt) and forecasts for the 

next three months (Ft,1, Ft,2, Ft,3) in each period t for 

item#1 during 2007. Each row represents the input to 

the planning algorithm for the current month. Note that 
forecasts for succeeding periods differ, of course, from 

orders that will be actually collected. 

Table 1 reports all other inputs required by the 

algorithm to generate the production plan, that is: the 

initial inventory level, the setup cost, the item value and 
annual carrying rate. 

 

3.1. Production planning heuristics 
The planning algorithm is an adapted version of the 

Silver Meal heuristics (Silver and Meal 1973), that is 

usually adopted for deterministic lot sizing. When 
requirements are deterministic, the heuristic calculates 

the exact number of periods that have to be covered by 

a replenishment. For example, if we are in period 1, and  

T is the number of period covered by a replenishment, 

the ordered quantity will be equal to: 

 

1

( )
T

j

j

Q T d

=

= ∑  (2) 

 

764



Table 1. Demand forecasting during the simulation 

study for Item #1. 

  dt Ft,1 Ft,2 Ft,3 

January 3167 2509 2424 3402 

February 1692 2127 2907 2650 

March 1188 2507 2272 2619 

April 2346 2258 2635 4777 

May 2111 2589 4701 1241 

June 1926 4319 1134 3215 

July 2369 976 2750 2250 

August 839 2665 2205 1942 

September 1866 2001 1758 1645 

October 3541 2217 2122 1805 

November 1282 1804 1496 1597 

2437 1685 1832 1753 

Initial Inv. A v ry 

December 

3623 296 32 10.00% 

 

 

The heuristic tries to chose the number of periods 

T (and the associated quantity of replenishment) that 

minimize future total costs in the time unit. If we 

indicate with TRC(T) the total relevant costs (setup 

costs + holding costs) associated to a replenishment that 

covers T periods, then the total relevant costs per unit 

time (TRCUT(T)) associated to the same replenishment 

are equal to: 

 

( )( )
( ) r cC C TTRC T

TRCUT T
T T

+
= =  (3) 

 

The heuristic evaluates the TRCUT(T) for increasing 

values of T (starting from T = 1) and when the 

following condition is satisfied:  

 

TRCUT(T + 1) > TRCUT(T) (4) 

 

T is chosen as the number of periods. In this way, due to 

the deterministic nature of demand, inventory lasts 

always an integer number of periods, and each 

replenishment occurs exactly when the inventory level 

is equal to 0. 

In the non deterministic case, on the contrary, we 

have to use forecasts instead of actual demand; so it is 

not guaranteed that ordered quantities will last an 

integer number of periods. 

Thus, if for example we are in period t (we are 

planning to fulfil requirements for periods t, t+1, t+2, 

t+3), first we have to check the inventory level: if It-1 ≥ 

dt  stocks are enough to satisfy requirements for the next 

month; thus Qt = 0. If dt > It-1, stocks on hand are not 

sufficient, and we have to order at least the quantity Qt 

= It-1 - dt to cover the next period requirement. In 

general, the order quantity Qt(T) that cover the expected 

requirements for the next T periods will be equal to: 

 

1 1

1

1 1 ,

1

for 1

( )
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t
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t
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j

I d T

Q T
I d F T

−

−

−

=

− =


= 
− + >


∑

 (5) 

 

Similarly to the deterministic case, the heuristic 

will decide the number of periods T that minimizes the 

Expected Total Relevant Cost  per Unit Time 

(ETRCUT). If T = 1: 

 

(1)
1

A
ETRCUT =  (6) 

 

there are not carrying costs, because we only replenish 

enough to cover the actual requirements of the first next 

period. 

With T = 2 the expected carrying costs are vrFt,1, 

that is the cost of carrying the expected requirement Ft,1 

for one period: 

 

,1
(2)

2

tA vrF
ETRCUT

+
=  (7) 

 

With T = 3 we still carry Ft,1 for one period, but now we 

also carry Ft,2 for two periods. Therefore, 

 

,1 ,22
(3)

3

t tA vrF vrF
ETRCUT

+ +
=  (8) 

 

,1 ,2 ,32 3
(4)

4

t t tA vrF vrF vrF
ETRCUT

+ + +
=  (9) 

 

As before, we will chose to cover a number of period T 

for which: 

 

ETRCUT(T + 1) > ETRCUT(T) (10) 

 

corresponding to an ordered quantity expressed by the 

(5). In our particular case, due to the short rolling 

horizon of 4 months and the limited number of items, 

all possible values of ETRCUT (T = 1, 2, 3, 4) have 

been calculated through (6)(7)(8)(9) and the T value that 

gives the minimum have been chosen. 

 

4. RESULTS 
The algorithm has been implemented in Java with the 

compiler NetBeans IDE6.0. 

Table 2 shows the outputs of the simulation study 

for item#1, consisting in production quantities during 

2007 and the corresponding inventory level. Results are 

compared to what obtained in the same period by the 

company. 

Figures 7 and Figures 8 shows graphically the 

same comparison for all the 5 items during year 2007. 

Starting from the same inventory level, the algorithm 

tends initially not to produce, because stocks on hand 

are still enough to cover the next periods requirements. 
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Figure 7. Production quantities: comparison between 

algorithm and company during year 2007 

 

 

 

 

 

 
Figure 8: Inventory levels: comparison between 

algorithm and company during year 2007. 
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Table 2. Output of the simulation study for item#1 

Algorithm Company 

Production Inventory Production Inventory 

0 3633 1469 5102 

0 1941 1427 4837 

0 753 0 3649 

1593 0 1874 3177 

2111 0 3486 4552 

1926 0 5360 7986 

3345 976 493 6110 

0 137 0 5271 

1729 0 3286 6691 

3541 0 3571 6721 

1282 0 1391 6831 

2437 0 88 4482 

N Setup Average Inv. N Setup Average Inv. 

8 620 10 5451 

Setup Cost Holding Cost Setup Cost Holding Cost 

2369 1984 2961 17443 

Total Cost Total Cost 

4352 20403 

 

On the contrary the company tends always to 

saturate its capacity, and produces even when it is not 

still required. Only when the inventory level is much 

lowered, the algorithm gives production quantities that 

are similar to the company’s ones. 

This implies that the number of setups performed 

by the algorithm is about the same of those performed 

by the company, but average inventory levels are much 

lower. The same behaviour is observable from data 

reported in Table 3 and Figure 9, that show the 

aggregate results for all 5 five products. 

 

Table 3. Aggregate results of the simulation study. 

Algorithm Company 

Production Inventory Production Inventory 

0 15046 12492 25790 

1503 9194 5850 24259 

4195 5183 6814 22791 

5646 2867 1874 16614 

4774 1260 13088 23272 

8684 3396 6716 23384 

8572 2451 4583 18451 

1662 1467 1503 17328 

4919 301 7895 19129 

11099 2554 9980 20254 

4771 1871 7221 22022 

8048 1890 5379 19398 

N Setup Average Inv. N Setup Average Inv. 

36 3957 38 21058 

Setup Cost Holding Cost Setup Cost Holding Cost 

13888 14804 14184 83877 

Total Cost Total Cost 

28692 98061 

 

The reduction of total costs is impressive (about 70%) 

and substantially due to the drastic decrease of 

inventories. It is noteworthy that the algorithm never 

generates peaks of production quantities higher than 

those planned by the company. 

 

 

 

 
Figure 9. Aggregate results of the simulatio study. 

 

4.1. The impact of uncertainty  

In order to evaluate the impact of uncertainty, we 

evaluate the extra-cost associated to the use of 

forecasted demand (and the described algorithm) with 

respect to the optimal solution obtained by considering 

the actual demand. 

In effect, if demand is deterministic, the lot sizing 

problem can be solved to optimality through the well 

known dynamic programming approach of Wagner-

Whitin (Wagner and Whitin 1958), or through its 

equivalent formulation as Mixed Integer Programming 

model. 

We consider the following MIP model for each of 

the five items: 
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( )
12

1
t t

t

Minimize vrI Ay

=

+∑  (11) 

 

subject to: 

 

1t t t tI Q I d− + − =  ∀t (12) 

 

t tQ M y≤  ∀t (13) 

 

yt ∈ {0,1}  ∀t (14) 

 

Qt ≥ 0  ∀t (15) 

 

It ≥ 0   ∀t (16) 

 

where: M is a large positive number (higher than the 

largest quantity that can be produced in one period), yt 

is a binary decision variable equal to 1 if the item is 

produced for period t and equal to 0 otherwise; I0  is the 

initial inventory level. Note that the planning horizon is 

equal to 12 months and that only actual demand data dt 

are considered. The MIP problem has been coded and 

solved using Xpress (Dash Optimization Xpress-MP). 

Figure 10 shows the comparison between the 

solution obtained by solving the MIP problem (using 

actual demand data and a time horizon of 12 months), 

and the one, previously described, obtained by the 

algorithm (using forecasted demand data and a rolling 

horizon of 4 months). 

Production quantities are very similar, and also 

inventory levels show the same behaviour (a consistent 

initial decrease due to very little production quantities). 

Nevertheless the gap is still consistent. This is due to 

fact that just a little difference between forecasted and 

actual demand causes the impossibility to place orders 

exactly when the items inventory level are equal to 0, 

forcing in this way to make a higher number of setups 

and to have always higher inventory levels. 

Furthermore, holding costs also increase, when using 

forecasted data, due to demand overestimate for some 

of the items. 

Table 4 shows costs percentage deviation of 

optimal and algorithm solutions from the company 

solution. The difference in total saving between the 

70.7% obtained by the algorithm and the 82.3% 

obtained in the deterministic case can thus be ascribed 

to the use of forecasted demand data. This gap could be 

taken as performance indicator of the forecasting 

method. 

 

Table 4. Percentage deviation of algorithm and optimal 

solution costs from company costs in 2007 

Costs and percentage deviation from Company solution 

 Setup  Holding Total 

Comp. 14184 / 83877 / 98061 / 

Alg. 13888 -2.1% 14804 -82.4% 28692 -70.7% 

Opt. 7715 -45.6% 9607 -88.5% 17322 -82.3% 

 

 
Figure 10. Comparison between optimal and 

algorithm’s solutions. 

 

 

5. CONSLUSIONS 

The model that has been implemented allowed to 

simulate both the demand forecasting and the 

production planning activities of the company for one 

year. 

To consider this two phases at the same time in a 

simulation study is the best way to quantify possible 

improvements deriving from the adoption of a planning 

algorithm that, in practice, receives forecasted demand 

data as inputs. 

The procedure allows also to evaluate the goodness 

of the demand forecasting method not only through per 

period forecasts error indicators (as the Mean Absolute 

Deviation) but also through their direct impact on total 

costs. 

Final results show that the application of the 

selected demand forecasting method  and the production 

planning algorithm allows a total costs reduction, with 

respect to the actual company policy, up to the 70% in 

one year.  
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If actual demand data, instead of forecasts, are 

considered during the same period, then the planning 

problem can be solved to optimality. Thus, the impact 

of the demand forecasting method inaccuracy can be 

evaluated by comparing the total costs reduction 

obtained using forecasts (70%) and the one related to 

the optimal solution (82.3%). 

 

REFERENCES 
Dixon, P.S., Silver, R.A., 1981. A heuristic solution 

procedure for the multi-item single level, limited 

capacity, lot sizing problem. Journal of 

Operations Management, 2, 23-29. 

Drexl, A., Kimms, A., 1997. Lot sizing and scheduling 

– survey and extensions. European Journal of 

Operational Research, 100, 494-516. 

Karimi, B., Fatemi Ghomi, S.M.T., Wilson, J.M, 2003. 

The capacitated lot-sizing: a review of models and 

algorithms. Omega, 31, 365-378 

Lee, T.S., Adam, E.E., 1986. Forecasting error 

evaluation in material requirements planning 

(MRP) production-inventory systems. 

Management Science, 32, 1186-1205. 

Silver, E.A., Meal, H.C., 1973. A heuristic for selecting 

lot size quantities for the case of a deterministic 

time-varying demand rate and discrete 

opportunities for replenishment. Production and 

Inventory Management Journal, 2nd Quarter, 64-

74. 

Wagner, H., Whitin, T.M., 1958. Dynamic version of 

the economic lot size model. Management 

Science, 5(1), 89-96. 

Xie, J., Lee, T.S., Zhao, X., 2004. Impact of forecasting 

error on the performance of capacitated multi-item 

production systems. Computers & Industrial 

Engineering, 46, 205-219. 

Zhao, X., Goodale, J., Lee, T.S., 1995. Lot-sizing rules 

and freezing the master production schedule in 

MRP systems under demand uncertainty. 

International Journal of Production Research, 33, 

2241-2276. 

 

AUTHORS BIOGRAPHY 
Lorenzo Tiacci, Laurea degree in Mechanical 

Engineering, Doctoral degree in Industrial Engineering, 

is post-doctoral fellow at the Department of Industrial 

Engineering of the University of Perugia (Italy). His 

research activity is focused on the use of discrete-event 

simulation, genetic algorithms, and other operations 

research techniques to aid in optimisation and decision 

making about industrial engineering problems, such as: 

production system design, planning and control; 

inventory control; supply chain management.  

Stefano Saetta, Laurea degree in Electrical 

Engineering, is Associate Professor of Industrial Plants 

at the Faculty of Engineering of the University of 

Perugia (Italy). His research activity is focused on 

simulation and optimization of the supply chain, 

industrial plant simulation, decision supporting tools 

and operations research. 

 

769


