
SIMULATION OPTIMIZATION WITH HEURISTICLAB

Andreas Beham(a), Michael Affenzeller(b), Stefan Wagner(c), Gabriel K. Kronberger(d)

(a)(b)(c)(d)Upper Austria University of Applied Sciences, Campus Hagenberg
School of Informatics, Communication and Media
Heuristic and Evolutionary Algorithms Laboratory

Softwarepark 11, A-4232 Hagenberg, Austria

(a)andreas.beham@heuristiclab.com, (b)michael.affenzeller@heuristiclab.com
(c)stefan.wagner@heuristiclab.com, (d)gabriel.kronberger@heuristiclab.com

ABSTRACT
Simulation optimization today is an important branch in
the field of heuristic optimization problems. Several
simulators include built-in optimization and several
companies have emerged that offer optimization
strategies for different simulators. Often the
optimization strategy is a secret and only sparse
information is known about its inner workings. In this
paper we want to demonstrate how the general and open
optimization environment HeuristicLab in its latest
version can be used to optimize simulation models.

Keywords: simulation-based optimization, evolutionary
algorithms, metaoptimization

1. INTRODUCTION
In Ólafsson and Kim (2002) simulation optimization is
defined as “the process of finding the best values of
some decision variables for a system where the
performance is evaluated based on the output of a
simulation model of this system”. From the point of
view of optimization a parameter vector is to be
optimized where the components may stem from
different domains such as integers, real or binary values
or even items from an enumeration, strings or any array
in general. Additionally there is usually a feasible
region that restricts the possibilities of the parameter
vector. To find the optimum to those models, there are
exact algorithms, heuristics and especially
metaheuristics in the toolbox of an optimization
engineer: Genetic Algorithms, Tabu Search, Ant
Colony Optimization, Simulated Annealing, Particle
Swarm Optimization, Variable Neighborhood Search
and Scatter Search to name just a few.

HeuristicLab (Wagner and Affenzeller 2005,
Wagner et al. 2007) is a framework that allows users to
build upon these optimization strategies or use
predefined strategies that are adopted from published
works. It was designed such that parameterization as
well as customization of any strategy can be done via a
graphical user interface (GUI). So the user does not
work on source code files, but creates and modifies
what is called a “workbench” file. This contains the

structure and the parameters of the designed
optimization strategy and can be executed in the
HeuristicLab optimization environment. After the
execution has terminated or was aborted the results or
respectively intermediate results are saved along the
workbench. So in addition to the structure and
parameters, the results can also be saved in a single
document, reopened at any time and examined.

2. DESCRIPTION OF THE FRAMEWORK
The user interface to an evolution strategy (ES) is
shown in Figure 1. The methods defined by this
interface are common to many optimization strategies
and reusing them is one idea of the optimization
environment.

Figure 1: Interface to configure an evolution strategy

To apply simulation-based optimization

HeuristicLab needs to know about the parameter vector
and any constraints that are imposed on the parameters.
This is called injecting the problem. An operator
provides a user interface for this task with which the
parameter vector is defined and a number of constraints
which are specified directly on the parameters or on the
vector itself when e.g. comparisons between two
parameters need to satisfy a certain criterion.

75

Additionally for every parameter an initialization as
well as manipulation operator is defined which will
perform the respective tasks during the optimization. It
is also possible to add a default operator to a certain
parameter which will not perform any manipulation and
it is even possible to manually set a certain parameter to
some value. This makes it easy to setup a number of
variables for optimization, but optimize only a subset of
them leaving other variables fixed. A simulation expert
then is able to try to optimize only certain aspects of the
simulation model while retaining the possibility to
quickly include more parameters. This flexibility is
likely welcomed by those who already have some ideas
about the optimum of a model which they want to
explore more thoroughly. It is also possible to let the
optimizer use all parameters and get a general idea of
achievable quality.

After the parameter vector is defined it is necessary
to specify the communication between optimizer and
simulator. Azadivar (1999) already mentions that
interfacing simulation and optimization is not always an
easy task. The generic concepts that HeuristicLab
provides for designing optimization strategies also
influenced the decision to build on a generic and
customizable interface to communicate with external
applications. The backbone to this interface is the
design of the communication protocol. This protocol is
described as a state-machine, a powerful tool to model
algorithmic behavior and the communication between
two peers. In the protocol editor users define states,
which objects should be communicated in which states,
state transitions and their condition. Finally the protocol
is woven into the optimization strategy in the form of
operators which can be put into any place during the
execution of the optimization algorithm. See Figure 2
for an example interface to create the protocol.

Figure 2: Communication protocol interface

On the simulation side the protocol needs to be

implemented as well, but because the language of
choice for many simulators is C/C++ or Java and
HeuristicLab builds on C# and Microsoft .NET an
automated way of including the protocol into the
simulation is not yet available. It is however possible to

implement libraries for different programming
languages that will take care of the protocol handling.
Basically it is a good idea to start designing the
simulation, then think about the communication with
the optimizer and model the protocol using the editor in
HeuristicLab.

The generality of this protocol specification does
not yet forestall the actual communication topology that
will be used in the communication process. As is
mentioned above, transmission is implemented in
operators which can be interwoven with the
optimization strategy and generally part into two levels:
Serialization and transmission. The more complex, but
more general serialization is an XML based
serialization of the objects. This is useful when the
partner that deserializes the information does know
about XML and can reconstruct the HeuristicLab
datatypes. Another possibility is to use a simpler
serialization which just outputs the variable types,
names and values each on a new line and is quick to
implement in different programming languages. It is
also possible to add any other type of serialization by
implementing new operators as plugins. Once the data
has been serialized it can be transmitted and again
several operators will take care of that. There are
operators for StdIn/StdOut communication and
operators for sending the data over a TCP network.
Again, extension to any underlying network transport
protocol is possible.

During the execution of the algorithm
communication will be performed by a specific object
which derives from the interface IDataStream. This
interface has five methods: Initialize, Connect, Close,
Write and Read. This object is placed within the scope
tree and available to a number of operators which then
call these methods.

After the communication with the simulator has
been fixed the next step is to choose an optimization
strategy, appropriate parameters and start optimizing.

3. EVOLUTION STRATEGY
The first ES (Rechenberg 1973) described used a
population of one parent and one offspring typically
denoted as (1+1)-ES. Starting from a randomly
initialized parent, mutation adds Gaussian distributed
noise to each value of the parameter vector. The
mutated parameter-vector is evaluated and replaces the
old parent if it is better than the parent; if not, the new
solution is discarded. Further investigations and
developments resulted in the (μ+λ)-ES (Schwefel 1987)
where λ new individuals are generated for the next
replacement phase. This (μ+λ)-ES is effectively an
elitist algorithm and an alternative scheme called
‘comma-strategy’ is also defined. In this the μ best
individuals are used only from the offspring not
considering the old parents. This is denoted by (μ,λ)-ES.
In this scheme λ needs to be significantly greater than μ
or otherwise the search performs a random walk instead
of an optimization.

76

The random noise added to each element of the
parameter vector is normally distributed with
parameters (0, σ). Rechenberg observed for the
(1+1)-ES that adapting σ in the course of the evolution
leads to better results; based on this observation he
formulated the “1/5 success rule” that adapts σ based on
the average success of the last n mutations with the goal
of generating on average 1/5 successful mutations.
When the ratio of successful mutations is greater than
1/5, the standard deviation should be increased while it
should be decreased when the ratio of successful
mutations is less than 1/5.

The evolution strategy is designed with respect to
continuous parameter adjustment. To apply it on
simulation-based optimization problems, however does
not always rely on continuous parameters alone
(Affenzeller et al. 2007). Some models and also the one
we used for testing in this paper make use of discrete
parameters, e.g. integers as well. The mutation
operators need to adapt to these mixed-integer
optimization problems. Newer mutation strategies are
proposed that take into account a mixture of discrete
and continuous parameters. Even more data
representations, such as unordered discrete parameters,
arrays, boolean values and others may be encountered
in simulation-based optimization which requires the
definition of further extensions to the evolution
strategy. Common to all these manipulation concepts
are several properties (Bäck and Schütz 1995):

• Smaller changes should be more likely than

larger ones
• Change in any direction of the domain should

be equally likely

4. RESULTS
4.1. Optimization of a Supply Chain Simulation

Model
Results have been computed with one of the simulation
models that ships with AnyLogic 6, namely the supply
chain simulation model. This model consists of three
buffers at each location in a supply chain: Retailer,
Wholesaler and Factory. The retailer has to hold items
in stock to sell to customers and orders new items from
the wholesaler which in turn orders from the factory
which produces items from an infinite source of
instantly available raw materials. Each buffer is
accompanied with two decision variables representing
an upper and lower limit of the buffer. New items are
ordered/produced when the stock falls below the lower
limit in such quantity that it would fill the buffer to the
upper limit. Orders at the factory and the wholesaler are
shipped at the start of each day only. The model has
constrained input parameters: The decision variables
have to lie in the interval [1;200] and the lower limit
must not be greater than the upper limit. The goal of the
model is to reduce the total costs in the supply chain by
minimizing buffer sizes in each location. Naturally, the
optimum to this goal would be not to have any buffers
and produce only on demand. This would however have

customers wait for days to get their items and so
reducing the mean customer waiting time
(E[waitingTime]) is a second goal which stands in
opposition to the first. A two goal approach however
would require the application of multiobjective
optimization techniques, so in this model the second
goal is considered as constraint. The solution is
described as feasible only when the mean customer
waiting time is ≤ 0.001. In our example we allowed
infeasible solutions during the search, but added a
penalty to their quality value. For a feasible child with
E[waitingTime] ≤ 0.001 the fitness function is
E[DailyCosts], in case of an infeasible child, this value
becomes: E[DailyCosts] * (100 + E[waitingTime]).

The optimum is to set the decision variables such
that the buffer size becomes as small as possible while
maintaining a low waiting time. Given these
characteristics it is clear to assume that the “global best
feasible” solution borders the infeasible region in the
search space. It is also valid to assume that the feasible
region covers a coherent space of reasonable size. It
seems unlikely to find an optimal buffer configuration
deep within the territory of infeasibility, e.g. with low
costs (small buffers), but also low waiting time.

The size of the search space is reasonably large
such that exact calculation or enumeration is not viable
anymore. For each buffer there are about 20,000
possible combinations of lower and upper bounds,
which amount to about 8 trillion possible combinations
when considering all three buffers.

Another challenge in this model is its stochastic
behavior. Customer demand is modeled by a random
variable, so that a single simulation run usually is not
enough to test for the feasibility of a solution or give a
reliable estimate for its quality. The implications to the
fitness landscape are that the region surrounding the
global optimal solution(s) is highly disturbed by noise.
There is even the question remaining if there can be a
global optimal solution at all without a given
confidence level for the feasibility of a solution.
Because arrival is random even the safest solution can
seem infeasible if the retailer is stormed on an unlucky
day. The chance for such an event is extremely low
though and thus we can only find feasible optimal
solutions with regard to a certain probability.

We have performed two tests with HeuristicLab to
optimize this model: In the first test we treated the
simulation as deterministic model and initialized it with
the same random seed in each replication, while in the
second test we used a different random seed and
optimized a stochastic model.

The results are compared to the commercial
optimizer OptQuest which is already implemented
within this sample simulation model. To each optimizer
about the same amount of simulation replications is
given as termination criterion. OptQuest applies a
mixture of Scatter Search and Tabu Search and
combines it with Artifical Neural Networks to learn
about the response curve during the search (Glover et al.
1999).

77

4.1.1. Deterministic Simulation
Here we used a (5+10)-ES with self adaptive mutation
strength adjustment as described in (Igel et al. 2006).
The initial population is generated by a uniform random
initialization of the decision variables within their
bounds, manipulation adds a normal distributed variable
N(0,1) multiplied with the current mutation strength and
rounds the result to the next integer. This is not optimal
as (Bäck and Schütz 1995) notes, however we are using
a simpler self adaptive technique with just one adaptive
parameter for the whole vector and no recombination.
We found that as simple as this approach is, the results
we could achieve are of good quality. The parameters
for the 1/5-success rule self adaptation were set as
follows: Initial mutation strength: 10, learning rate: 0.1
and damping factor: 50. It was run for a maximum of
1000 generations which amounts to about 10,000
evaluations. Because the model is deterministic no
replications are made.

The best found solution in 5 runs with different
random seeds has a quality value of 505.595, the
parameter vector contained 43-55, 44-51 and 36-77 as
the lower and upper bounds for the retailer, wholesaler
and factory respectively. This has been the lowest
feasible quality that we encountered during the test and
it is obvious that it is likely to be infeasible in a
majority of the situations. Indeed, evaluation of this
setting with 100 independent replications showed that
none of them achieved a feasible result. This is likely a
solution which is feasible in very few cases. Other
solutions obtained from these tests had slightly worse
quality, but were only slightly more likely to be feasible
when tested on the stochastic model. Thus the
optimizer, in its best run, moved past a global optimal
solution and into the region where a solution is likely to
be infeasible, except that for the one random seed that
the model has been initialized with it was still feasible.
This shows that the optimizer will find highly specific
solutions which work only under the fixed random
setting. To obtain a real result of the performance, we
will need to optimize the stochastic model.

4.1.2. Stochastic Simulation
As interesting and well performing as the results from
the deterministic case are, the stochastic case is much
closer to the real world. Its optimization however raises
a new challenge. If we would evaluate a given
configuration only a single time we may not have
enough confidence about the feasibility of the solution
to accept it into the next generation. So we need to have
some confidence which configurations and their
qualities to accept.

It was tried first with just 5 replications per
individual and the final solutions were found to have
moved into a region where solutions have a higher
probability of being infeasible. Replications were then
raised to 10 per evaluation and the results showed more
confidence. Naturally, the more replications are made
the more computational effort is necessary and we were
still not satisfied fully with the confidence given this

amount of replications, but then thought of a different
approach instead of raising it yet another time. A new
child is evaluated and judged by 10 replications, but as
it becomes parent, producing offsprings over possibly
many generations and thus influencing the search
trajectory, it is evaluated again once in each generation
and the average is computed anew. This requires us to
keep track of the previous qualities and shows once
again the strength of HeuristicLab where this could be
prototyped easily within the running application. For
the search it means that the longer a parent survives, the
more evaluations it will collect and the more confidence
we could gain in its quality.

To compute the results we used the same (5+10)-
ES as in the deterministic case, with 10 replications per
evaluation and adding another replication for each
parent in each generation. The stop criterion was 50
generations at which about 5300 simulation runs have
been counted. One test was set to run to 100 generations
producing 10,550 simulation runs. The parameters for
the 1/5-success rule self adaptation were set as follows:
Initial mutation strength: 10, learning rate: 0.2 and
damping factor: 10 to allow for quicker adaption given
the small number of generations. OptQuest was also
applied with the stopping criterion of 5300, 10,550 and
one test with a maximum of 100,000 runs to see what is
possible. Table 1 shows a summary of the results.

Table 1: Comparison of HeuristicLab (HL) with
OptQuest (OQ) on the supply chain simulation model in
AnyLogic 6

 Evaluations Average Best Worst

HL
5300 550.03 540.17 564.51

10550 537.39

OQ

5300 578.63 571.34 585.04

10550 567.01 559.73 580.21

100000 548.88

The best found solution with the (5+10)-ES in

HeuristicLab was finally given more replications later
and has a confidence of more than 90% in 100
additional replications. The solution had 14 replications
counted by the algorithm. The parameters found were
57-60, 57-65 and 45-92 for the bounds of the retailer,
wholesaler and factory respectively. The oldest solution
in this run’s parent population came to 28 replications,
which means it survived 18 generations. Its quality was
538.81 and not much worse than the best. Its confidence
was also above 80%. The best solution found by
HeuristicLab with 5300 replications had a quality of
540.17 stored 17 replications during the algorithm run.
It has a confidence of about 87%. The parameters are
66-66, 63-66 and 34-78. One problem that we saw was
that feasibility is hard to evaluate. The optimization
strategy used is very keen to walk past an optimal
solution and into the region of infeasibility. Elitism may
partly be blamed for this kind of behavior: Once the

78

“right” 10 replications have been found for a good
configuration it is accepted into the parent generation.
The approach using reevaluations could lessen this
effect somewhat. An alternative strategy would be to
use less replications in the beginning, and increase this
number as the search progresses.

The best result that OptQuest found had following
parameters: 73-82, 60-60 and 41-74. In 100 additional
tries it was found to be infeasible 10% of the time. The
number of fixed replications per solution was also set to
10 similar to the ES in HeuristicLab.

Elapsed runtime is another important property of
an optimization strategy and one where HeuristicLab is
also competitive as optimization environment for
simulation-based optimization. The workbench with
10550 replications took approximately 4 minutes to
evaluate on an Intel Pentium 4 running at 3.0 Ghz. This
comes to about 44 replications per second. On the same
computer and using the same number of replications
OptQuest, including user interface updates, finished in 3
minutes which is about 60 replications, though it is
likely to be even faster when the GUI is turned off.

Nevertheless, to scale to more computational
intensive simulations as well as to parallel hardware
HeuristicLab also features several parallelization
strategies such as threading and distributed computing
and can thus talk to multiple simulation models running
at once.

The results indicate that our evolution strategy
performed quite successful and that it seemed adequate
from the point of view of optimization complexity. One
advantage with a general and open optimization
environment such as HeuristicLab is that basically any
optimization strategy can be tried, from the simplest
greedy search to the most complex metaheuristic
techniques.

4.2. Metaoptimization
Another possibility for simulation-based optimization is
in metaoptimization. The goal is similar to that of
simulation-based optimization, except that the
simulation model is a given optimization strategy with
several parameters that is applied on a given problem. A
metaoptimization algorithm continuously feeds new
parameters into another optimization strategy and
receives a measure of its performance. The goal could
be to tune the parameters so that the underlying
optimization strategy finds better solutions and/or
becomes more robust so that it finds them with higher
probability. In our example we tried to optimize the
self-adaptive parameters of an evolution strategy that is
applied on a real valued optimization problem.

The learning parameters to be optimized are: The
initial mutation strength, the learning rate and the
damping factor. They control the mutation strength
adjustment in a (1+1)-ES which is applied on a 50
dimensional sphere function. The ES is set to run for
2000 generations. The metaoptimizer in this case is a
Genetic Algorithm with a population of 100, 5%
mutation, 1-Elitism and Roulette-wheel selection. The

crossover is a simple one point crossover that takes one
part of the parameter vector from one parent and the
other part from another parent.

The results in the five test runs performed
indicated that several different settings have been found
to achieve a good result within the 2000 generations.
The best result had a very high learning rate of 0.97, an
initial mutation strength of 4.70 and a damping factor of
4.28. Its quality averaged over 10 independent runs
ranged from 0.0118 to 0.05800. Another
metaoptimization run resulted in a best quality of
0.0139 with a learning rate of 0.58, an initial mutation
strength of 6.62 and a damping factor of 4.04. Another
one found a good solution with a quality ranging from
0.0147 to 0.0674 and a low learning rate of 0.21, initial
mutation strength of 13.63 and damping factor of 6.37.
It is difficult to draw conclusions about the direction of
a best setting. One common thing that we observed
while examining the found solutions is that the higher
quality solutions overall had a lower damping factor
than the worse quality solutions in the final population,
whereas we found a damping factor too low, e.g. close
to 1 also among the worse solutions in the final
population. Such correlations however are not based on
statistical evaluation. The amount of data generated
during such metaoptimization tests could be used to
gather a better understanding of the influence of the
parameters on the metaheuristics applied, especially on
more complex problems and strategies which do not
lend well to analytical study. Metaoptimization could be
used to explore the parameter space and statistical as
well as machine learning methods could be used to find
correlations, clusters or patterns in the data which could
lead to more efficient parameter settings.

5. CONCLUSION AND FUTURE PERSPECTIVES
In this work we shared how the HeuristicLab
framework can be used for simulation-based
optimization and presented some results based on a
basic simulation model as well as metaoptimization.
The results show that metaheuristics built with this
environment can be used effectively for these kind of
tasks.

We also showed several interesting topics of
research: Dealing with noisy optimization when
optimizing stochastic simulation models on the one
hand and the adaptation and application of well known
heuristics for the purpose of simulation-based
optimization on the other hand. Also interesting will be
the topic of metaoptimization and how to combine it
with simulation-based optimization as well as the topic
of parallelization which goes beyond the scope of this
paper.

We plan to continue and extend the work described
and further test optimization strategies for the purpose
of simulation-based optimization as well as seek
applications of our work to simulation models from the
industry to evaluate the performance of a number of
possible approaches.

79

REFERENCES

Affenzeller, M., Kronberger, G., Winkler, S., Ionescu,
M., Wagner, S. 2007. Heuristic Optimization
Methods for the Tuning of Input Parameters of
Simulation Models. Proceedings of I3M 2007, pp.
278-283. October 4-6. Bergeggi (Italy).

Azadivar, F. 1999. Simulation Optimization
Methodologies. Proceedings of the 1999 Winter
Simulation Conference, pp. 93-100. December 5-8.
Phoenix (Arizona, USA).

Bäck, T., Schütz, M. 1995. Evolution Strategies for
Mixed-Integer Optimization of Optical Multilayer
Systems. Evolutionary Programming IV:
Proceedings of the 4th Annual Conference on
Evolutionary Programming, pp. 33-51. March 1-3.
San Diego (California, USA). MIT Press,
Cambridge, MA (USA).

Glover, F., Kelly, J.P., Laguna, M. 1999. New
Advances for Wedding Optimization and
Simulation, Proceedings of the 1999 Winter
Simulation Conference, pp. 255-260. December 5-
8. Phoenix (Arizona, USA).

Igel, C., Suttorp, T., Hansen, N. 2006. A Computational
Efficient Covariance Matrix Update and a
(1+1)CMA for Evolution Strategies, Proceedings
of the 8th Annual Conference on Genetic and
Evolutionary Computation (GECCO'06), pp. 453-
460. July 8-12. Seattle (Washington, USA).

Ólafsson, S., Kim, J. 2002. Simulation Optimization.
Proceedings of Winter Simulation Conference, pp.
79-84. December 8-11, San Diego (California,
USA).

Rechenberg, I. 1973. Evolutionsstrategie. Friedrich
Frommann.

Schwefel, H-P. 1987. Collective Phenomena in
Evolutionary Systems. Preprints of the 31st
Annual Meeting of the International Society for
General System Research, pp. 1025-1033.
June 1-5. Budapest (Hungary).

Wagner, S., Affenzeller, M. 2005. HeuristicLab: A
Generic and Extensible Optimization
Environment. In Ribeiro, B. Albrecht, R.F.,
Dobnikar, A., Pearson, D.W., Steele, N.C., eds.
Adaptive and Natural Computing Algorithms.
Springer-Verlag New York, Inc., pp. 538-541.

Wagner, S., Winkler, S., Braune, R., Kronberger, G.,
Beham, A., Affenzeller, M. 2007. Benefits of
Plugin-Based Heuristic Optimization Software
Systems. Lecture Notes in Computer Science
4739, pp. 747-754. Springer-Verlag.

AUTHORS BIOGRAPHY

ANDREAS BEHAM received his MSc in
computer science in 2007 from Johannes
Kepler University (JKU) Linz, Austria. His
research interests include heuristic
optimization methods and simulation-based
as well as combinatorial optimization.

Currently he is a research associate at the Research
Center Hagenberg of the Upper Austria University of
Applied Sciences (Campus Hagenberg).

MICHAEL AFFENZELLER has
published several papers and journal
articles dealing with theoretical aspects of
genetic algorithms and evolutionary
computation in general. In 1997 he
received his MSc in Industrial Mathematics

and in 2001 his PhD in Computer Science, both from
Johannes Kepler University Linz, Austria. He is
professor at the Upper Austria University of Applied
Sciences (Campus Hagenberg) and associate professor
at the Institute of Formal Models and Verification at the
Johannes Kepler University Linz, Austria since his
habilitation in 2004.

STEFAN WAGNER received his MSc in
computer science in 2004 from Johannes
Kepler University Linz, Austria. He
currently holds the position of an associate
professor at the Upper Austria University
of Applied Sciences (Campus Hagenberg).

His research interests include evolutionary computation,
heuristic optimization, theory and application of genetic
algorithms, machine learning and software
development.

GABRIEL K. KRONBERGER received
his MSc. in computer science in 2005 from
Johannes Kepler University Linz, Austria.
His research interests include parallel
evolutionary algorithms, genetic
programming, machine learning and data-

mining. Currently he is a research associate at the
Research Center Hagenberg of the Upper Austrian
University of Applied Sciences (Campus Hagenberg).

The Web-pages of the authors as well as further
information about HeuristicLab and related scientific
work can be found at http://www.heuristiclab.com.

80

