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ABSTRACT 
Simulation optimization today is an important branch in 
the field of heuristic optimization problems. Several 
simulators include built-in optimization and several 
companies have emerged that offer optimization 
strategies for different simulators. Often the 
optimization strategy is a secret and only sparse 
information is known about its inner workings. In this 
paper we want to demonstrate how the general and open 
optimization environment HeuristicLab in its latest 
version can be used to optimize simulation models. 

 
Keywords: simulation-based optimization, evolutionary 
algorithms, metaoptimization 
 
1. INTRODUCTION 
In Ólafsson and Kim (2002) simulation optimization is 
defined as “the process of finding the best values of 
some decision variables for a system where the 
performance is evaluated based on the output of a 
simulation model of this system”.  From the point of 
view of optimization a parameter vector is to be 
optimized where the components may stem from 
different domains such as integers, real or binary values 
or even items from an enumeration, strings or any array 
in general. Additionally there is usually a feasible 
region that restricts the possibilities of the parameter 
vector. To find the optimum to those models, there are 
exact algorithms, heuristics and especially 
metaheuristics in the toolbox of an optimization 
engineer: Genetic Algorithms, Tabu Search, Ant 
Colony Optimization, Simulated Annealing, Particle 
Swarm Optimization, Variable Neighborhood Search 
and Scatter Search to name just a few. 

HeuristicLab (Wagner and Affenzeller 2005, 
Wagner et al. 2007) is a framework that allows users to 
build upon these optimization strategies or use 
predefined strategies that are adopted from published 
works. It was designed such that parameterization as 
well as customization of any strategy can be done via a 
graphical user interface (GUI). So the user does not 
work on source code files, but creates and modifies 
what is called a “workbench” file. This contains the 

structure and the parameters of the designed 
optimization strategy and can be executed in the 
HeuristicLab optimization environment. After the 
execution has terminated or was aborted the results or 
respectively intermediate results are saved along the 
workbench. So in addition to the structure and 
parameters, the results can also be saved in a single 
document, reopened at any time and examined. 

 
2. DESCRIPTION OF THE FRAMEWORK 
The user interface to an evolution strategy (ES) is 
shown in Figure 1. The methods defined by this 
interface are common to many optimization strategies 
and reusing them is one idea of the optimization 
environment. 

 

 
Figure 1: Interface to configure an evolution strategy 

 
To apply simulation-based optimization 

HeuristicLab needs to know about the parameter vector 
and any constraints that are imposed on the parameters. 
This is called injecting the problem. An operator 
provides a user interface for this task with which the 
parameter vector is defined and a number of constraints 
which are specified directly on the parameters or on the 
vector itself when e.g. comparisons between two 
parameters need to satisfy a certain criterion. 
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Additionally for every parameter an initialization as 
well as manipulation operator is defined which will 
perform the respective tasks during the optimization. It 
is also possible to add a default operator to a certain 
parameter which will not perform any manipulation and 
it is even possible to manually set a certain parameter to 
some value. This makes it easy to setup a number of 
variables for optimization, but optimize only a subset of 
them leaving other variables fixed. A simulation expert 
then is able to try to optimize only certain aspects of the 
simulation model while retaining the possibility to 
quickly include more parameters. This flexibility is 
likely welcomed by those who already have some ideas 
about the optimum of a model which they want to 
explore more thoroughly. It is also possible to let the 
optimizer use all parameters and get a general idea of 
achievable quality. 

After the parameter vector is defined it is necessary 
to specify the communication between optimizer and 
simulator. Azadivar (1999) already mentions that 
interfacing simulation and optimization is not always an 
easy task. The generic concepts that HeuristicLab 
provides for designing optimization strategies also 
influenced the decision to build on a generic and 
customizable interface to communicate with external 
applications. The backbone to this interface is the 
design of the communication protocol. This protocol is 
described as a state-machine, a powerful tool to model 
algorithmic behavior and the communication between 
two peers. In the protocol editor users define states, 
which objects should be communicated in which states, 
state transitions and their condition. Finally the protocol 
is woven into the optimization strategy in the form of 
operators which can be put into any place during the 
execution of the optimization algorithm. See Figure 2 
for an example interface to create the protocol. 

 

 
Figure 2: Communication protocol interface 

 
On the simulation side the protocol needs to be 

implemented as well, but because the language of 
choice for many simulators is C/C++ or Java and 
HeuristicLab builds on C# and Microsoft .NET an 
automated way of including the protocol into the 
simulation is not yet available. It is however possible to 

implement libraries for different programming 
languages that will take care of the protocol handling. 
Basically it is a good idea to start designing the 
simulation, then think about the communication with 
the optimizer and model the protocol using the editor in 
HeuristicLab. 

The generality of this protocol specification does 
not yet forestall the actual communication topology that 
will be used in the communication process. As is 
mentioned above, transmission is implemented in 
operators which can be interwoven with the 
optimization strategy and generally part into two levels: 
Serialization and transmission. The more complex, but 
more general serialization is an XML based 
serialization of the objects. This is useful when the 
partner that deserializes the information does know 
about XML and can reconstruct the HeuristicLab 
datatypes. Another possibility is to use a simpler 
serialization which just outputs the variable types, 
names and values each on a new line and is quick to 
implement in different programming languages. It is 
also possible to add any other type of serialization by 
implementing new operators as plugins. Once the data 
has been serialized it can be transmitted and again 
several operators will take care of that. There are 
operators for StdIn/StdOut communication and 
operators for sending the data over a TCP network. 
Again, extension to any underlying network transport 
protocol is possible. 

During the execution of the algorithm 
communication will be performed by a specific object 
which derives from the interface IDataStream. This 
interface has five methods: Initialize, Connect, Close, 
Write and Read. This object is placed within the scope 
tree and available to a number of operators which then 
call these methods. 

After the communication with the simulator has 
been fixed the next step is to choose an optimization 
strategy, appropriate parameters and start optimizing. 

 
3. EVOLUTION STRATEGY 
The first ES (Rechenberg 1973) described used a 
population of one parent and one offspring typically 
denoted as (1+1)-ES. Starting from a randomly 
initialized parent, mutation adds Gaussian distributed 
noise to each value of the parameter vector. The 
mutated parameter-vector is evaluated and replaces the 
old parent if it is better than the parent; if not, the new 
solution is discarded. Further investigations and 
developments resulted in the (μ+λ)-ES (Schwefel 1987) 
where λ new individuals are generated for the next 
replacement phase. This (μ+λ)-ES is effectively an 
elitist algorithm and an alternative scheme called 
‘comma-strategy’ is also defined. In this the μ best 
individuals are used only from the offspring not 
considering the old parents. This is denoted by (μ,λ)-ES. 
In this scheme λ needs to be significantly greater than μ 
or otherwise the search performs a random walk instead 
of an optimization. 
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The random noise added to each element of the 
parameter vector is normally distributed with 
parameters (0, σ). Rechenberg observed for the 
(1+1)-ES that adapting σ in the course of the evolution 
leads to better results; based on this observation he 
formulated the “1/5 success rule” that adapts σ based on 
the average success of the last n mutations with the goal 
of generating on average 1/5 successful mutations. 
When the ratio of successful mutations is greater than 
1/5, the standard deviation should be increased while it 
should be decreased when the ratio of successful 
mutations is less than 1/5. 

The evolution strategy is designed with respect to 
continuous parameter adjustment. To apply it on 
simulation-based optimization problems, however does 
not always rely on continuous parameters alone 
(Affenzeller et al. 2007). Some models and also the one 
we used for testing in this paper make use of discrete 
parameters, e.g. integers as well. The mutation 
operators need to adapt to these mixed-integer 
optimization problems. Newer mutation strategies are 
proposed that take into account a mixture of discrete 
and continuous parameters. Even more data 
representations, such as unordered discrete parameters, 
arrays, boolean values and others may be encountered 
in simulation-based optimization which requires the 
definition of further extensions to the evolution 
strategy. Common to all these manipulation concepts 
are several properties (Bäck and Schütz 1995): 

 
• Smaller changes should be more likely than 

larger ones 
• Change in any direction of the domain should 

be equally likely 
 
4. RESULTS 
4.1. Optimization of a Supply Chain Simulation 

Model 
Results have been computed with one of the simulation 
models that ships with AnyLogic 6, namely the supply 
chain simulation model. This model consists of three 
buffers at each location in a supply chain: Retailer, 
Wholesaler and Factory. The retailer has to hold items 
in stock to sell to customers and orders new items from 
the wholesaler which in turn orders from the factory 
which produces items from an infinite source of 
instantly available raw materials. Each buffer is 
accompanied with two decision variables representing 
an upper and lower limit of the buffer. New items are 
ordered/produced when the stock falls below the lower 
limit in such quantity that it would fill the buffer to the 
upper limit. Orders at the factory and the wholesaler are 
shipped at the start of each day only. The model has 
constrained input parameters: The decision variables 
have to lie in the interval [1;200] and the lower limit 
must not be greater than the upper limit. The goal of the 
model is to reduce the total costs in the supply chain by 
minimizing buffer sizes in each location. Naturally, the 
optimum to this goal would be not to have any buffers 
and produce only on demand. This would however have 

customers wait for days to get their items and so 
reducing the mean customer waiting time 
(E[waitingTime]) is a second goal which stands in 
opposition to the first. A two goal approach however 
would require the application of multiobjective 
optimization techniques, so in this model the second 
goal is considered as constraint. The solution is 
described as feasible only when the mean customer 
waiting time is ≤ 0.001. In our example we allowed 
infeasible solutions during the search, but added a 
penalty to their quality value. For a feasible child with 
E[waitingTime] ≤ 0.001 the fitness function is 
E[DailyCosts], in case of an infeasible child, this value 
becomes: E[DailyCosts] * (100 + E[waitingTime]). 

The optimum is to set the decision variables such 
that the buffer size becomes as small as possible while 
maintaining a low waiting time. Given these 
characteristics it is clear to assume that the “global best 
feasible” solution borders the infeasible region in the 
search space. It is also valid to assume that the feasible 
region covers a coherent space of reasonable size. It 
seems unlikely to find an optimal buffer configuration 
deep within the territory of infeasibility, e.g. with low 
costs (small buffers), but also low waiting time. 

The size of the search space is reasonably large 
such that exact calculation or enumeration is not viable 
anymore. For each buffer there are about 20,000 
possible combinations of lower and upper bounds, 
which amount to about 8 trillion possible combinations 
when considering all three buffers. 

Another challenge in this model is its stochastic 
behavior. Customer demand is modeled by a random 
variable, so that a single simulation run usually is not 
enough to test for the feasibility of a solution or give a 
reliable estimate for its quality. The implications to the 
fitness landscape are that the region surrounding the 
global optimal solution(s) is highly disturbed by noise. 
There is even the question remaining if there can be a 
global optimal solution at all without a given 
confidence level for the feasibility of a solution. 
Because arrival is random even the safest solution can 
seem infeasible if the retailer is stormed on an unlucky 
day. The chance for such an event is extremely low 
though and thus we can only find feasible optimal 
solutions with regard to a certain probability. 

We have performed two tests with HeuristicLab to 
optimize this model: In the first test we treated the 
simulation as deterministic model and initialized it with 
the same random seed in each replication, while in the 
second test we used a different random seed and 
optimized a stochastic model. 

The results are compared to the commercial 
optimizer OptQuest which is already implemented 
within this sample simulation model. To each optimizer 
about the same amount of simulation replications is 
given as termination criterion. OptQuest applies a 
mixture of Scatter Search and Tabu Search and 
combines it with Artifical Neural Networks to learn 
about the response curve during the search (Glover et al. 
1999). 
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4.1.1. Deterministic Simulation 
Here we used a (5+10)-ES with self adaptive mutation 
strength adjustment as described in (Igel et al. 2006). 
The initial population is generated by a uniform random 
initialization of the decision variables within their 
bounds, manipulation adds a normal distributed variable 
N(0,1) multiplied with the current mutation strength and 
rounds the result to the next integer. This is not optimal 
as (Bäck and Schütz 1995) notes, however we are using 
a simpler self adaptive technique with just one adaptive 
parameter for the whole vector and no recombination. 
We found that as simple as this approach is, the results 
we could achieve are of good quality. The parameters 
for the 1/5-success rule self adaptation were set as 
follows: Initial mutation strength: 10, learning rate: 0.1 
and damping factor: 50. It was run for a maximum of 
1000 generations which amounts to about 10,000 
evaluations. Because the model is deterministic no 
replications are made. 

The best found solution in 5 runs with different 
random seeds has a quality value of 505.595, the 
parameter vector contained 43-55, 44-51 and 36-77 as 
the lower and upper bounds for the retailer, wholesaler 
and factory respectively. This has been the lowest 
feasible quality that we encountered during the test and 
it is obvious that it is likely to be infeasible in a 
majority of the situations. Indeed, evaluation of this 
setting with 100 independent replications showed that 
none of them achieved a feasible result. This is likely a 
solution which is feasible in very few cases. Other 
solutions obtained from these tests had slightly worse 
quality, but were only slightly more likely to be feasible 
when tested on the stochastic model. Thus the 
optimizer, in its best run, moved past a global optimal 
solution and into the region where a solution is likely to 
be infeasible, except that for the one random seed that 
the model has been initialized with it was still feasible. 
This shows that the optimizer will find highly specific 
solutions which work only under the fixed random 
setting. To obtain a real result of the performance, we 
will need to optimize the stochastic model. 

 
4.1.2. Stochastic Simulation 
As interesting and well performing as the results from 
the deterministic case are, the stochastic case is much 
closer to the real world. Its optimization however raises 
a new challenge. If we would evaluate a given 
configuration only a single time we may not have 
enough confidence about the feasibility of the solution 
to accept it into the next generation. So we need to have 
some confidence which configurations and their 
qualities to accept. 

It was tried first with just 5 replications per 
individual and the final solutions were found to have 
moved into a region where solutions have a higher 
probability of being infeasible. Replications were then 
raised to 10 per evaluation and the results showed more 
confidence. Naturally, the more replications are made 
the more computational effort is necessary and we were 
still not satisfied fully with the confidence given this 

amount of replications, but then thought of a different 
approach instead of raising it yet another time. A new 
child is evaluated and judged by 10 replications, but as 
it becomes parent, producing offsprings over possibly 
many generations and thus influencing the search 
trajectory, it is evaluated again once in each generation 
and the average is computed anew. This requires us to 
keep track of the previous qualities and shows once 
again the strength of HeuristicLab where this could be 
prototyped easily within the running application. For 
the search it means that the longer a parent survives, the 
more evaluations it will collect and the more confidence 
we could gain in its quality. 

To compute the results we used the same (5+10)-
ES as in the deterministic case, with 10 replications per 
evaluation and adding another replication for each 
parent in each generation. The stop criterion was 50 
generations at which about 5300 simulation runs have 
been counted. One test was set to run to 100 generations 
producing 10,550 simulation runs. The parameters for 
the 1/5-success rule self adaptation were set as follows: 
Initial mutation strength: 10, learning rate: 0.2 and 
damping factor: 10 to allow for quicker adaption given 
the small number of generations. OptQuest was also 
applied with the stopping criterion of 5300, 10,550 and 
one test with a maximum of 100,000 runs to see what is 
possible. Table 1 shows a summary of the results. 

 
Table 1: Comparison of HeuristicLab (HL) with 
OptQuest (OQ) on the supply chain simulation model in 
AnyLogic 6 

 Evaluations Average Best Worst 

HL 
5300 550.03 540.17 564.51 

10550 537.39 

OQ  

5300 578.63 571.34 585.04 

10550 567.01 559.73 580.21 

100000 548.88 

 
The best found solution with the (5+10)-ES in 

HeuristicLab was finally given more replications later 
and has a confidence of more than 90% in 100 
additional replications. The solution had 14 replications 
counted by the algorithm. The parameters found were 
57-60, 57-65 and 45-92 for the bounds of the retailer, 
wholesaler and factory respectively. The oldest solution 
in this run’s parent population came to 28 replications, 
which means it survived 18 generations. Its quality was 
538.81 and not much worse than the best. Its confidence 
was also above 80%. The best solution found by 
HeuristicLab with 5300 replications had a quality of 
540.17 stored 17 replications during the algorithm run. 
It has a confidence of about 87%. The parameters are 
66-66, 63-66 and 34-78. One problem that we saw was 
that feasibility is hard to evaluate. The optimization 
strategy used is very keen to walk past an optimal 
solution and into the region of infeasibility. Elitism may 
partly be blamed for this kind of behavior: Once the 
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“right” 10 replications have been found for a good 
configuration it is accepted into the parent generation. 
The approach using reevaluations could lessen this 
effect somewhat. An alternative strategy would be to 
use less replications in the beginning, and increase this 
number as the search progresses. 

The best result that OptQuest found had following 
parameters: 73-82, 60-60 and 41-74. In 100 additional 
tries it was found to be infeasible 10% of the time. The 
number of fixed replications per solution was also set to 
10 similar to the ES in HeuristicLab. 

Elapsed runtime is another important property of 
an optimization strategy and one where HeuristicLab is 
also competitive as optimization environment for 
simulation-based optimization. The workbench with 
10550 replications took approximately 4 minutes to 
evaluate on an Intel Pentium 4 running at 3.0 Ghz. This 
comes to about 44 replications per second. On the same 
computer and using the same number of replications 
OptQuest, including user interface updates, finished in 3 
minutes which is about 60 replications, though it is 
likely to be even faster when the GUI is turned off. 

Nevertheless, to scale to more computational 
intensive simulations as well as to parallel hardware 
HeuristicLab also features several parallelization 
strategies such as threading and distributed computing 
and can thus talk to multiple simulation models running 
at once. 

The results indicate that our evolution strategy 
performed quite successful and that it seemed adequate 
from the point of view of optimization complexity. One 
advantage with a general and open optimization 
environment such as HeuristicLab is that basically any 
optimization strategy can be tried, from the simplest 
greedy search to the most complex metaheuristic 
techniques. 

 
4.2. Metaoptimization 
Another possibility for simulation-based optimization is 
in metaoptimization. The goal is similar to that of 
simulation-based optimization, except that the 
simulation model is a given optimization strategy with 
several parameters that is applied on a given problem. A 
metaoptimization algorithm continuously feeds new 
parameters into another optimization strategy and 
receives a measure of its performance. The goal could 
be to tune the parameters so that the underlying 
optimization strategy finds better solutions and/or 
becomes more robust so that it finds them with higher 
probability. In our example we tried to optimize the 
self-adaptive parameters of an evolution strategy that is 
applied on a real valued optimization problem. 

The learning parameters to be optimized are: The 
initial mutation strength, the learning rate and the 
damping factor. They control the mutation strength 
adjustment in a (1+1)-ES which is applied on a 50 
dimensional sphere function. The ES is set to run for 
2000 generations. The metaoptimizer in this case is a 
Genetic Algorithm with a population of 100, 5% 
mutation, 1-Elitism and Roulette-wheel selection. The 

crossover is a simple one point crossover that takes one 
part of the parameter vector from one parent and the 
other part from another parent. 

The results in the five test runs performed 
indicated that several different settings have been found 
to achieve a good result within the 2000 generations. 
The best result had a very high learning rate of 0.97, an 
initial mutation strength of 4.70 and a damping factor of 
4.28. Its quality averaged over 10 independent runs 
ranged from 0.0118 to 0.05800. Another 
metaoptimization run resulted in a best quality of 
0.0139 with a learning rate of 0.58, an initial mutation 
strength of 6.62 and a damping factor of 4.04. Another 
one found a good solution with a quality ranging from 
0.0147 to 0.0674 and a low learning rate of 0.21, initial 
mutation strength of 13.63 and damping factor of 6.37. 
It is difficult to draw conclusions about the direction of 
a best setting. One common thing that we observed 
while examining the found solutions is that the higher 
quality solutions overall had a lower damping factor 
than the worse quality solutions in the final population, 
whereas we found a damping factor too low, e.g. close 
to 1 also among the worse solutions in the final 
population. Such correlations however are not based on 
statistical evaluation. The amount of data generated 
during such metaoptimization tests could be used to 
gather a better understanding of the influence of the 
parameters on the metaheuristics applied, especially on 
more complex problems and strategies which do not 
lend well to analytical study. Metaoptimization could be 
used to explore the parameter space and statistical as 
well as machine learning methods could be used to find 
correlations, clusters or patterns in the data which could 
lead to more efficient parameter settings. 

 
5. CONCLUSION AND FUTURE PERSPECTIVES 
In this work we shared how the HeuristicLab 
framework can be used for simulation-based 
optimization and presented some results based on a 
basic simulation model as well as metaoptimization. 
The results show that metaheuristics built with this 
environment can be used effectively for these kind of 
tasks. 

We also showed several interesting topics of 
research: Dealing with noisy optimization when 
optimizing stochastic simulation models on the one 
hand and the adaptation and application of well known 
heuristics for the purpose of simulation-based 
optimization on the other hand. Also interesting will be 
the topic of metaoptimization and how to combine it 
with simulation-based optimization as well as the topic 
of parallelization which goes beyond the scope of this 
paper. 

We plan to continue and extend the work described 
and further test optimization strategies for the purpose 
of simulation-based optimization as well as seek 
applications of our work to simulation models from the 
industry to evaluate the performance of a number of 
possible approaches. 
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