
 
 

ON THE INTEGRATED PRODUCTION AND PREVENTIVE MAINTENANCE PROBLEM 
IN MANUFACTURING SYSTEMS WITH BACKORDER 

 
Kenne, J.P(a), Gharbi, A(b), Beit, M(c) 

 
(a) Mechanical Engineering Department, Laboratory of Integrated Production Technologies 

Université du Québec, École de technologie supérieure, 
1100, Notre Dame Street West, Montreal (Quebec), Canada, H3C 1K3 

 
(b) Automated Production Engineering Department, Production Systems Design and Control Laboratory 

Université du Québec, École de technologie supérieure,  
1100, Notre Dame Street West, Montreal (Quebec), Canada, H3C 1K3 

 
(a)jean-pierre.kenne@etsmtl.ca, (b)ali.gharbi@etsmtl.ca, (c)mouhir.beit.1@ens.etsmtl.ca 

 
ABSTRACT 
The integrated production, inventory and preventive 
maintenance problem (PIPMP) is concerned with 
coordinating production, inventory and preventive 
maintenance operations in order to meet customer 
demand with the aim of minimizing costs. A unified 
framework is developed allowing production and 
preventive maintenance to be jointly considered using 
an age-dependent optimization model, itself based on 
the minimization of an overall cost function; this cost 
function for its part includes inventory holding, 
backlog, and preventive and corrective maintenance 
costs. We provide optimality conditions for more 
realistic manufacturing systems and use numerical 
methods to obtain the optimal preventive maintenance 
policy and the relevant age-dependent or multiple-
threshold-levels production policy, which we refer to as 
the multiple threshold levels hedging point policy. 
Numerical examples are included to illustrate the 
importance and the effectiveness of the proposed 
methodology 
 
Keywords: Preventive maintenance, Buffer inventory, 
Backorder, Reliability theory, Manufacturing Systems. 
  
1. INTRODUCTION 
Preventive maintenance involves a schedule of planned 
maintenance actions aimed at the prevention of 
breakdowns and failures. The long-term benefits of 
preventive maintenance include: improved system 
reliability, decreased replacement cost, decreased 
system downtime and better spares inventory 
management. The aim of this paper is: (i) to propose a 
probabilistic control model for the simultaneous 
planning of the production and preventive maintenance 
of a manufacturing system, and (ii) to develop an 
efficient technique for the computation of the optimal 
control policy considered.  
 An overview of relevant literature reveals that 
significant contributions have been proposed based on 
(i) preventive maintenance, (ii) production control, and 
(iii) joint production and maintenance optimization 
models. It has been shown in [10] and [11] that policies 
which do not address maintenance and production 
control decisions in an integrated manner can perform 

quite poorly. Available models are considered 
individually or simultaneously, and are restricted to 
simplified assumptions that sometimes lead to not-so-
realistic preventive maintenance or production policies.  
Comparisons of long-term effects and costs usually 
favour preventive maintenance over the performance of 
maintenance actions only when the system fails. The 
age replacement policy (ARP) is one of the available 
preventive maintenance options, and takes precedence 
over the block replacement policy (BRP) or group 
replacement policy (GRP). For details on these policies, 
please see [3] and [1] and their corresponding 
references. Details on other maintenance policies and 
their effects on the productivity and availability of a 
manufacturing system can be found in [17]. With the 
age replacement policy, which is a basic and simple 
replacement policy, the unit is replaced upon failure or 
at a preset age, whichever occurs first [9]. A generalized 
age-replacement policy with age-dependent minimal 
repair and random lead-time is presented in [18] by 
considering the average cost per unit time and the 
stochastic behavior of the system considered. The 
model includes the cost of storing a spare as well as the 
cost of system downtime. However, the implementation 
of an age replacement policy requires the continuous 
tracking of a component’s service life. This explains the 
popularity of the block replacement policy (BRP) in 
industries with large systems, each having a specific 
number of components. Given that ARP is based on 
age-dependent preventive maintenance periods rather 
than fixed periods, as is the case with BRP, it remains 
more realistic, and thus attracts many researchers. We 
refer the reader to extended versions of age replacement 
policies and their implementation presented in [1]. The 
related policies are non-realistic in the context of 
manufacturing systems, given that frequent machine 
breakdowns inevitably create bottlenecks for the 
process. Hence, preventive maintenance (used to reduce 
the likelihood of machine breakdowns) combined with 
the control of finished goods inventories, is a potential 
means of reducing the overall incurred cost.  
  The dynamics of the finished goods inventory are 
not considered in the aforementioned models, which are 
classified here as static models, given that the policies 
obtained are based on the mean values of the stochastic 
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processes involved. Manufacturing systems with 
unreliable machines have been modeled using the 
stochastic optimal control theory, in which failures and 
repairs processes are supposed to be described by 
homogeneous Markovian processes. The related optimal 
control model falls under the category of problems 
presented in the pioneering work of Rishel [15] and in 
[4]. The analytical solution of the one-machine, one-
product manufacturing system presented in [2] result 
from investigations carried out in the same direction. 
Preventive maintenance planning problems are 
combined with production control to increase the 
availability of the production system, and hence to 
reduce the overall incurred cost [5]. 
  The preventive maintenance model for a 
production inventory system is developed in [7] using 
information on system conditions (such as finished 
product demand, inventory position, costs of repair and 
maintenance, etc.) and a continuous probability 
distribution characterizing the machine failure process. 
An analytical model of the BRP and safety stock 
strategy is formulated in [14], also using restrictive 
assumptions such as the fact that the time to accomplish 
build-up and depletion of safety stock is small relative 
to the mean time to failures (MTTF). The model 
presented in [16] combines the ARP with the safety 
stock to show that inventory needs to be built just 
before the preventive maintenance occurs. It is assumed 
in [16] that extra capacity is maintained in order to 
hedge against the uncertainties of the production 
processes, and that there will be no possible breakdown 
of the machine before the preventive maintenance date. 
Without the assumption made in [16] on machine 
dynamics, the stochastic optimal control theory is used 
in [6], [12] and [13] to define machine age-dependent 
production and preventive maintenance policies. Such 
policies are based on increasing failure rate (IFR) 
distributions, and are characterized by a staircase 
structure, but with only one step.  
  The purpose of this paper is to investigate the joint 
implementation of preventive maintenance and safety 
stocks in a manufacturing environment in the presence 
of more realistic features than those made in [14] and 
[16]. The model presented in this paper is applied to a 
manufacturing system capable of catching up with 
unmet demand without interrupting the normal 
production process, as soon as production resumes 
(backorder situation). We consider the possibility of 
having a breakdown during the catch-up period. 
Previous models in the literature assumed that such a 
possibility is negligible. In addition, there is no 
restriction on any of the operational, repair and 
preventive maintenance time distributions (i.e., there is 
no restriction regarding the exact type of distribution of 
the time to machine breakdown, the time to corrective 
maintenance and the time to preventive maintenance).  
  The optimal production and preventive 
maintenance policies obtained in this paper significantly 
reduce the incurred cost, and are shown to be 
characterized by a multiple-step staircase structure 

describing the fact that the stock threshold level 
increases with the machine age given that its failure 
probability also increases with age. Significant stock 
levels at high machine ages are used to hedge against 
more frequent failures that occur randomly in such 
situations. The staircase structure of the control policy 
is shown to be the major contribution of the proposed 
model. The performance of such a policy is compared to 
that of the single stock threshold level control policy 
presented in [2] and extended in [12]. The model 
presented here is developed through the characterization 
of the stochastic processes underlying the system. Using 
the properties of the probability structure of these 
stochastic processes, the overall incurred cost is 
considered as a performance criterion, and is used as a 
basis for optimally determining the set of age-dependent 
stock threshold levels for each operational time or for 
each range of machine ages. 
 
2. MODEL NOTATIONS AND ASSUMPTIONS  
Throughout the article, we will be using the following 
notations and assumptions: 
Notations 
ARP Age Replacement Policy 
GFR General Failure Rate  
HPP Hedging Point Policy 
IFR  Increasing Failure Rate  
DFR Decreasing Failure Rate  
MADP Multiple Age-Dependent Policy  
MTTF Mean Time to Failures 
MTTR Mean Time to Repair 
SADP Single Age-Dependent Policy  
SIFRR Single Increasing Failure Rate Region 
c+   Inventory holding cost per unit time  
c−   Penalty cost for each unit of unmet demand  

1c   Cost of corrective maintenance 

2c   Cost of preventive maintenance 

( )u ⋅  Production rate of the system 

maxu  Maximal production rate 

d   Demand rate  
( )tζ  State of the machine at time t 

bT   The time to machine breakdown 

( )f t  Probability density function of bT  

( )F t  Cumulative distribution function of bT  

( )R t  Reliability function of the machine  
μ  Mean time to machine breakdown 

pmT  Time to preventive maintenance 

( )q t  Probability density function of pmT  

cmT   Corrective maintenance time 

( )g t  Probability density function of cmT  

S   Single stage stock threshold level  
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iS   Stage j stock threshold level or stock level 

jdA  interval j  of the machine age partition 

T   Scheduled time to preventive maintenance 
Assumptions 
 The fundamental assumption of ARP, that the cost 
of failure replacement ( 1c ) is greater than the cost of 

preventive replacement ( 2c ), is also applicable here. 
Other assumptions considered in this paper are:  

 
1. All failures are instantly detected and repaired.  
2. If a machine failure occurs during a production 

phase, corrective repair is started immediately 
and after repair, the machine is restored back 
to the same initial working condition. In 
addition, a preventive maintenance action (as a 
corrective one) renews the production system 
(i.e., the age of the machine is set to zero). 

3. The mean value of the time requirement for a 
preventive maintenance operation is short 
when compared with the mean time to machine 
breakdown (i.e., [ ] [ ]pm bE T E T μ< = ). 

4. A sufficient capacity is present to allow the 
accumulation of safety stock at the beginning 
of each machine life cycle. 

5. The time to accomplish the build-up and 
depletion of safety stocks is not necessarily 
small relative to the MTTF (i.e., a breakdown 
could arise during that time) and the system is 

feasible (i.e., max
MTBF u d

MTBF MTTR
⋅ ≥

+
) 

6. All unmet demand is not lost, as is the case in 
many others works in the relevant literature. 

 
3. PROBLEM STATEMENT 
The manufacturing system considered consists of a 
single machine which is subject to random breakdowns 
and repairs. The machine in question can produce one 
part type and its state can be classified as operational, 
denoted by 1, under repair, denoted by 2, and under 
preventive maintenance, denoted by 3. Assume that ( )tζ  
denotes the state of the machine with value { }1,2,3M = . 
  The dynamics of the machine could be described 
by a stochastic process, with jumps from modes α  to 
mode β , illustrated in Figure 1 by Jump( ).α β→  
Figure 1, called a transition diagram, describes the 
dynamics of the machine considered.  
  The transition from mode (operational mode) to 
mode 2 (repair mode) is machine age-dependent, and is 
described by an increasing failure rate (IFR) 
distribution. The transition from mode 1 to mode 3 
(from operational to preventive maintenance modes) is 
controlled in order to increase the capacity of the 
considered system characterized by an IFR distribution 
and an overall cost of maintenance which is lower than 
the overall cost of a corrective maintenance. 

 
Jump(1 1) or operational mode→

Jump(1 2)→

Jump(2 1)→

Jump(2 2) 
or corrective maintenance mode

→

Jump(3 1)→

Jump(3 1)→

Jump(3 3) or preventive maintenance mode→

Figure 1: States transition diagram of system 
 
  Based on the costs ratios and inventory level, the 
proposed model will determine an optimum time for a 
preventive maintenance action. In a more realistic 
manufacturing context (no restriction on any of the 
operational, repair and preventive maintenance time 
distributions, as mentioned in the Assumptions section), 
three different distributions are considered in this paper, 
rather than using a Markov process, as in [8] and 
references therein.  
  The system behavior is described by a hybrid state 
comprising both a discrete and a continuous component. 
The discrete component consists of the discrete event 
stochastic processes describing modes 1, 2, and 3. Let 
us assume that ( )u ⋅  denotes the production rate of the 
machine at time t  for a given stock level x  and time 
for preventive maintenanceT . The feasible production 
policies set is given by 

( )( ) ( ){ }max, 0u u uΓ = ⋅ ∈ℜ ≤ ⋅ ≤                   (1) 

where ( )u ⋅  is known as the control variable, and 
constitutes the so-called control policy of the problem 
under study.  The continuous component consists of a 
continuous variable ( )x ⋅  corresponding to the 
inventory/backlog of products. This state variable is 
described by the following differential equation:                     

( ) ( ) (0)dx u d x x
dt
⋅
= ⋅ − =                       (2)                     

where x, and d are the given initial stock level and 
demand rate respectively.  Let ( )g ⋅  be the cost rate 
defined as follows:    
( ) { } { }1 2( ), , Ind ( ) 2 Ind ( ) 3g t x c x c x c t c tα α α+ + − −⋅ = + + = + =   (3)                      

where c+ and c- are costs incurred per unit of produced 
parts for inventory and backlog respectively, 

( )max 0,x x+ = ,  ( )max , 0x x− = −  and  

{ }
1     if ( ) is true

Ind ( )
0     otherwise

Θ ⋅⎧
Θ ⋅ = ⎨

⎩
                       (4)                      

for a given proposition ( )Θ ⋅ . The corrective and 
preventive maintenance activities involve constant 
costs, namely 1c  and 2c respectively.  
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  Our objective is to control the production rate ( )u ⋅  
so as to minimize the overall total cost, integrating the 
instantaneous cost given by equation (3).  
  Whenever a breakdown occurs, corrective 
maintenance is performed, during a random amount of 
time, in order to restore the machine to its initial 
condition (i.e., the machine is assumed to be new, and 
its age is reset to zero). During the maintenance period, 
one of the following two situations occurs: 

• demands for items are met only through safety 
sock; 

• unmet demands for items are backlogged. 
 
  In order to reduce the likelihood of machine 
breakdown, preventive maintenance is scheduled and 
combined with production planning such that each time, 
immediately after the maintenance operation is 
performed, the machine is restored to its initial working 
condition.  
  The machine state moves from modes 1, 2 and 3 
according to random variables bT , cmT  and pmT defined 
as time to machine breakdown, corrective maintenance 
time and preventive maintenance time. At mode 1 and 
for given age a  and scheduled preventive maintenance 
period T , the production rate is given by an extended 
version of the so-called hedging point policy (HPP), 
defined by a threshold level, which is valid just for the 
value of the age, called here ( )S t . Such a policy is 
given by:   

max      if   ( )     
( )          if   ( )         

0          otherwise

u x S t
u x d x S t

<⎧
⎪= =⎨
⎪
⎩

              (5) 

  An example of a surplus trajectory is illustrated in 
Figure 2, for which we assumed a constant threshold 

( )dtS t for an infinitesimal index dt at age t  (i.e., 

0
lim ( )dtdt

S t S
→

=  ). The holding cost in such a situation 

reflects the average inventory held over the 
period  to t t dt+ . For a given initial inventory and a 
given final inventory, the average of the two is taken to 
be the average inventory. In the cases of manufacturing 
systems considered here, demand is time-homogeneous, 
at least in expectation, and so this assumption is valid. 
The demand rate of the product is a known constant 
whereas the production rate (which is greater than the 
demand rate) depends on the decision variables 

( ) and .S t T  For the seek of simplicity, we use 
 instead of ( )S S t in the rest of the paper without 

loosing the fact that S is age dependent. During 
production, the machine and surplus dynamic both 
involve the four scenarios presented in the next section. 

 
4. OPTIMALITY CONDITIONS 
Scenario No. 1. There is a breakdown before the 
scheduled preventive maintenance time, and the repair 

process involved ends with inventory or at a positive 
surplus level. The finished goods inventory in such a 
situation is illustrated in Figure 2. The holding cost in 
the period [0.T] is computed using area A1-1 illustrated 
in Figure 2.  

0
A1-1 ( )

T
S R t dt= ⋅ ∫  

where ( )R t  is the reliability function of the machine and 

ft , as represented in figure 2, is its failure age with 

ft T< . The holding cost, for scenario 1, is thus given 
by: 

1 1

0

A1-1

          ( )
T

Cost c

c S R t dt

+
−

+

= ⋅

= ⋅ ⋅ ∫
                   (6)                     

  The repair process ends at time rt  before the zero  
inventory point. The subsequent production cycle is 
undertaken and restarted at zero inventory, as illustrated 
in Figure 2. This is obtained by letting ( ) : 0s a =  in the 
control policy given by equation (5) until 

0 where ( ) 0t x t = . From the failure time ft to the 

beginning of the subsequent production cycle 0t , the 
holding cost involved is computed using area A1-2  
illustrated in Figure 2. 

 

 
Figure 2: Inventory sample path in the case of failure 
before preventive maintenance without backlog 
 
  The area A1-2 is given by the following 
expression: 

2

0
A1-2 ( )

2
T S dF t

d
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

∫    

where ( )dF t is the probability of a breakdown 
occurrence in interval [ , ]t t dt+ . The holding cost, for 

scenario 2, from 0to ft t , is thus given by: 

1 2

2

0

A1-2

          ( )
2

T

Cost c

Sc dF t
d

+
−

+

= ⋅

⎡ ⎤
= ⋅ ⎢ ⎥

⎣ ⎦
∫

                         (7)                      

747



 
 

  The cost incurred in periods [0, ]ft  and 0[ , ]ft t , 
for scenario 1, is determined using equations (6) and 
(7). Such a cost is given by: 

 1 1 1 1 2 1

2

10

( )

           ( ) ( ) ( )
2

T t dt

t

Cost Cost Cost c F T

Sc S R t dt c dF t c F T
d

− −

++ +

= + + ⋅

⎡ ⎤
= ⋅ ⋅ + ⋅ + ⋅⎢ ⎥

⎣ ⎦
∫ ∫

      (8)              

  Scenario No. 2. There is a breakdown before the 
scheduled preventive maintenance time, and the repair 
process ends with a backlog situation or at a negative 
surplus level. The finished goods inventory in such a 
situation is illustrated in Figure 3. The holding cost in 
scenario 2 is given by equation (8), and the backlog cost 
is described by proposition 1. 
  Proposition 1. By multiplying the number of 
backlogged unmet demand units by a penalty cost, we 
obtain the following backlog cost for scenario 2. 

( )
2

max
2 10

max

2 ( )
2

T
s
d

uS dCost c A c x g x dx c dF t
d u d

∞− −
⎢ ⎥⎛ ⎞⎛ ⎞⎛ ⎞= ⋅ = ⋅ − ⋅ ⋅ ⋅ +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫
 (9) 

 

maxu d−

 
Figure 3: Inventory sample path in the case of failure 
before preventive maintenance with backlog 

 
 

  Proof: From Figure 3, we can write the following 
expressions: 

I f
St t
d

− =                               (10)                                                                                                 

( ) ( )sI
d

S t
x t x g x dx

d
∞ ⎛ ⎞

− = − ⋅⎜ ⎟
⎝ ⎠

∫                (11)                                                           

0 max

( )
      ( ) ( )

BLK IS d x t
t x u d

= ⋅ −
= − ⋅ −

                (12)                                                                  

  Using equations (10), (11) and (12), the time 
needed to produce parts for backlogged demand units 
(i.e., from 0 to x t ) is given by:  

( ) ( )0
max

s
d

S tdt x x g x dx
u d d

∞ ⎛ ⎞
− = ⋅ − ⋅⎜ ⎟− ⎝ ⎠

∫           (13)      

From Figure 3 (see area 2A ), 0 0( ) ( )I It t t x x t− = − + − . 
Equations (11) and (13) give the following expression: 

( ) ( )max
0

max
sI
d

S tut t x g x dx
u d d

∞ ⎛ ⎞
− = ⋅ − ⋅⎜ ⎟− ⎝ ⎠

∫  (14)    Area 

2A  is then given by: 

( )
( ) ( )

0

2

max

max

( )2
2

    
2

BLK I

s
d

S t tA

S td u x g x dx
u d d

∞

⋅ −
=

⎛ ⎞⎛ ⎞⋅
= ⋅ − ⋅⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

∫

   (15)                      

Finally, the backlog cost in scenario 2 is 

2 10
2 ( ) ( )

T
Cost c A dF t c F T−= ⋅ +∫   (16)                      

  For scenarios 1 and 2, a corrective maintenance 
cost is added at the end of the cycle, given that the 
machine fails before the scheduled preventive 
maintenance. 
  Scenario No. 3. There is no breakdown before the 
scheduled preventive maintenance time, and the 
maintenance process ends with an inventory or positive 
surplus level.  
  A preventive maintenance is performed on the 
machine at the scheduled time T  (Figure 4), and is 
completed at pmT T+  as illustrated in Figure 4. 

pmT

Figure 4: Inventory sample path in the case of no failure 
before preventive maintenance without backlog 
 

  For this scenario, there is no failure before T and 
the holding cost is computed as in scenario 1, evaluated 
at T (i.e., for t T= ), and added to the preventive 
maintenance cost. The cost is then given by:             

2

3 20
3 ( )  ( )         

2
TSCost c A c S R t dt c R T

d
+ + ⎛ ⎞

= ⋅ = ⋅ ⋅ + + ⋅⎜ ⎟
⎝ ⎠

∫         (16)                  

  Scenario No. 4. There is no breakdown before the 
scheduled preventive maintenance time, and the 
maintenance process ends with a backlog or negative 
surplus level.  
  A preventive maintenance is performed on the 
machine at the scheduled time T  and is completed at 

pmx T T= +  as illustrated in Figure 5. The holding 

cost is computed as previously, evaluated at T (i.e., for 
t T= ). The backlog cost for scenario 4 is:               

( ) ( )
2

max
4 2

max

4 ( )             
2 s

d

d u SCost c A c x q x dx c RT
u d d

∞− − ⎛ ⎞⋅ ⎛ ⎞= ⋅ = ⋅ ⋅ − ⋅ + ⋅⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
∫  (17)                   
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  We may recall that the machine age is reset to zero 
after each operation on the machine (corrective or 
preventive maintenance).  
    Using expressions developed through scenarios 1 
to 4, the overall cost ( , )L S T , for one production cycle, 
ended after a maintenance action, depending on 
variables  and S T , is given by the following 
expression: 

( )

( ) ( ) ( )

( ) ( )

0

22
max

10
max

2

max
2

max

( , )

      ( )
2 2

     ( )                              
2

T

T
s
d

s
d

C S T c S R t dt

uS S dc c x g x dx dF t c F T
d d u d

d u Sc x q x dx c R T
u d d

+

∞+ −

∞−

⎡= ⋅ ⋅ ⋅⎣

⎤⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞ ⎥+ ⋅ + ⋅ − ⋅ ⋅ ⋅ ⋅ +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎦

⎛ ⎞⋅ ⎛ ⎞+ ⋅ ⋅ − ⋅ +⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

∫

∫ ∫

∫         

(18) 

 

maxu d−

0t

Figure 5: Inventory sample path in the case of no                          
failure before preventive maintenance with backlog 

 
  According to According to assumption 2, the 
duration of a production cycle is approximated given by 

( ) ( )_ ( )Cycle Time m T R T MTTP F T MTTR= + ⋅ + ⋅    (19)                                  
where The mean operational time of the machine is 
described by ( )m T  given by: 

( ) ( ) ( )
0

T
m T t f t dt R T T= ⋅ ⋅ + ⋅∫                      (20)                                            

  By dividing ( , )C S T  by the production cycle time, 
one obtains the overall expected cost per unit time 

( )L ⋅ , given by the following equation: 

( ) ( )
( , )( , )

( )
C S TL S T

m T R T MTTP F T MTTR
=

+ ⋅ + ⋅
          (21)                          

  In previous scenarios, in order to develop the 
expression of the overall cost given by equation (16), 
we assumed the following behavior for the stock: 

• The surplus is null at the beginning of the 
production period, just after an operation on 
the machine (corrective or preventive 
maintenance) or at the beginning of the 
production horizon; 

• After an operation on the machine, if the 
surplus is positive, the production process 
needs to be stopped and reset to zero inventory 
using the production policy given by equation 

(5), and updated here using the aforementioned 
considerations.  

 
 Let us now develop the mathematical model and 
the optimality conditions to determine values of optimal 
stock level and maintenance period * *( ) and ( )S a T a  
for machine age a .  
  Proposition 2. The function ( , )L S T  given by 
equation (16) is convex in S  and T . 
  Proof. Since the holding and backlog cost function 
is convex and the convexity is maintained under 
expectation (cf. integration), the proposition follows.                          
         Proposition 2 and previous scenarios are used to 
show that the optimality conditions, and hence, the age-
dependent optimal values of the control policy 
(threshold levels and scheduled preventive maintenance 
times), are given by Theorem 1.  
 
  Theorem 1. A safety stock *S and a scheduled 
preventive maintenance time *T  are optimal at time t  
if and only if:  

( , ) ( , )0    and     0L S T L S T
T S

∂ ∂
= =

∂ ∂
 

For the safety stock, we have:                

( ) ( )

( ) ( )

( )

                    1 0
2

t t

t

s
d mx

Sq
L S S S S Sdc R t dt F t c c g g
S d d d d d d

s d dx g x dx
d U d

+Δ+ + −

∞

⎡ ⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎢ ⎥∂ ⋅ ⎛ ⎞ ⎛ ⎞⎝ ⎠⎢ ⎢ ⎥= ⋅ ⋅ +Δ ⋅ ⋅ + ⋅ − ⋅ − + ⋅ ×⎜ ⎟ ⎜ ⎟∂ ⎢ ⎝ ⎠ ⎝ ⎠⎢ ⎥

⎢ ⎢ ⎥⎣ ⎦⎣
⎤⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞− ⋅ ⋅ ⋅ ⋅ + =⎥⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎥⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦⎦

∫

∫

 (22) 

and certainly,             

( ) ( )
( )
( )

2 1
2

t t

t
s
d mx

d R t dtc s s d dS F x g x dx
c d d U d F t

+Δ
− ∞

+

⋅ ⋅⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞− ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ + =−⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟− Δ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠

∫
∫

    (23) 

 Proof. In the interval [0, ]T , the first-order 
sufficient condition to obtain the threshold value S  is 

( ) 0L
S

∂ ⋅
=

∂
 with function ( )L ⋅ described by equation 

(21). Equation (22) is obtained, and the threshold value 

or optimal safety stock in [0, ]T  is given by equation 
(23). Due to the complexity of the expression (21) with 
respect to T , obtaining the analytical expression for 
such a parameter, as in the case of the parameter S , 
becomes more complex. Hence, we use the convexity 

property of the function ( )L ⋅ to complete the proof of 
this theorem for the parameterT . 
  We solve equation (23) for S  and use a numerical 
search over a given computational grid to provide the 
minimal cost and the related control parameters ( S  for 
production policy and T for preventive maintenance 
policy). 
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5. NUMERICAL PROCEDURE 
The time to system failure bT  has a Weibull ( , )β η  

distribution. Here,  and β η  are the shape and scale 
(characteristic life) parameters of the distribution. We 
must recall that a Weibull distribution is IFR when 

1η ≥ , and decreasing   failure rate (DFR) when 
0 1η< ≤ ;  when 1η = , ( ) 1/h t η λ= = , we obtain 
the exponential distribution which is both   IFR and 
DFR. In this paper, we consider a  Rayleigh 
distribution, which is a special    case of Weibull, with 

2η =  (i.e., IFR  with ( )h ∞ = ∞ ). 

  The time to corrective maintenance cmT  and the 

time to preventive maintenance pmT have a Lognormal 
( ,μ σ ) distribution, where the two parameters, 

 and μ σ , are the mean and standard deviation of the 
natural logarithm of the time to perform the operation, 
corrective or preventive maintenance, represented here 
by Lognormal random variables. The Lognormal 
distribution is a single increasing failure rate region 
(SIFRR), which is a special class of general failure rate 
(GFR), given that it only has one IFR region 
( ( ) 0h ∞ = ).  
  Given the previous probability distribution 
functions, the values of ( , )L S T  were derived from 
numerical integration methods (Theorem 1) and from 
the proposed algorithm, to obtain optimal values of 

( ),   and L S T⋅ (denoted as * * *( ),   and L S T⋅  
henceforth). An algorithm for the optimal production 
and preventive maintenance planning problem is given 
in Figure 6, and was coded using the Matlab/Simulink 
software.  
  Based on the proposed algorithm, the numerical 
scheme proceeds as follows: (i) read input data; (ii) 
consider computational grid on T for given lower and 
upper bounds minT  and maxT  respectively; (iii) for 
each feasible scheduled preventive maintenance time T  
(i.e., min maxT T T≤ ≤ ), consider a discrete time 
interval dt and solve the optimality condition at time t  
to obtain the optimal cost and the associated threshold 
level. 

 :t dt=  

 :t t dt= +

),),(),(),(,,,,,, maxmin
max21

-+ TTqgfducccc

dtTT +=:

Tt <

max< Tt

min=: TT

Figure 6: Iterative numerical procedure or algorithm 
 
  For illustration purposes, assume max 1u =  item 
per unit of time and the production process is run to 
satisfy a constant demand rate 0.5d = item per unit of 
time. The time to breakdown bT  is Weibull, with 

2 and =100β η=  (i.e., 88.6μ = ). The time to 
repair and the time to preventive maintenance are 
Lognormal, with =20, 1cm cmμ σ =  and 

=10, 0.5pm pmμ σ =  respectively. For such a system, 
a sensitivity analysis is provided in the next section to 
show the usefulness of the proposed approach and to 
illustrate the contribution of this paper. 
 

6. RESULTS ANALYSIS 
Four classes of studies are considered by using the 
variations of inventory, backlog, corrective and 
preventive maintenance costs. For the first class, Figure 
7 represents the effect of the holding cost variation on 
the stock level and the preventive maintenance time. 
For classes 2, 3 and 4, we illustrate the sensitivity 
analysis through Figures 8 to 10. 
   It is interesting to note the following from 
Figure 7, obtained with the variation of the inventory 
cost c+  ( 2,5,7c+ =  and 1, , 45c+ = L  as in figure 
7(a) and 7(b) respectively) and 

-
1 25000,  c 3000,  c 50c = = = : 

• The length of the first age interval increases 
with an increase in the inventory cost (i.e., 

1 0dA =  for 2, c+ = 1 18dA =  for 5c+ =  

and 1 24dA =  for  7c+ = ). This reduces the 
surplus at small age values, and hence reduces 
the overall incurred cost (see Figure 7(a)). 

• The scheduled production time for preventive 
maintenance *T  decreases with the increase in 
the inventory cost due to the fact that the safety 
stock decreases, and hence increases the 
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possibility of having a backlog situation (see 
Figure 7(b)). 

 
  It is clear from Figure 7 that the inventory policy 
significantly influences the overall incurred cost and 
that the safety stock increases with the machine age for 
each value of c+ but with a different trend. The 
preventive maintenance policy is also significantly 
affected by the holding cost according to a staircase 
trend. 
  For the variation of the backlog cost, Figure 8(a) 
shows that the stock threshold levels increase with the 
backlog costs for given machine age intervals. In 
addition, the length of the first age interval (i.e., 1dA ) 
decreases with the increase in the backlog cost. This 
increases the surplus at small age values, and hence 
increases the overall incurred cost, but the occurrence of 
backlog situations is minimized. It can be noted from 
Figure 8(b) that the preventive maintenance frequency 
also increases with the increase in backlog costs, thus 
increasing the availability of the production process, 
and hence the avoidance of backlog situations. 
  The variation of the corrective maintenance affects 
the preventive maintenance policy, and hence the 
production policy, as illustrated in Figure 9(a). The 
preventive maintenance frequency increases with the 
increase in corrective maintenance costs, as illustrated 
in Figure 9(b). This is done in order to reduce the 
number of machine breakdowns, and hence avoid 
corrective maintenance, which involve excessive costs.  
The variation of the preventive maintenance cost affects 
the preventive maintenance policy asymptotically (i.e., 
constant preventive maintenance for large costs) and 
hence, the production policy (operation duration) as 
shown in Figures 10(b) and 10(a), respectively. The 
results obtained show that such a variation has no 
significant effect on the staircase trend of the production 
policy (see Figure 10(a)), as in the case of corrective 
maintenance cost variations compared to the staircase 
trends illustrated in Figures 7(a) and 7(a). The 
preventive maintenance frequency also decreases with 
an increase in preventive maintenance costs, avoiding 
frequent preventive maintenance action, and hence 
reducing the total incurred cost. 

 
7. OPTIMAL CONTROL POLICY 
The results obtained, based on previous sensitivity 
analyses, are satisfactory and practical. In this paper 
(i.e., backlog case), we compare the results obtained, 
based on the multiple stage age-dependent control 
policy, to those presented in. [12], which are based on a 
single stock age-dependent threshold value. Table 1 
shows that the proposed control policy performs well 
compared to a single threshold-based control policy. 
The cost reduction given by the proposed control policy 
ranges between 17% and 37% for different situations 
generated through a sensitivity analysis. For illustrative 
purposes, we include a few cases, rather than presenting 
all cases considered.  

 
  To show that there exists an asymptotic trend of 
variation of stock threshold values, we consider a 
situation without preventive maintenance (i.e., large 
value of scheduled preventive maintenance time or 
T →∞ ) and obtain the result presented in Figure 11.  
  A constant and large threshold level needs to be 
maintained when the machine age is advanced (i.e., the 
machine is supposed to be old), in which case the down 
probability is likely to be 1. The age-dependent 
production policy obtained, called here the MADP, is 
an extension of the modified hedging point policy 
presented in [6] and [12]. The production rate 
associated with the proposed MADP is given by: 
 

j

j

j

    si       and    

( , )         si       and    ,     1,  ,

0        si        and    

max j

j j

j

u x S age dA

u x age d x S age dA j k

x S age dA

⎧ < ∈
⎪

= = ∈ = …⎨
⎪ > ∈⎩

 

(19) 
To illustrate the structure of the MADP, we consider 

1 5000,c =  2 3000,c =  50c− = , 2c+ =  and 

obtain optimal values of  and j jS dA . The optimal 
control policy to be applied to the considered 
manufacturing firm is defined by Equation (13) with the 
obtained values of * *and ,  1,  ,  9i iS dA i = … .  The 
results presented in this paper indicate that as expected, 
the optimal production policy for the considered 
manufacturing system is characterized by two types of 
parameters, namely, optimal threshold level *

jS  and 
* ,  1,  ,  kidA i = … such that the scheduled preventive 

maintenance period *T is given by: 

1

k

j
j

T dA
=

= ∑  

  Where k  is a random value obtained from the 
application of the algorithm presented in Figure 6. The 
control policy (19) is then completely defined by the 
values of ,   and  j jS dA k . 
  The trends of the curves shown in Figures 7 to 11 
confirm the robustness of the proposed approach 
through a sensitivity analysis. This is performed by 
threshold levels and scheduled preventive maintenance 
periods versus an overall incurred cost including 
inventory, backlog, corrective and preventive costs. The 
asymptotic behaviour, which is well illustrated in 
Figures 7 to 11, clearly shows that the results obtained 
make sense and that the proposed approach is robust. 
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Figure 7: Optimal production and preventive 
maintenance policies for different inventory costs 
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(b) 

Figure 8: Optimal production and preventive 
maintenance policies for different backlog costs 
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(b) 

Figure 9: Optimal production and preventive 
maintenance policies for different corrective 
maintenance costs 
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(b) 

Figure 10: Optimal production and preventive 
maintenance policies for different preventive 
maintenance costs   
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Figure 11: Multiple stage age-dependent hedging point 
policy with T →∞  
 
8. CONCLUSION 
A production inventory and preventive maintenance 
system with general characteristics and realistic 
assumptions has been considered here. From the results 
obtained, the modeling approach provides a useful tool 
for studying the effects of various system parameters 
(inventory, backlog and maintenance costs) on the 
overall incurred cost, as outlined by the sensitivities 
analysis. A new concept, called here MADP, is 
introduced, which is an extension of the modified age-
dependent hedging point policy previously proposed in 
the control literature. Our model can be extended to 
include large manufacturing systems by generalizing the 
control policy given by equation (19) and using a 
simulation and experimental design approach after a 
parameterization of the control policy. Details on such 
an approach can be found in [8]. 
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