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ABSTRACT 
In this paper, we address a multi-retailer inventory 
system with transshipment. Transshipment is used as 
recourse action occurring after an expected demand is 
realized. The remaining unsatisfied demand after 
transshipment is lost. We use various pooling policies 
for transshipment. We also develop a simulation model 
for such system that allows us to characterize the effects 
of pooling policies with/without constraints on system 
performance measures. The constraints are system lost 
sales per period and capacity per tranship. 

 
Keywords: multi-retailer inventory system, 
transshipment, lost sales 

 
1. INTRODUCTION 
Collaboration between locations is a big challenge until 
today in a multi-echelon, multi-location inventory 
system. The lateral transshipment between locations at 
the same echelon is the most popular method of 
collaboration. The lateral transshipment means that the 
locations share the stocks (or stock pooling.) There are 
two approaches to share the stock. The first, if a 
location cannot satisfy an actual demand, other 
location(s) with stock on hand may ship stock to the 
location where the demand occurred. It is called 
emergency transshipment. The second, transshipment 
occurs as redistribution of stock before the realization of 
the demand, so it is called preventive transshipment. 
With both lateral transshipments, we can reduce costs 
and improve service level even if the same total stock 
still maintain. In general, it is assumed that the lead-
time for transshipments is zero.  

In multi-echelon systems, it is often assumed that 
customer demand appears only at the lowest echelon. 
The most common assumption is that the customer 
demand follows stationary stochastic process. 
Moreover, if a customer places an order it is often 
assumed that the customer will wait until the order 
arrives. This means that backorders are allowed in the 
model. However, if the market is competitive a lost 
sales model should be used. We shall also distinguish 
continuous review from periodic, since these models are 
quite different in the analysis. 

The remainder of the paper is organized as follows. 
In section 2, we review the relevant literature in the 
transshipment domain. In section 3, we describe the 
multi-retailer transshipment problem and state the 
optimization problem. In section 4, after reviewing the 
classical expressions for computing the reorder point s 
and the order-up-to level S in single location inventory 
system, we present the simulation model. We then, 
propose a methodology to establish a simulation-
optimization model for finding s and S that minimize 
the total cost. In section 5, we evaluate the benefits 
pooling policies over a wide range of parameter values. 
Finally, in section 6, we present our conclusion and 
some future researches.  
 
2. THE TRANSSHIPMENT LITERATURE 
Since the literature on transshipment problem is very 
large, we limit, in this section, to provide an overview 
of some works that have addressed (i) the emergency 
transshipment and (ii) the difficulties encountered in 
transshipment inventory system.  

Robinson (1990) has formulated a multi-period 
(finite horizon), multi-location problem with emergency 
transshipment. In a backordered model, Robinson has 
proven the optimality of the order-up-to policy under 
the assumptions of instantaneous replenishment and 
transshipment lead-times. In fact, the order-up-to levels 
can be found analytically only when there are two 
retailers or the cost parameters are identical at all 
retailers. He has proposed a heuristic for the general 
case. Tagaras and Cohen (1992) have considered an 
inventory system consisting of a central warehouse and 
two retailers. They have assumed non-negligible 
replenishment lead-times and instantaneous 
transshipment times. They have allowed transshipment 
not only in cases of stock-outs but in also when the 
inventory position at a retailer falls below a critical 
level. The authors have defined four pooling policies 
that determine when and how much stock is 
transshipped from one retailer to the other; two policies 
are based on inventory level and the two other policies 
are based on inventory position. They have used 
simulation and grid-search to identify the optimal order-
up-to levels. They have compared expected costs of the 
four policies by simulation and find that the best policy 
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is complete pooling (the transshipped quantity is equal 
to the minimum of the surplus and the shortage.) Their 
analysis is extended by Tagaras (1999) to three retailers 
with identical costs. He has pointed out that the 
transshipment policy complicates significantly the 
problem and has investigated the random, risk 
balancing, and priority policies using optimization by 
simulation.  

The continuous review policies are often applied in 
connection with spare parts (or repairable items.) 
Models for spare parts are commonly used in military 
application, and the relative literature is quite extensive. 
These models often assume that spare parts are 
characterized by high costs and low demand (Poisson 
process.) The one-for-one replenishments, i.e. (S-1, S) 
policy, is the most popular policy. The METRIC model 
(Multi Echelon Technique for Recoverable Item 
Control) is commonly used as a basic model 
(Sherbrooke 1968). Sherbrooke has approximated the 
real stochastic lead-time by its mean. Lee (1987) has 
extended the Sherbrooke’s model by allowing lateral 
transshipment. In the case of identical locations, Lee has 
proposed three different lateral transshipment sourcing 
rules (random source rule and two priority rules.) 
Axsäter (1990) has extended the Lee’s model by 
allowing non-identical locations. 

The (s, Q) continuous review system is also used 
by some authors. In the inventory system with lost 
sales, Needham and Evers (1998) have shown that the 
penalty cost is the primary determinant on 
transshipment benefits. Evers (2001) has considered “all 
or nothing” policy (i.e., satisfy all the remaining 
demand or no) and variable transshipment cost per unit 
transshipped. In order to solve this problem, Evers has 
developed heuristic approaches to determine when 
transshipments should be made. Xu, Evers and Fu 
(2003) have dealt with the emergency transshipment in 
a multi-retailer inventory system with backorders. They 
have introduced to the classic (s, Q) policy a third 
parameter, hold-back level (H), which controls the level 
of outgoing transshipments. That is, if a retailer has 
only a few units on hand, it may choose not to share its 
inventory with the stocked-out retailer. 

The literature relating to our model is not extensive. 
Hu, Watson and Schneider (2005) have examined a 
periodic review (s, S) policy in a multi-retailer system 
with centralized ordering and demand backordered. 
They have assumed that the lead-times of replenishment 
and transshipment are negligible, and the cost 
parameters at retailers are identical. Under these 
restrictive hypotheses, they have established a dynamic 
programming model in order to find the approximate 
optimal (s, S) policy of the system instead of each 
retailer. Kurkreja and Schmidt (2005) have considered a 
continuous review (s, S) policy in a multi-retailer 
inventory system with demand backordered. They have 
dealt with an optimization problem to obtain (s, S) 
policies for each retailer that minimize the total cost and 
satisfy the service requirement. In addition, they have 
proposed a research procedure based on a simulation 

methodology in which only the values of s are 
manipulated; S is obtained by adding the economic 
order quantity to s. 

In both (s, Q) and (s, S) inventory systems, the 
commonly hypothesis used in all mentioned models is 
to consider at most one outstanding order per 
replenishment cycle. That is, no order arrives at the 
reordering period, i.e. Q>s or S-s>s. 

In the literature, the analytical models can only be 
found under restrictive assumptions (instantaneous 
replenishment, two locations, and identical costs). In 
fact, relaxing the assumption of instantaneous 
replenishment complicates significantly the 
mathematical analysis, because of the interrelationships 
among demand, transshipment quantities and pipeline 
inventories, and consequently the state space should be 
expanded (Tagaras 1999). In addition, Tagaras (1999) 
has shown that the exact model becomes intractable 
even in the case of two locations. Minner, Silver and 
Robb (2003) have also indicated two other reasons: (i) 
transshipments have a secondary effect in changing the 
time and the size of replenishment orders at a location 
releasing the transshipment, and (ii) the establishment 
of safety stocks must take into account the 
transshipment possibilities instead of the constraint of 
desired service levels. For these reasons, many authors 
have resorted to simulation in order to study multi-
retailer inventory system under relaxed hypothesis. It is 
in this direction that our work is pointing out. 

We are interested to study a periodic review (s, S) 
with lost sales in a multi-retailer inventory system 
integrating transshipment. The simulation model is 
designed to search policy parameters at each retailer 
that reduce the total system cost (holding, ordering, 
penalty, and transshipment costs). In a recent work, Tlili 
et al. (2008) have examined the benefits of complete 
pooling and all or nothing policies in a two-retailer 
inventory system and have concerned to study the 
effects of transshipment and penalty costs. Tlili et al. 
have evaluated these transshipment policies under 
identical/non-identical replenishment lead-times. For 
this system, the authors have proposed an effective 
procedure based on a grid-search by coupling 
simulation and optimization. This procedure is very 
appealing to practitioners in inventory management. 
The most important findings can be summarized in: (i) 
the type of transshipment policies does not have a 
significant difference on the system performance 
measures, (ii) the transshipment is more efficient only 
when the transshipment cost is non expensive in 
comparison with the penalty cost, and (iii) it is 
preferable to design distribution systems with identical 
replenishment lead-times and demand parameters in 
order to achieve a desirable savings of transshipments. 
In this paper, we relax some assumptions and extend the 
results of this earlier study to more than two retailers. In 
addition, our contribution in this work is threefold. 
First, we study the transshipment problem using 
complete pooling under with/without the hypothesis 
that at most one outstanding order is possible per 
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replenishment cycle. Second, we also examine these 
two systems by adding lost sale constraints per period at 
system level (all retailers). Third, we deal with a 
constraint of capacity per tranship instead of hold-back 
levels at retailers. Next, we present our transshipment 
problem in a multi-retailer inventory system. 

 
3. MULTI-RETAILER TRANSSHIPMENT 

PROBLEM  
 

3.1. Description of the problem  
We study an inventory pooling system of multi-
retailers, which are replenished by a warehouse. Each 
retailer i allows a periodic review (si, Si) ordering policy 
and faces random demand, which is normally 
distributed (mean µi and standard deviation σi) and 
independent of the demand at the other retailers. We 
assume that the warehouse does not keep any stock; i.e., 
any ordering policy is adopted by the warehouse. The 
replenishment lead-time from the warehouse to retailers 
is L periods and a fixed cost (K) is associated with each 
replenishment order. If retailer i places an order at 
period t, it will arrive at the beginning of period t+L+1. 
The emergency transshipment is allowed from retailers 
having excess stock to the retailers having shortage 
stock with zero time of transshipment. The quantity 
transshipment from j to i in period t is denoted by Xj,i,t 
and a fixed transshipment cost (ct) is associated with 
this activity. The transshipment cost is independent of 
the number of units transshipped as well as the number 
of transshipment requests. This can be justified only 
when all units to be transshipped from one retailer to 
another can be transshipped by a single shipment. If the 
transshipment is not possible or the demand is partially 
satisfied via transshipment, the remaining unmet 
demand is lost and a penalty cost (cp) per unit lost 
occurs. Furthermore, at the end of the review period, the 
remaining stock is subject to holding cost (ch) per unit 
and period unit. 

We define a system as a group of retailers. The α-
service (no stock-out probability) and β-service 
(fraction of satisfied demand) levels are measured at the 
system level. 

 
3.2. Notation 
N   Number of retailers 
β   Pre-assigned fraction for the number of lost 

sales per period at the system level 
DS   Desired system service level 
Qmax  Capacity maximum per tranship 
ki   Safety factor for retailer i 
xi,t   Demand at retailer i in period t 
yi,t   Inventory level at retailer i in period t 
Gu(ki)  The unit normal function (mean 0, standard 

deviation 1)  
δi,t  1 if retailer i in period t is still in a shortage 

situation and 0 otherwise  
TXi,t Total transshipment quantity towards retailer i 

in period t 
EOQ   Economic order quantity 

ch
KEOQ iµ2

=                                                             (1) 

 
3.3. Transshipment policies 

 
3.3.1. Complete pooling  
In a multi-retailer system, if one retailer could not 
satisfy its local demand from its own inventory on hand, 
it could be place a transshipment request to all the other 
retailers which are capable of providing such excess 
stock. Thus, the total transshipment quantity into 
retailer i from the other retailers is:  
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The principal rule of complete pooling is to satisfy 
the unmet demand as long as there are available stocks 
at the other retailers and there is still shortage at retailer 
i (δi,t=1). 
 
3.3.2. Partial pooling  
We consider a partial pooling policy that uses a capacity 
constraint per tranship (Qmax). In this situation, if a 
retailer has stocked out upon the unexpected of a 
customer demand, it places a transshipment request to 
the other (requested) retailer. The requested retailer is 
allowed to tranship any inventory lower than the 
quantity maximum (Qmax) to be transshipped. The 
capacity constraint can be interpreted as the capacity of 
the cargo that can be transported. Thus, the partial 
pooling policy under capacity constraint for multi 
retailers can be formulated as below: 
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3.3.3.  Sequential procedure of transshipment 
For both complete pooling and partial pooling policies, 
we should specify the transshipment decisions. For 
simplicity, we consider a sequential procedure to 
determine from which retailer the transshipment will be 
requested first. For instance, in the case of N=4, the 
retailers are numbered 1, 2, 3 and 4. While retailer 1 is 
in shortage situation at period t (i.e., δ1,t=1), the 
transshipments follow the sequence of retailers 2, 3 and 
4. Nevertheless, transshipments depend on the available 
stock at these retailers: 

Condition 1: if retailer 2 has sufficient stock to fill 
the requested quantity hence the transshipment is 
realized, so δ1,t=0. 

Condition 2: if retailer 2 has an available stock but 
it is lower than the requested quantity then we satisfy 
partially the request, so δ1,t=1. The request 
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corresponding to the remaining quantity is transmitted 
to retailer 3. If there is still shortage at retailer 1 (δ1,t=1), 
the  transshipment request is sent to retailer 4. 

Condition 3: if retailer 2 is in shortage situation the 
transshipments follow the sequence of retailers 3, 4 and 
1. Hence, retailer 1 will be satisfied from retailer 3 and 
4 after the transshipment decisions of retailer 2. 

It is worth noting that retailers 3 and 4 should also 
verify the conditions 1, 2 and 3. 
 
3.4. The optimization problem 
We are concerned with finding (s, S) policies for each 
retailer that minimize the total system cost E(TC). The 
total system cost consists of ordering, holding, penalty, 
and transshipment costs. We want to study on assessing 
the benefits of pooling policies (complete and partial 
pooling) under with/without the hypothesis that at most 
one outstanding order per replenishment cycle (S-s>s) 
and under the system lost sales constraint per period 
( β ). Thus, we have the following models: 

 
Model 1: Complete pooling without S-s>s constraint 
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Model 2: Complete pooling with S-s>s constraint 
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Model 3: Complete pooling without S-s>s constraint 
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Model 4: Complete pooling with S-s>s constraint 
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Model 5: Partial pooling without S-s>s constraint 
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Model 6: Partial pooling with S-s>s constraint 
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In fact, our transshipment problem with lost sales is 

a complex problem and hard to solve it with analytic 
method, so we have recourse to solve this optimization 
problem by integrating the simulation with the 
optimization. 

 
4. RESOLUTION METHOD 
 
4.1. Initial phase   
Before we begin the simulation, we should have an 
initial phase. In the inventory literature, many research 
works are interested to determine the policy parameters 
under various assumptions for a single location/single 
product inventory system. Since our model deals with a 
normal distribution demand, an exact approximation of 
the reorder point based on service level constraint is 
derived by Schneider and Ringuest (1990). Let (si

0, Si
0) 

denotes the initial values for each retailer i. 
 

( ) 110 +++= LkLs iiii σµ                                              (4) 
 

In lost sales systems, the safety factor ki is a 
solution of the equation (5). The numerical results are 
given in (Silver, Pyke and Peterson, 1998) p. 725-734.  
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Finally, the order-up-to-level is determined as:  

 
Si

0= si
0+ EOQ                                         (6) 

 
Wagner, O’hagan and Lundh (1965) have indicated 

that the economic order quantity Q is a good 
approximation for the optimal reorder quantity under 
the condition that the ratio K/ch is relatively high to µi, 
which is the case in our study.  

 
4.2. Simulation-optimization model 
The simulation-optimization models corresponding to 
the six models (section 3.4) are implemented on a 
spreadsheet and run by both Monte Carlo simulation 
and OptQuest of Crystal Ball 7.2®. 

The simulation model is operated on a basic time 
period of one period; i.e., the inventory is reviewed 
once each period. The demand per period is considered 
as the input of the model. We use Monte Carlo 
techniques to generate the demands. The rule of Monte 
Carlo simulation is to select randomly the customer 
demands according a normal distribution, which is 
specified by a mean and a standard deviation. In order 
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to confirm the hypothesis of i.i.d distribution we should 
disable the correlation between demands over time and 
among retailers. As output, the simulation model saves 
a variety of system performance measures: the total 
cost, the system service levels (α-service and β-service), 
transshipment rate (total transshipment quantity/total 
demand), and lost sale rate (total lost sales/total 
demand). The simulation model is validated by using a 
95% confidence interval for all the performance 
measures. In addition, the simulation model is run over 
a planning horizon of 100 period units and each period 
is simulated 1000 times, so that the system performance 
measures are more accurate; i.e., low mean standard 
error and low coefficient of variability. 

The optimization phase is based on a wide grid-
search for (si, Si), i=1…N. In order to construct this 
grid, we set the values of si and Si within two given 
intervals; si∈[LB1,i, UB1,i] and Si∈[LB2,i, UB2,i]. The 
bounds of these intervals are chosen based on the 
following idea:  

- The lower bounds for (si, Si) are computed as 
follows: LB1,i is equal to demand during L 
periods and LB2,i is equal to demand during the 
replenishment cycle (L+1 periods); 

- The upper bounds for (si, Si) are the initial values 
of the reorder points and the order-up-to levels 
(determined in section 3.3). 

  
Since the minimization criterion is not a convex 

function for the (s, S) inventory system; i.e. present 
several distinct relative minima (Wagner, O’hagan and 
Lundh 1965), we have to search the best combination 
(si, Si), i=1…N, through this grid. However, the number 
of all possible combinations within this grid is 
combinatory. So, we run the OptQuest optimization tool 
of Crystal Ball 7.2® by using two different step sizes 
(five units and one unit). For each step size, we run 
OptQuest for 1000 simulations. 

By starting with the initial solution (si
0, Si

0), the 
research for (si, Si) is carried out in [LB1,i, UB1,i] and 
[LB2,i, UB2,i] with a step size of five units. At the end of 
this phase, OptQuest of Crystal Ball provides the best 
solution among all the evaluated solutions which 
minimize the total cost and satisfy the constraints. We 
denote this solution by (s׳i, S׳

i) for each retailer i, then, a 
new research is made closely around this solution by 
using a one step size and restricting the intervals as 
below:  

LB1,i = s׳i-5; UB1,i = s׳i+5 
LB2,i= S׳

i-5; UB2,i= S׳
i -5 

 
Finally, we obtain the best values (si, Si) for each 

retailer i achieving our objective. 
We firstly run the simulation-optimization model 

for one retailer by using the initial values si
0 and Si

0 as 
starting points. This phase gives us the optimal 
inventory control parameters (s, S) for the no pooling 
system. These optimal values will be served as starting 
points for the multi-retailer pooling inventory system. 
 

5. NUMERICAL RESULTS 
The numerical analysis are reported to show the 
sensitivity of the constraints made upon the mean lost 
sales and capacity per tranship on the performance 
measures. The experiments are evaluated via large 
combination of the input parameters: DS=98%, K=100, 
ch=1, cp=100, ct=20, EOQ=89, the other parameters are 
given in Table 1 and the initial solutions for the 
corresponding parameters are presented in Table 2. 
According to this combination, we have in total 360 
problems to be evaluated. 

 
Table 1: Input Parameters for Numerical Examples 

Parameter Levels Values 
N 3 2; 4; 8 
L 2 1; 3 
σi 2 10; 20 
β  4 0.1; 0.05; 0.02; 0.01 

Qmax 3 5; 10; 15 
 

Table 2: Initial Solutions 
L µi, σi ki si

0 Si
0 

1 40, 20 1,13 112 201 
3 40, 20 1,3 212 301 
1 40, 10 0,76 91 180 
3 40, 10 0,95 179 268 

 
5.1. Evaluation of models 1 and 2  
An examination of Table 3 leads to several interesting 
observations. In all cases, the total cost in model 2 is 
higher than that in model 1. This can be explained by 
the increase/decrease of both lost sales and 
transshipment rates (indicate by %LS and %TR in Table 
3.) We can also observe that the difference between 
these two models declines with the number of retailers 
and becomes not significant (lower than 1%) in the case 
of shorter replenishment lead-time (L=1) and large 
number of retailers. However, the α-service in model 2 
is lower than that in model 1 and the difference between 
two models goes up 2.11%. This can be interpreted by 
the increase of lost sale occurrences in the model 2 due 
to the severe constraint S-s>s and the partial satisfaction 
via transshipments. Moreover, the difference between 
two models in β-service is negligible and does not 
exceed 0.19%. This is due to the transshipments, which 
tend to satisfy immediately customer demand from 
stocks on hand at all retailers and alleviate partially or 
entirely the shortages.  

We can also draw another conclusion, which 
concerns the stock levels. In most cases, the reorder 
points (s) in model 2 are more reduced than those in 
model 1 and, in all cases, the order-up-to levels (S) in 
model 2 are strongly higher than those in model 1. 
Indeed, in model 1, each retailer tends to have a higher 
reorder point, and so takes earlier precaution for lost 
sales by placing frequently orders with small quantity. 
While in model 2, the higher order-up-to levels are due 
to the constraint S-s>s which leads to place less 
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frequently orders with large order quantity. Hence, the 
number of replenishment cycles in model 1 is about two 
times than that in model 2. That is, an order is placed in 
the middle of a replenishment cycle. This leads to have 
a higher reorder point and a lower order-up-to level and 
consequently the holding and penalty costs are more 
reduced in model 1 than that in model 2. 

 
Table 3: Difference in Performance Measures of Model 
1 vs. Model 2 
N σi L %α %β %E(TC) %TR %LS %s %S 

2 10 1 0,00 0,02 0,91 -0,79 -20,01 0,62 14,41

 10 3 -1,55 -0,04 12,92 33,01 19,55 -5,79 26,36

 20 1 0,00 0,03 1,46 -9,50 -18,16 -1,63 10,03

 20 3 -2,11 -0,07 11,40 29,48 18,08 -9,44 21,68

4 10 1 -0,80 -0,03 0,20 11,68 19,88 -2,42 1,25 

 10 3 -1,23 0,00 8,11 24,96 -2,71 -6,75 23,60

 20 1 -0,13 -0,02 0,10 5,19 9,02 -2,82 1,58 

 20 3 -1,08 -0,06 5,17 38,37 23,28 -11,45 18,46

8 10 1 0,04 0,01 0,26 -2,11 -7,96 1,08 0,00 

 10 3 -1,67 -0,19 5,90 17,25 71,95 -9,38 19,04

 20 1 -0,13 -0,02 0,10 5,19 9,02 -2,82 1,58 

 20 3 -0,92 -0,12 1,90 23,30 47,04 -22,92 14,52
 

 
Next, we focus on accessing the benefits of 

transshipments according to the variation of 
replenishment lead-times and standard deviation of the 
demand for models with/without the constraint S-s>s. 
The cost increases with the lead-time as well as the 
standard deviation. For instance, in the case of two-
retailer inventory system in model 2, the total cost, the 
transshipment rate, the reorder point, and the order-up-
to level increase, respectively, in average about 19.73%, 
47.59%, 46.81%, and 48.23% when the lead-time 
increases from one to three for σi=10 and these 
performance measures also increase, respectively, about 
16.71%, 8.83%, 18.05%, and 14.18% when the standard 
deviation ranges from 10 to 20 for L=1. In addition, the 
increase of the performance measures declines with the 
number of retailers. That is, when the transshipment 
cost is non-expensive in comparison with the penalty 
cost, the transshipment leads to cost savings and 
reduction in inventories for large distribution systems. 
These results hold in the models 1, 3, 4, 5 and 6. 

 
5.2. Effects of lost sales constraint  
The observations that emerge from Figures 1 and 2 
concerning the variation of the total cost and the 
transshipment rate are very interesting. For instance, in 
model 3, when the rateβ becomes very tight (0.01), the 
total cost is lower (Figure 1). This can be explained by 
the decrease of the total number of lost sales due to the 
severe constraint β made upon each period. When the 
rate β is large (0.1), we obtain higher total cost even if 
the transshipment rate is also higher (Figure 2). Indeed, 
the increase of the total cost is due primary to the 

expensive penalty cost which dominates the 
transshipment cost. These results hold in the model 4. 
 

 
Figure 1: Variation of Total Cost for Model 3, where σi 
=10 and L= 1 
 

 
Figure 2: Variation of Transshipment Rate for Model 3 
where σi =10 and L=1 
 

A study of sensitivity of the constraint made upon 
the rate β indicates that the performance measures and 
stock levels depend on the variation of σi, L, and N. 
Figure 3 shows that, when  the lead time ranges from 
one period to three periods, the total cost increases with 
the constraintβ as well as with the number of retailers. 
In fact, during a longer lead time, the retailers tend to 
keep a large quantity of stock in order to protect against 
the shortage. In addition, the total cost also increases 
with the standard deviation (σi varies from 10 to 20) 
and the number of retailers (Figure 4). We study now 
the sensitivity of inventory levels to the constraintβ . In 
model 4, the variation ofβ from 0.01 to 0.1 leads to an 
increase about of 8.61% in s and about of 8.35% in S 
for N=2, σi=10 and L=3. For N=4, the increase in s is of 
7.97% and in S is in average about 4.81%. For N=8, the 
increase in s is about 5.22% and in S is about of 3.30%. 
We observe that the increase of stock levels declines 
with the number of retailers. This can be explained by 
the fact that, in a large distribution system, 
transshipment tends to alleviate completely the 
shortages (i.e., the total number of lost sales is nearly 
zero), so the inventory levels are less sensitive to the 
constraintβ . 

The difference between the models 3 and 4 is more 
significant in longer lead time and higher standard 
deviation. This is substantiated in Figures 3 and 4. 
However, the difference between these models in α-
service and β-service levels does not exceed 1% in all 
cases. This is due to the lower effect ofβ , resulting 
from its small value.  
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Figure 3: Sensitivity of Total Cost to the Lead Time L 
(from 1 to 3) where σi =10 for Models 3 and 4 
 

 
Figure 4: Sensitivity of Total Cost to the Standard 
Deviation σi (from 10 to 20) where L=1 for Models 3 
and 4 
 
5.3. Impact of capacity per tranship  
We turn now our attention to examine the effects of the 
partial pooling on system performance measures. The 
degree of transshipment benefits depends on the 
capacity constraint per tranship. The α-service and β-
service levels achieved by the models 5 and 6 are not 
much different in the whole range of the values. To be 
more specific, the system’s α-service and β-service 
levels go higher as the capacity per tranship becomes 
large. Moreover, a reduction in the capacity per tranship 
will decline the outgoing transshipment in the retailers 
having stock on hand (Figure 6) and consequently will 
increase the lost sales (i.e., increase the penalty cost) at 
each retailer (Figure 5). In addition, the lower the 
capacity in all retailers is, the higher the stock levels at 
each retailer are (Figures 7 and 8). The change of the 
total cost due to the change of capacity per tranship 
appears to be as a linear behaviour (Figure 5). The 
models 5 and 6 show a considerable difference in the 
performance measures, in particular, in longer lead 
times. We also observe that this difference is very 
sensitive to σi, L, and N. 

 
 

 
Figure 5: Variation of Total Cost for Models 5 and 6 
where σi =10, L=1 

 
Figure 6: Variation of Transshipment Rate for Models 5 
and 6 where σi =10, L=1 

 

 
Figure 7: Variation of Order-up-to Levels in Function 
of Qmax and N where σi =10, L=1 
 

 
Figure 8: Variation of Reorder Points in Function of 
Qmax and N where σi =10, L=1 
 
 

The experiments also indicate that the difference 
between the complete pooling and the partial pooling 
under large capacity (Qmax=15) for N=2, σi =10, L=1 is 
about 4.29% in E(TC), 3.59% in s, 5.93% in S, 0.81% 
in α-service, and 0.01% in β-service. Thus, for Qmax 
more than 15, the benefits with partial pooling under a 
large capacity per tranship tends to be similar to that of 
the complete pooling policy. This result holds for a 
large number of retailers as shown in Figures 9 and 10. 
In practice, a retailer would like keep some units of 
stock for its future needs instead of sharing all its 
available stock with the other retailers. In this situation, 
a partial pooling policy can be considered as an 
attractive policy to manage the stocks at retailers.  

 
5.4. Efficiency of the EOQ  
It is worth comparing the EOQ to the reorder quantity 
in all transshipment models. Our results indicate that the 
EOQ appears to be a good initial solution in models 
without S-s>s constraint. In all cases of models 1, 3 and 
5, the reorder quantity is reduced in comparison with 
the EOQ. This reduction goes higher as the number of 
retailers becomes large and goes lower with the increase 
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of lead-time/standard deviation. However, the EOQ is 
not recommended in the models with S-s>s constraint. 
In some cases, the reorder quantity in transshipment 
model is about two times than the EOQ. To be more 
specific, a longer lead-time and/or a higher standard 
deviation lead to a large gap between the EOQ and the 
reorder quantity in transshipment model. Nevertheless, 
in the model 2, the EOQ can be served as an initial 
solution only in the case of shorter lead-time (L=1) and 
lower standard deviation (σi=10). 

 

 
Figure 9: Complete Pooling (CP) vs. Partial Pooling 
(PP) where Qmax=15, for σi =10, L=1 in Model 6 
 

 
Figure 10: Complete Pooling (CP) vs. Partial Pooling 
(PP) where Qmax=15, for σi =20, L=1 in Model 6 
 

 
6. CONCLUSION 
This paper has examined the effectiveness of two 
transshipment policies in two-echelon distribution 
system, characterized by a single warehouse at the 
higher echelon and multiple retailers at the lower. One 
of these transshipment policies is a complete pooling 
policy, while the other is the more realistic, partial 
pooling policy. Our results indicate that the benefits 
appear to increase, as the number of retailers becomes 
large. Moreover, under some circumstances, either of 
complete or partial pooling policies, may be the most 
desirable policy. 

Future works should focus on adding a fixed cost 
for each transshipment request in models 5 and 6. 
Another extension involves consideration of ordering 
policy at the warehouse and investigation of 
transshipment benefits. 
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