
ABSTRACT 
Genetic programming (GP) is an evolutionary optimiza-
tion method that has already been used successfully for 
solving data mining problems in the context of several 
scientific domains. For example, the identification of 
models describing the nitric oxides (NOx) emissions of 
diesel engines has been investigated intensively, very 
promising results were obtained using GP. 

In the standard GP process, all model structures (as 
well as parameter settings) of models are created during 
an evolutionary process; populations of models are 
evolved using the genetic operators crossover, mutation 
and selection. In this paper we discuss several possibili-
ties how a priori knowledge can be integrated into the 
GP process; we have used physical knowledge about the 
formation of NOx emissions in a BMW diesel engine, 
test results are given in the empirical tests section. 
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1. GENETIC PROGRAMMING 
Genetic programming (GP) is an optimization technique 
based on the theory of genetic algorithms, designed for 
automatically creating programs that solve a given 
problem situation. A genetic algorithm (GA) works with 
a set of candidate solutions called population; during the 
execution of the algorithm each individual has to be 
evaluated, which means that a value indicating the fit-
ness is returned by a fitness function. New individuals 
are created on the one hand by combining the genetic 
make-up of two parent solution candidates producing a 
new child, and on the other hand by mutating some in-
dividuals, i.e. changing randomly chosen parts of 
genetic information. Beside crossover and mutation, the 
third decisive aspect of genetic algorithms is selection: 
Usually, the individual’s probability to propagate its ge-
netic information to the next generation is relative to its 

fitness; the better a solution candidate's fitness value, 
the higher the probability, that its genetic information 
will be included in the next generation's population. 
This procedure of crossover, mutation and selection is 
repeated over many generations until some termination 
criterion is fulfilled. 

Similar to GAs, GP works by imitating aspects of 
natural evolution to generate a solution that maximizes 
(or minimizes) some fitness function; a population of 
solution candidates evolves through many generations 
towards a solution using evolutionary operators; the 
main difference is that, whereas GAs are intended to 
find an array of characters or integers representing the 
solution of a given problem, the goal of a GP process is 
to produce a computer program solving the problem at 
hand. Typically the population of a GP algorithm con-
tains a few hundreds or even thousands of individuals 
and evolves through the action of operators known as 
crossover, mutation and selection. Figure 1 visualizes 
how the GP cycle works (Langdon and Poli 2002): As 
in every evolutionary process, new individuals are 
created and tested, and the fitter ones in the population 
succeed in creating children of their own; unfit ones die 
and are removed from the population. 
 

 
Figure 1: The extended genetic programming cycle. 
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2. GP BASED SYSTEM IDENTIFICATION 
In general, the process of building dynamic mathemati-
cal models from measured data is called system identi-
fication (Ljung 1999). In this context, a dynamical 
model is a mathematical description of the dynamic be-
havior of a system or process which is to be identified. 

The main goal here is to determine the relationship 
of a dependent (target) variable t to a set of specified 
independent (input) variables x. Thus, what we want to 
get is a function f that uses x and a set of coefficients w 
such that 

 
ݐ ൌ ݂ሺݔ, ሻݓ   (1) ߝ

 
where ߝ represents the error (noise) term. Applying 

this procedure we assume that a model can be created 
with which it will also be possible to predict correct 
outputs for other data examples (test sample); from the 
training data we want to generalize to situations not 
known (or allowed to analyze) during the training 
phase. 

Genetic programming has been repeatedly used 
successfully for building formulas that describe the be-
havior of systems from measured data, see for example 
(Koza 1992; Kejzer and Babovic 1999; Langdon and 
Poli 2002; Alberer, del Re, Winkler, and Langthaler 
2005; del Re, Langthaler, Furtmüller, Winkler, and Af-
fenzeller 2005; Winkler, Affenzeller, and Wagner 2006; 
Winkler, Affenzeller, and Wagner 2007). When it 
comes to evaluating a model m (a solution candidate in 
a GP based modeling algorithm, e.g.), the formula has 
to be evaluated on a certain set of evaluation (training) 
data X yielding the estimated values E(m,X). These es-
timated target values are compared to the original val-
ues T, i.e. those which are known from data retrieval 
(experiments) or calculated applying the original formu-
la to X. This comparison is done calculating the error 
between original and calculated target values; there are 
several ways how to measure this error, one of the sim-
plest and probably most frequently used one being the 
mean squared error function. 

Since 2002 we have been developing a GP based 
structure identification framework which also used 
these further developed selection principles. The Heu-
risticLab (Wagner and Affenzeller 2005), a framework 
for prototyping and analyzing optimization techniques 
for which both generic concepts of evolutionary algo-
rithms and many functions to evaluate and analyze them 
are available, is the basis for this implementation. 

 
3. INCLUDING A PRIORI KNOWLEDGE INTO 
GENETIC PROGRAMMING BASED SYSTEM 
IDENTIFICATION 
A lot of research work has already been done regarding 
the use of already existing knowledge and known con-
straints in evolutionary system identification. Keijzer 
and Babovic (Keijzer and Babovic 1999), for example, 
describe the design of dimensionally aware GP; here, 
the fact that physical measurements are generally ac-
companied by their units of measurement is utilized 

leading to an extension of GP that considers the infor-
mation given by the units of measurement. 

In many modeling problem situations there is at 
least partial knowledge available about the system’s 
structure. If the whole structure was known, then we 
would not necessarily need a structural system identifi-
cation method as GP; but, as already insinuated, we of-
ten only know something about a certain part of the sys-
tem at hand, but not the total system’s structure; 
examples are shown in Figure 2. 

Three possibilities how a priori knowledge can be 
incorporated into genetic programming based system 
identification are to be described in the following: 

 
1. Introduction of synthetic variables: The most 

simple way to handle case 1 is to introduce an 
additional variable into the data base; this new 
variable’s values are calculated according to 
the subsystem’s model. The modeling process 
is thus able to incorporate this synthetic varia-
ble into models for the total system. This pro-
cedure is of course applicable and frequently 
used for any modeling approach. Still, subsys-
tems as described in modeling case 2 cannot be 
handled using this approach since not all inputs 
for the modeled unit are known. 

2. Seeding parts of the population: A genetic 
programming specific possibility to handle 
case 2 is to model the known part of the sub-
system as a GP model (formula) m and to in-
ject it into the population intentionally. This in-
jection can be done during the population 
initialization phase as well as in any other 
phase of the GP process; in any case a certain 
number of individuals in the population or of 
the models created by crossover or mutation 
has to be replaced by m. For the particular ex-
ample given in the right part (b) of Figure 2 
this model could be for example /(+(X1, X3, 
0), 1); the rest of m’s inputs has to be modeled 
by the evolutionary process, the placeholder 
terminals 0 and 1 should then be replaced by 
appropriate subsystem representations. Fur-
thermore, this partial model can be (by cros-
sover) inserted into other models and so be-
come a part of the total system’s model. This 
model is shown in the left part (a) of Figure 2. 
Still, this approach comes with two major 
drawbacks: On the one hand, the models in-
serted into the population could be assigned 
very low fitness values and might thus be elim-
inated out of the population immediately. On 
the other hand, the models inserted into the 
population could be assigned very high fitness 
values, especially when the core of the system 
is modeled very accurately. The problem here 
is that these super-individuals could be so do-
minant in comparison to all other models, and 
this could have the effect that the population 

70



 
 

immediately converges to a local optimum so 
that premature convergence could happen. 

3. Introduction of particular definitions in the 
functional base: The most flexible possibility 
is surely to introduce particular functions and 
terminals with appropriate parent and child re-
lationship definitions. 

 
By doing so, any given subsystem can be modeled 

with optional references to system inputs; by using the 
respective functions in the genetic programming 
process, the so modeled a priori knowledge can be in-
corporated. This procedure might seem to be a bit cum-
bersome as it would be easier to program functions that 
have direct access to the data and to use the variables’ 
values directly without needing additional terminals. 
Still, we have chosen to stick strictly to the original de-
finition of functions as units processing results of other 
functions or terminals; this is why this approach has 
been implemented in this manner in HeuristicLab even 
though there would not have been a technical reason not 
to provide functions with access to the data basis. 
 

 
 

Figure 2: A priori knowledge about the structure of a 
system. 

 

 
 

Figure 3: Models representing a priori knowledge given 
in Figure 2. 

 
4. FORMATION OF NITRIC OXIDES IN DIESEL 
ENGINES 
In fact, research regarding the formulation of dynamic 
models describing for NOx emissions of diesel engines 
has been done since several decades, so there is already 
a lot of physical and chemical knowledge available for 
this modeling task: 

As Warnatz, Maas and Dibble explain in (Warnatz, 
Maas, and Dibble 1996), the products of combustion are 
distinctly identified as a severe source of environmental 
damage, especially caused by increased combustion of 
hydrocarbon fuels. The major combustion productions, 
especially carbon dioxide and water, have long been 
considered rather “harmless”; now, carbon dioxide is 

more and more seen as a significant source of problems 
regarding the atmospheric balance and greenhouse ef-
fect. NOx are less obvious products of combustion; 
within the last half of the twentieth century it has be-
come apparent that NO and NO2, collectively called 
NOx, are major contributors to photochemical smog and 
ozone in the troposphere (Seinfeld 1986). Gaining 
knowledge regarding the production process of NOx is 
therefore of great interest and researchers search for 
models for the production of these pollutants in order to 
find new ways how to minimize them (Warnatz, Maas, 
and Dibble 1996). 

Based on physical models summarized in (War-
natz, Maas, and Dibble 1996) we have defined the fol-
lowing model describing the production of NOx depend-
ing on measurable engine parameters: 
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where 
 
• MAF is the amount of fresh air in the engine’s 

intake manifold (MAF here stands for mani-
fold air flow), 

• N the engine speed, 
• MAF* is the amount of fresh air divided by 

the rotational frequency and converted to the 
amount of air per combustion cycle, 

• qMI the injected fuel mass per cycle, 
• pMI is the crankshaft angle φ before the top 

dead centre of the piston where fuel injection 
starts, and 

• α, β and γ are parameters which have to be 
identified. 

 
Figure 4 shows a graphical representation of this 

semi-abstract model structure: 
 

 
Figure 4: Model representing the physical knowledge 
available for the formation of NOx emissions. 
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5. EMPIRICAL TESTS 
The data set we have used for testing the enhanced GP 
strategies described in the previous sections contains the 
measurements taken from a 2 liter 4 cylinder BMW di-
esel engine at a dynamical test bench (simulated ve-
hicle: BMW 320d Sedan). The mean engine speed was 
set to 2,200 revolutions per minute, and in each engine 
cycle 15mg fuel were injected. Several emissions (in-
cluding NOx, CO and CO2) as well as several other en-
gine parameters were recorded over approximately 18.3 
minutes at 100 Hz and then downsampled to 10 Hz, 
yielding a data set containing approximately 11,000 
samples. 40 signals were recorded, but only 9 variables 
were considered by the identification algorithm. The 
reason for this is that information about other emissions 
should not be incorporated in the model because of re-
dundancies and relatively high costs of exhaust sensors 
– an emission model using other emission measure-
ments is much easier to be found, but not very signifi-
cant. Therefore we have only used parameters which are 
directly measured from the engine’s control unit and not 
in any sense connected to emissions (as for example oil 
temperature, air pressure, injection parameters etc.).  

As we now know about the physical knowledge 
available in context with formation of NOx during com-
bustion in diesel engines, there are several ways how we 
can make this information available for the GP process. 

First and most obviously, Formula (2) describing 
the calculation of the auxiliary variable MAF* can be 
used for defining a new variable; as there are no para-
meters to be fixed, this new variable can be introduced 
into the data base immediately. The GP process is there-
fore able to use this information simply by using this 
new variable, i.e. by creating models that reference the 
variable MAF*. 

The incorporation of the information given in 
Formula (3) is a bit more complicated as it includes pa-
rameters which are not known. The first possibility is to 
seed the population using a stub of the model already 
known. Of course, this brings along the problem that the 
unknown parameters included in the model, namely α, β 
and γ, have to be initialized using some arbitrary, but 
fixed values; we initially set those parameters to 0.1 and 
expect the evolutionary optimization process to tune the 
values so that improved model structures are evolved. 

An alternative method is to create an artificial 
function that represents the structure of the knowledge 
available. So we define the following additional items 
that are to be added to the functional basis used by the 
GP process: The function definition “PKfuncNOx” 
represents the main part of the model. On the one hand 
it expects the input variables qMI, pMI, 1/N (N−1) and 
MAF* as inputs at indices 0, 2, 4 and 6; on the other 
hand it also expects 5 more inputs that are processed as 
coefficients (at indices 1, 3, 5 and 8) or an additional 
term at index 7. When called with the expected inputs 
I0...8, this function returns the result of the expression de-
fined in (4) and graphically displayed in Figure 5: 

 
݁ூబ·ሺூభ·ூమାூయ·ூరାூఱ·ூలାூళሻ·ூఴ     (4) 

 
Figure 5: Terminal definitions and the “PKfuncNOx” 
function representing physical knowledge about the 
formation of NOx emissions. 

 
Table 1: Test strategies for incorporating physical 
knowledge about the formation of NOx in the GP 
process. 

Index Parameters 
I No additional information. 
II Use of additional variable MAF*, 
III Use of additional variable MAF* 

as well as stub model 
IIIa Seed model in 20% of the 

initial population 
IIIb Seed model in 60% of the 

initial population 
IIIc Seed model in 100% of the 

initial population 
IV Use of additional variable MAF* 

as well as stub model 
IVa Seed model in 10% of the 

initial population and 
with 10% probability in main loop 

IVb Seed model in 20% of the 
initial population and 

with 20% probability in main loop 
IVc Seed model in 50% of the 

initial population and 
with 30% probability in main loop 

V Use of additional variable MAF* and 
“PKfuncNOx” function 

Va No manipulation of the GP-process 
Vb Introduction of “PKfuncNOx” 

function into solutions by special 
mutation operator; probability: 15% 

 
We have applied all strategies presented in Section 

3 for incorporating knowledge about the formation of 
NOx. In Table 1 we summarize the test strategies actual-
ly applied; in all cases we used GP including strict 
offspring selection (Affenzeller, Wagner, and Winkler 
2005), single-point crossover and 12% mutation. 

All test strategies were executed 5 times indepen-
dently using the first 5,500 samples as training data, 
3000 samples as validation and the remaining samples 
as test data. In all test runs we collected those models 
that performed best on validation data and evaluated 
them on test data; the results of these test evaluations 
are summarized in Table 2 where we give statistics 
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about the mean squared errors on test data. Figure 6 il-
lustrates a model which was returned as best model with 
respect to fit on validation data in one of the test runs in 
series IVb. Obviously, the given model structures that 
were inducted into the GP processes in series IV have 
been used and are incorporated in the model’s structure. 
Figure 7 shows the evaluation of this model on the 
whole data set. 

In (Winkler 2008) the reader can find much more 
details about the evaluation of these test runs. For ex-
ample, extensive investigations regarding population 
dynamics can be found in this thesis as well as further 
background about test bench setup and the data set used. 
 
Table 2: Quality of results (average and standard devia-
tion), evaluation on test data. 

 Test quality 
Strategy Mean value Standard 

deviation 
I 0.004359 0.00033 
II 0.003901 0.00037 
III   
IIIa 0.00388 0.00022 
IIIb 0.00408 0.00038 
IIIc 0.00429 0.00031 
IV   
IVa 0.00382 0.00032 
IVb 0.00348 0.00020 
IVc 0.00384 0.00027 
V   
Va 0.00409 0.00032 
Vb 0.00388 0.00028 

 

 
Figure 6: Best model produced for the NOx data set: 
The given a priori knowledge has been incorporated as 
sub-trees of the returned model structure.  
 

 
Figure 7: Evaluation of the finally retrieved model. 

6. CONCLUSION 
In this paper we have summarized test results for an ex-
ample for the introduction of a priori about the system 
which is to be identified: Virtual sensors for the NOx 
emissions of a BMW diesel engine have been created 
using physical knowledge. Three different ways how to 
introduce additional knowledge into the GP based learn-
ing process have been discussed and tested: 

 
• If partial knowledge can be formulated by 

equations without variable parameters, then 
additional variables can be formed. Of course, 
this approach can be used in any machine 
learning approach; in this example application, 
the virtual variable MAF* has been formed and 
added to the problem data set, leading to in-
creased model qualities. 

• Alternatively, model structures representing 
partial knowledge can also be introduced into 
the GP process by seeding parts of the initial 
population or by repeatedly inserting them into 
the main GP loop (before crossover and muta-
tion operations). In our example application, 
this was also successfully done; of course, if 
this forceful introduction is done too often, 
then population diversity can be lost leading to 
worse results.  

• The third possibility discussed and tested here 
is the formation of complex functions 
representing partial knowledge; the genetic 
process is then supposed to form models that 
include these functions. Unfortunately, exactly 
this approach did not really work fine in this 
exemplary application: On the one hand, with-
out manipulating the GP process, the function 
designed in this example died off almost com-
pletely, and on the other hand forceful intro-
duction of this function into the existing mod-
els had negative effects on population diversity 
as well as on results quality. 
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