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ABSTRACT

In this paper we analyze the resource-constrained
project scheduling problem under uncertainty. Project
activities are assumed to have known deterministic
renewable resource requirements and probabilistic
activity durations described by random variables with a
given density function. We develop heuristic algorithms
for building a schedule with protected starting times,
obtained using a buffering mechanism guided by
probabilistic information.

Keywords: Stochastic project scheduling.

1. INTRODUCTION

The resource-constrained project scheduling problem
(RCPSP) consists in minimizing the duration of a
project, subject to the finish-start, zero-lag precedence
constraints and the resource constraints. In its
deterministic version the RCPSP, assumes complete
information both on the resource usage and activities
duration and determines a feasible baseline schedule,
ie. a list of activity starting times minimizing the
makespan value. The role of the baseline schedule has
been widely recognized in (Mehta and Uzsoy 1998;
Maihring and Stork 2000), and it stems in supporting
project decision makers providing a basis for planning
external activities and facilitating resource allocation.
Notwithstanding its importance, the planned baseline
schedule in real contexts may have little, if some value,
since project execution may be subject to severe
uncertainty and then may undergo several types of
disruptions as described in (Zhu, Bard and Yu 2005). In
this paper we limit ourselves to represent uncertainty
with stochastic activity durations. We shall refer to the
insensitivity of planned activity start times to uncertain
events as stability or solution robustness.

The stability of the program depends on what
extent project managers consider uncertainty as a key
features of project behaviors. In this paper we propose
new heuristic procedures for generating a predictive
schedule which exhibits acceptable solution robustness
in the presence of multiple and frequent activity
disruptions. We observe, that very few research papers
explicitly consider probabilistic information in solution
methods. We should mention here, the works (Van de
Vonder, Demeculemeester and Herroelen 2008;
Lambrechts, Demeulemeester and Herroelen 2008) for
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the case of uncertain resource availability. Besides this,
our approach differs from the cited paper in some
important aspects. In our paper we consider the
stochastic programming framework and, in particular,
the probabilistic paradigm in the form of joint
probabilistic constraints. At the best of our knowledge
none of the methods proposed in the literature consider
joint probabilistic constraints. Even with some
limitation, our scheduling approach can be tailored to
reflect the level of risk that an individual decision
maker is willing to bear in hedging against processing
time uncertainty.

The remainder of the paper is organized as follows.
In Section 2, we present a review of the relevant
literature on project scheduling under uncertainty. In
Section 3 we describe our scheduling methodology for
generating robust baseline schedules. Section 4 is
devoted to the presentation of the benchmark heuristics
used to assess the efficacy of the newly developed
heuristics and of the design of computational
experiments. Results are analyzed in Section 5 and
conclusions are presented in Section 6.

2. RELATED WORK

The methodologies for stochastic project scheduling
basically view the project scheduling problem as a
multistage decision process. Since the problem is rather
involved and an optimal solution is unlikely to be
found, scheduling policies are used for defining which
activities to start at random decision points through
time, based on the observed past and the a priori
knowledge about the processing time distributions.
(Igelmun and Radermacher 1983), propose a set of
preselective scheduling policies. These policies, roughly
speaking, define, for each possible resource conflict, a
preselected activity that is postponed from a set of
activities that cannot be executed together due to
resource conflicts.

A branch-and-bound algorithm is developed in
order to compute optimal preselective policies, and
computational tests are reported for small instances.
(Mihring and Stork 2000), introduce a new class of
scheduling policies, called linear preselective policies
intended to minimize the makespan for the RCPSP with
stochastic activity durations. This new class combines
the benefits of preselective policies and priority policies
and is based on both determining sets of activities that



cannot be executed together due to resource conflicts
and on choosing an activity to be postponed according
to a priority list. (Stork 2000), compares four
scheduling policies for minimizing the makespan for the
RCPSP with stochastic activity durations. Dominance
rules and lower bounds are developed and then
embedded into a branch-and-bound algorithm.

Research on heuristic procedures for solving the
stochastic RCPSP is an active field of research. (Tsai
and Gemmill 1998), propose a tabu search which makes
use of a reduced neighborhood based on feasible swaps
that can be executed on the current feasible sequence.

Given a feasible schedule, the makespan is
computed by sampling repeatedly activity durations in
order to obtainan estimate of the expected makespan.
(Golenko- Ginzburg and Gonik 1997), develop a
heuristic procedure operating in stages, where the
decision to schedule the next activity is based on the
precedence constraints and current resource availability.

A multiple knapsack problem minimizing expected
project duration is proposed to solve resource conflicts.
In a follow-up work, (Golenko-Ginzburg and Gonik
1998), apply a similar heuristic for a project scheduling
problem where the duration of an activity is a random
variable that depends on the amount of resources
assigned to that activity. (Herroelen and Leus 2004),
develop mathematical programming models for the
generation of stable baseline schedules in a project
environment without resource consumption.

They minimize the expected weighted sum of the
absolute deviations between the planned and the
actually realized activity starting times when exactly
one activity duration disruption is expected to take place
during project. (Tavares, Ferreira and Coelho 1998),
study the risk of a project as a function of the
uncertainty of the duration and the cost of each activity.

The authors make use of a buffering mechanism to
increase the earliest activity start times. In (Rabbani,
Fatemi, Ghomi, Jolai and Lahiji 2007), a newly
developed resource-constrained project scheduling
method in stochastic networks is presented which
merges the critical chain concepts with traditional
resource-constrained project scheduling methods.

The objective function takes into account the
expected project duration and its variance. Since the
developed model is a stochastic optimization model
which cannot be solved in the general case, this paper
suggests a heuristic algorithm where ready activities at
each decision point are supplied by available resources
on the basis of assigned priority level. These priority
levels are the activities contribution in reducing the
expected project duration and its variance. Therefore,
the activities with the greatest probability to be on the
critical chain and the greatest correlation with the
project variance are fed-in first.

When resource availability constraints are
considered, (Leus and Herroelen 2004), assuming the
availability of a feasible baseline schedule, present
exact and approximate formulations of the robust
resource allocation problem, proposing for its solution a
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branch and-bound algorithm. The so-called resource
flow network (Artigues and Roubellat 2000) is used to
represent the flow of resources across the activities of
the project network. In (Deblaere, Demeulemeester,
Herroelen and Van de Vonder 2007) is presented a
procedure for allocating resources to the activities of a
given baseline schedule in order to maximize its
stability in the presence of activity duration variability.
The authors propose three integer programming based
heuristics and one constructive procedure for resource
allocation, thereby avoiding the use of stochastic
variables. In (Van De Vonder, Demeulemeester,
Herroelen and Leus 2006; Van de Vonder,
Demeulemeester, Herroelen and Roel Leus 2005) a
modi_cation of the ADFF heuristic presented in
(Herroelen and Leus 2004; Herroelen and Leus 2004) is
proposed in order to prohibit resource conflicts. In order
to obtain a precedence and resource-feasible schedule,
the resource flow-dependent float factor (RFDFF)
heuristic uses information coming from the resource
flow network in the calculation of the so called activity
dependent oat factor. In (Van de Vonder,
Demeulemeester and Herroelen 2008), multiple
algorithms are introduced to include time buffers in a
given schedule while a prede ned project due date
remains respected. While the virtual activity duration
extension heuristic presented in (Van de Vonder,
Demeulemeester and Herroelen 2008), relies on the
standard deviation of the duration of an activity in order
to compute a modified duration, the starting time
criticality (STC) heuristic tries to combine information
on activity weights and on the probability that activity
cannot be started at its scheduled starting time.

Within the stochastic programming context, a two-
stage integer linear stochastic model is proposed in
(Zhu, Bard and Yu 2007) to determine target times in
the first stage followed by the development of a detailed
project schedule in the second stage with the aim of
minimizing the cost of project completion and expected
penalty incurred by deviating from the specified values.

Temporal protection is used against machine failure
in (Gao 1995). The durations of activities requiring
resources prone to breakdown are extended to provide
extra time for protection. The protection equals the
original duration augmented with the duration of
breakdowns that are expected to occur during activity
execution, based on breakdown statistics.

In (Lambrect, Demeleumester, Herroelen 2008) the
case of uncertain resource availability due to a
breakdown is tackled. The objective is to build a robust
schedule that meets the project deadline and minimizes
the schedule instability cost. In the paper it is shown
that protection of the baseline schedule may provide
significant performance gains over the use of
deterministic scheduling approaches.

For an extensive review of research in this field, the
reader is referred to (Herroelen and Leus 2004;
Herroelen and Leus 2005).



3. SCHEDULING ACTIVITIES EXPLOITING

PROBABILISTIC INFORMATION
The deterministic RCPS may be stated as follows. Let
consider a project represented by a directed acyclic
graph G = (N,V) and opt for activity on the node format
(Wiest and Levy 1977). Each node in the set N
corresponds to a single project activity and each arc in
the set V corresponds to a precedence relation between
each pair of activities. Each activity j € N, has to be
processed without interruptions requiring a constant
amount of resource 1, for each renewable resource type
k, k= 1..., K Each renewable resource is assumed to
have a constant per period availability equal to ay.

Let S; € V be the set of activities that are in
progress at time period t. The RCPSP can be formulated
as:

min s,
s;izsi+di (1,)) V (D
Lijes Mk =

where d; is the deterministic duration of activity i and s;
the planned starting time of activity i. Two kinds of
constraints subsist among activities: precedence
feasibility constraints which force activity j to be started
only when all its immediate predecessor activities have
been processed, and renewable resource constraints
which prevent activities to exceed limited capacities of
resources. The problem becomes even more involved in
the stochastic RCPSP, where the durations of activities
are not known in advance, but are instead represented
by random variables ; j N with known cumulative
probability distribution function

Given the uncertainty in activity duration, the
decision maker may be inclined to solve several
deterministic programs involving different values of the
uncertain problem parameters or to replace the random
variables by their expected value. As a matter of fact,
the well known PERT model replaces randomness with
a certainty equivalent in the form of expected value.
However, none of these approaches can be considered
satisfactory in face of uncertainty.

min s, 2
Plsjzsi+ ) @G,y Vv (3)
Eie o (4)

We observe that although the chance constraints
paradigm has been tacitly accepted by the research
community for over 30 years, recently, its validity as a
tool for a point estimate of the project makespan or for
the estimation of the complete cumulative density
function of the makespan has been questioned. It is also
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well recognized that the chance constrained approach
fails to give reasonable hints about the criticality of a
path or activities, thereby destructuring critical chain
approaches.

Indeed, the value taken by the starting time of an
activity j, s; is a function of a random variable  and a
decision variable s; which is itself stochastic, its value
depending on the starting times of preceding activities.

The appropriateness of a static chance constrained
model, should at least be questioned. Nevertheless, a
dynamic formulation in the form of a multistage
recourse programming problem, may involve a huge
number of scenarios, overwhelming form a
computational point of view. These motivations are at
the basis of the simplification of the problem on which
our heuristics rely, based on a decoupling of the
dynamic aspect of the problem from its probabilistic
nature. In particular, the solution of the problem is
viewed as a bilevel hierarchical process, where the
temporal dependence is treated on the first level,
whereas, stochasticity is introduced in a second level.

In the foregoing we shall present two different
heuristics based on the general principle of joint
probabilistic constraints.

3.1. The Joint Probabilistic Constraints heuristic

The Joint Probabilistic Constraints heuristic
(JPCH) is inspired by heuristic algorithms for the
deterministic RCPSP, but embeds the joint probabilistic
constraints paradigm in its scheme. The schedule is
constructed in two phases. In the first phase, a
precedence feasible priority list is constructed following
an ordering criterion. In the second phase, this priority
list is transformed into a precedence and resource
feasible schedule sequentially adding activities to the
schedule until a feasible complete schedule is obtained.

In each step, g, or decision point z,, the activities in
the priority list, that are also part of the set E,,
containing all eligible activities which can be
precedence and resource feasibly started at #,, with
better ranking are selected to be started at ¢, and inserted
in S,. The set of already scheduled activities is denoted
by A4,.

An algorithmic  description of the
Probabilistic Constraints heuristic is given below:

Joint

¢ Initialization g = 0; t, = 0;4, = {@}, Sp= {B}.

e While |4, US,|< [N|do

gr=g+l;
lg = MiNiesg G,

e  (Calculate the residual resource availability and
the set 4, and E,.

e Use the priority rule to select the activities to
be included in the set S, C E,.



e Calculate the completion times of activities in
Se.

e end while

Let us analyze in greater detail the problem of
determining the completion times c; of the set S, of
activities scheduled at decision point £, i.e., the starting
times of activities to be scheduled at next decision point
fo+1. At each iteration g, the completion times are the
solution of the following problem:

min C 4)
Czq VjES, (6)
P=t,+ df ¥jeS, )>a (7

where C is the next decision point #,;. In problem (5-7)
the probabilistic constraints are jointly imposed on all
the activities in S,. This ensure that the probability of
disrupting the starting time of successor activities is
kept above the prescribed probability level a. As
evident, this time buffering mechanism is used with the
aim of absorbing potential disruptions caused by
activity shifts. Buffer sizes are computed on the basis of
the joint probability that activities in S, disrupt
subsequent activities. We observe that not considering
joint probabilistic constraints would lead, at decision
point £,, to a probability disruption equal to the sum of
the individual probability disruptions of activities in S,.

The proposed heuristic, on the contrary, imposes a
joint probability of disruption a for all the activities in
S.. We further remark that, considering the expected
duration increase of activities i would result in
disruption probability for each activity of at least 50%
which can be unacceptable in some contexts.

3.2 The resource allocation heuristic

Rather than using a priority rule for deciding the set of
activities to be included in S, the resource allocation
heuristic (RAH) determines at each decision point #,
both the starting times and the resources allocated to
each activity. Activities are not ordered in a list and if
E, contains more than one element a competition has to
be arranged to choose the optimal subset of activities S,
that can be supplied by available resources. Decisions,
at each ¢, are made on the basis of the solution of the
following subproblem.

max Ziezg B — v=C

Czegvie g |Bi=1

Ple;zt,+ d, W) EE|B=1)za ®)
Biiezgti *Br = ity Wk

where ry(t,) is the residual resource availability at time
t,, The objective function tries to balance two
conflicting objectives, the resource and the time

allocation decisions. The two objective functions are
weighted through the parameter y, which is adjusted
dynamically in order to find a good balance between
conflicting objectives.

An algorithmic description of the resource
allocation heuristic is given below:

Initialization g = 0; t, = 0;4, = {€}, Sy = {B}.

While |4, U S,|= [N| do

g=g+l.

o fmmilia .

e  Calculate E,, and update the residual resource
availability and the set 4,. Set = 0:01 S, = {@}
e  While no activities have been selected (S, =
{€}):
- Solve the competition problem (8). Let
p*,C*, c* be the optimal solution.
If g =0; Vi E, p:=p/10.
-Otherwise, S, := {i € E,| B; *= 1}.
-Set the completion times of activities in
S cii=c¢*
e end while

Decision variables of problem (8) are the chosen
activities to be supplied by resources and the resource
capacities assigned to those activities. The choice of the
activities to be supplied with available resources at each
decision point should also reduce the remaining projects
duration as much as possible. Therefore, whilst the first
term of the objective function tries to maximize the
resource consumption at each decision point, the second
term aims at reducing the partial makespan. Problem (8)
has to be solved at each decision point, when at least
more than one activity is ready to be operated and the
residual available amount of resources is not zero.

3.3 Remark
Both the joint probabilistic constraints and the resource
allocation heuristics involve the solution of a model
under joint probabilistic constraints. In the following,
we show how to transform them, in the case of
independent random variables, into deterministic
equivalent problems.

With this aim, let consider the following
problem:

P(af x= bivi=1,...,m) )

where the probabilistic constraints are jointly imposed
on m separate constraints involving the random
variables ;. Under the independence assumption among
the random variables ;, the probabilistic constraints (9)
can be rewritten as



]-_-[E=1..._i‘7’. PI:GE- X =

and equivalently, denoting with F; the marginal
probability distribution function of the continuous
random variable b;, as

[Tiey. mFi(a

By taking logarithm we can rewrite the
constraints as follows:

Yicr mnFi(el x1ZIna

Since the logarithm is an increasing function
and 0 <F; = 1, this transformation is legitimate.

Furthermore, for log-concave distribution
functions, convexity of the constraints is preserved.
Fortunately, the class of log-concave random variables
includes several commonly used continuous, univariate
probability distributions as for example the Uniform,
Normal, Exponential, Beta, Weibull, Gamma, Pareto,
and Gompertz distributions. We observe that also in the
case of discrete distributions, problems with joint
probabilistic constraint can be reduced to deterministic
equivalent problems that we shall report hereafter, for
the sake of completeness. Let us introduce an integer
vector z;, whose entries are defined as z;, = al x i =
I...,m. In the case of log-concave marginal distribution,
it is possible to rewrite z; in a 0 - 1 formulation. If /; + &;
is a known upper bound, where /; represents the o-
fractile of the distribution function F}, z; can be written
as
zi =+ Ego1 .k Zik

and the probabilistic constraints as
Zi:L....m ER:L..R[ Eip Zig
where
=nFl;+k)-InFyl,+k-1)
and

=In -InF().
4. COMPUTATIONAL EXPERIMENTS
In this section we shall present the results of the
computational study carried out with the aim of
assessing the performances of the algorithms introduced
in the previous section. We have compared our
algorithm with the approaches found in the literature
closer to our work (the STC and the RFDFF heuristics)
and with a set of newly created benchmark heuristics,
which rely on the use of separate chance constraints.
The computational experiments have been carried
out on a set of benchmark problems with 30 and 60
activities randomly selected from the project scheduling
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problem library PSPLIB (Kolisch and Sprecher 1997).

We have replaced the deterministic duration of
each activity by two probability distributions, one
continuous and one discrete, taking d; as their mean.

In particular, we have tested the Uniform
distribution U(0.75d;; 2.85d;) and the Poisson
distribution with mean d; and activity durations are
assumed to be independent.

Extensive simulation has been used to evaluate all
procedures on robustness measures and computational
efficiency. For every network instance, 1000 scenarios
have been simulated by drawing different actual activity
durations from the described distribution functions.

Using these simulated activity durations, the
realized schedule is constructed by applying the
following reactive procedure. An activity list is obtained
by ordering the activities in increasing order of their
starting times in the proactive schedule. Ties are broken
by increasing activity number. Relying on this activity
list, a parallel schedule generation scheme builds a
schedule based on the actual activity durations. We
opted for railway execution never starting activities
carlier than their prescheduled start time in the baseline
schedule. Effectively, this type of constraint is inherent
to course scheduling, sports timetabling and railway and
airline scheduling, or when activity execution cannot
start before the necessary resources have been
delivered.

4.1 Separate chance-constraints based heuristics
Schedule generation schemes are the core of most
heuristic solution procedures for the deterministic
RCPSP. The best-known Schedule generation scheme
order all activities according to a priority list and at
every decision point select the next activities to start
based on this priority list. Mainly two types of schedule
generation scheme are used to build a schedule from an
activity list, the Parallel Schedule generation scheme
and the serial schedule generation scheme. These
schedule generation schemes construct a precedence-
resource feasible sequence through a stepwise increase
of a partial schedule. The serial method at each step,
selects an activity from the set of activities eligible for
scheduling and assigns to it the earliest possible start
time according with both precedence and resource
constraints. Selection of activities from the set of
activities eligible for scheduling is performed according
to a priority rule. The parallel method is based on a time
incrementation procedure since at every decision time (¢
= (0 and the completion times of activities), it starts as
many unscheduled activities as possible in accordance
with the precedence and resource constraints selecting
activities according to a priority rule. We use activity-
based priority policies as benchmark heuristics,
considering, instead of the deterministic durations, the
a-fractiles of activities. We shall refer to these heuristics
in the following as Parallel Separate chance-constraints
based heuristics (PSCCBH) e Serial Separate chance-
constraints based heuristics (SSCCBH).



Regardless the schedule generation scheme applied,
the resulting schedule depends on the ordering criterion
adopted. The following static priority rules for
generating the priority list have been tested in the
computational experiments (Kolisch and Hartmann
1999). Some of them have been proposed by the
authors.

e The MinC rule orders the activities by
increasing value of their resource
requirement.

e The MinD rule orders the activities by
increasing value of their a-fractile.

e The MaxC rule orders the activities by
decreasing value of their resource
requirement.

e  The MaxD*C rule orders the activities Job
ordered by decreasing value of their alfa-
duration*resource requirement.

e  The LST rule(Kolisch, Sprecher and Drexl
1995) orders the activities by increasing
value of their latest starting time.

e The LFT (Davis and Patterson 1975)
orders the activities by increasing value of
their latest finish time.

e The MTS (Alvarez-Valdes and Tamarit
1989) orders the activities by decreasing
value of the number of their successors.

5. ANALYSIS OF THE RESULTS
A total of 13 scheduling procedures are evaluated.
Algorithms 1-4 are the PSCCBH whereas algorithms 5-
8 are the SSCCBH with the first four priority rule listed
in Section 4.1. Algorithms from 9 to 11 are the
PSCCBH with the rules LST, LFT and MTS
respectively, whereas Algorithm 12 is a SSCCBH with
the LST priority rule. The JPCH Section 3.1 is executed
considering the four priority rules (JPCH 1{4). All the
algorithms, but the RFDFF and the STC heuristics, have
been tested for 5 o values {0:8; 0:85; 0:9; 0:95; 0:99}.
The computational experiments were performed in
a PC Pentium III, 667 MHz, 256 MB RAM. All
procedures were coded in AIMMS language (Bisschop
and Roelofs 2007) and the subproblems solved woth
Cplex 10.1 and Conopt. We show in Tables 1-4 the
average results calculated over all networks and
executions for each approach. The complete set of the
numerical results are fully reported in (Beraldi, Bruni,
Guerriero and Pinto 2007). The quality of the algorithm
on every problem instance has been evaluated by the
following measures: average tardiness (Tavg) over all
networks and executions, average timely project
completion probability (TPCP) over all networks and
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executions, average number of jobs over all networks
and executions, whose starting time in the actual
schedule differs from the baseline schedule (delayed)
and CPU time in seconds (time).
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Figure 1: Tardiness versus o values
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Figure 2: Delayed versus a values

For the sake of clarity, although RFDFF and STC
heuristics construct exactly the same schedule whatever
the risk averseness of the decision maker, we have
reported the results of the RFDFF and STC heuristics
for all the probability levels tested. As could be
expected,
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Figure 3: TPCP versus a values
proactive  scheduling  procedures, which use

probabilistic information, always seem to outperform
procedures that do not. It can be easily observed that
even the simple benchmark heuristics 1-12 perform
better than STC and RFDFF. In this respect, a note of
caution is in order. The performances of the STC and
RFDFF heuristics may have been biased by the high
disruption probability associated with each activity. We
have experimentally observed that, in the 1000 project
simulations, almost all the activities showed a duration
higher than their expected value, denoting a highly
variable environment. This high variability is confirmed
by the TPCP which is, as evident, on average very low.



JPCH 1-4 rank best among the heuristics. The gain in
performances is more evident for increasing _ values,
reflecting a more conservative strategy hedging against
more disruptions scenarios. The performances of the
algorithms 1-12 are clearly indistinguishable, and
depend on the ordering criterion adopted.

Unfortunately, there is no unitary evidence of one
criterion over the others. For these heuristics, the
number of activities whose actual starting time exceed
the planned starting time (reported in the column
delayed) is quite satisfactory, especially for increasing o
values. In particular, their performances are comparable
with those of JPCH 1-4 for very high probability levels.

The RAH performs better than algorithms 1-12 but
shows worse performances than JPCH 1-4.

With the aim of assessing the variation of the
performance measures with respect to the probability
level a we show in Figures 1, 2 and 3 the tardiness, the
number of activities delayed and the timely project
completion probability for different a values, for the
same test problems. The average performance over the
twelve separate chance constraints based heuristics has
been considered for comparison. The tardiness of the
STC and RFDFF heuristics has not been reported, since
it was very high. As evident, the schedule performances
deteriorate with decreasing o values. Similar behavior
has been observed for all the other tests. This result is
expected, since there is clearly a correlation between the
schedule robustness and the values of

Algorithms from 1 to 12 are computationally very
cheap. This is due to the simple schedule construction
procedures based on the parallel and serial schedule
generation scheme. We observe that RFDFF and STC
are slower due to the fact that the procedures have to be
executed a number of times, until a creation of a
deadline feasible schedule is allowed.

The computational time of JPCH 1-4 and of
procedures STC and RFDFF is comparable for most
instances.

Table 1: Results on 30 nodes test problems with discrete duration variability

However, we should observe that for larger
networks JPCH 1-4 show worse computational times
than STC and RFDFF heuristics. This is due to the extra
effort required for solving, at each decision point, the
probabilistic model. We notice, in addition, that
depending on the nature of the probabilistic model to be
solved (nonlinear continuous or linear integer), a
different computational effort is required. In our
experiments, it is evident that more CPU time is
required to solve the integer deterministic equivalent
problem related to discrete random variables. We
observe also that for the continuous distribution
function considered, the RAH is overwhelming from a
computational point of view (no results are reported in
Tables 3 and 4.

This is due to the mixed integer nonlinear nature of
the problem to be solved at each iteration of the RAH.

As a final remark, we observe that our heuristic
does not consider, in its present form, possible weights
associated to activities representing the marginal cost of
starting the activity earlier or later than planned in the
baseline schedule. We remark, that the ordering
criterion could be adapted to reflect the relative
importance of the activities. Nevertheless, there is no
absolute consensus on how to estimate such costs.

alfa=0,8 alfa=0,85 alfa=0,9 alfa=0,95 alfa=0,99
P Tavg | TcP_| delayed | time Tavg | TcP | delayed | time Tavg | TcP_| delayed | time Tavg | TcP | delayed | time Tavg oMn delayed time
1 52,12 0,17 17,09 0,05 37.8-9 0,20 14,83 0,06 ﬁ 0,30 11,82 0,04 9,78 0.6-8 5,40 0,05 1.6-9 0,93 1,10 0,05
2 53,04 0,15 16,74 0,05 36,47 0,20 14,34 0,06 22,49 0,36 10,64 0,05 8,98 0,63 517 0,05 1,66 0,91 1,12 0,06
3 58,04 0,14 17,53 0,05 38,73 0,19 14,64 0,07 28,11 0,30 12,21 0,05 10,07 0,62 5,61 0,06 1,73 0,91 1,14 0,06
4 51,37 0,15 16,90 0,05 37,89 0,23 14,83 0,06 24,38 0,35 11,26 0,05 8,80 0,68 5,04 0,07 1,69 0,92 1,16 0,06
53,38 0,16 16,79 0,23 37,19 0,25 14,38 0,24 25,82 0,36 11,15 0,22 10,74 0,62 5,81 0,24 1,65 0,94 1,07 0,24
57,19 0,15 17,30 0,23 37,85 0,23 14,36 0,26 25,80 0,33 11,25 0,21 10,96 0,59 5,79 0,26 1,90 091 1,19 0,28
50,39 0,17 16,60 0,26 37,13 0,25 14,02 0,29 25,20 0,35 11,06 0,23 9,09 0,67 4,82 0,27 1,87 091 1,19 0,27
53,63 0,17 16,88 0,17 38,42 0,23 14,52 0,27 25,10 0,37 11,01 0,21 10,00 0,64 5,34 0,25 1,72 0,92 1,12 0,25
52,10 0,14 17,13 0,05 35,51 0,24 14,47 0,04 23,38 0,30 11,09 0,04 9,80 0,59 5,82 0,04 1,64 0,91 1,11 0,08
0 50,62 0,15 16,99 0,05 36,45 0,22 14,61 0,05 23,78 0,33 11,21 0,04 9,56 0,65 5,35 0,04 1,52 0,94 1,03 0,09
1 50,37 0,14 16,97 0,05 38,16 0,18 15,34 0,04 24,18 0,28 11,31 0,05 9,30 0,62 5,49 0,05 1,61 0,92 1,11 0,12
2 50,20 0,14 16,64 0,31 36,58 0,22 14,43 0,31 22,70 0,31 11,03 0,31 9,21 0,63 5,50 0,30 1,54 0,91 1,08 0,40
13 45,05 0,23 15,16 0,41 30,70 0,35 12,32 0,35 19,75 047 9,29 0,35 8,06 0,74 4,34 0,35 1,22 0,94 0,79 0,35
JPCH-1 29,94 0,46 10,87 0,41 17,32 0,59 8,07 0,37 12,23 0,58 5,68 0,37 5,09 0,86 2773 0,37 1,11 0,95 0,72 0,37
JPCH-2 32,33 0,28 11,95 0,41 28,58 0,32 11,70 0,37 17,80 0,41 8,78 0,37 5,45 0,81 3,04 0,37 1,23 0,95 0,90 0,37
JPCH-3 27,68 0,44 10,99 0,41 22,37 0,45 9,51 0,37 12,52 0,64 6,29 0,37 4,93 0,81 2,88 0,37 1,10 0,96 0,71 0,37
JPCH-4 26,30 0,35 9.97 0,41 24,25 0,27 10,01 0,37 12,87 0,52 6,14 0,37 5,31 0,82 2,95 0,37 1,00 0,95 0,68 0,37
STC 170,77 0,10 24,28 0,41 170,77 0,10 24,28 0,41 170,77 0,10 24,28 0,41 170,77 0,10 24,28 0,41 170,77 0,10 24,28 0,41
RDFF 73,78 0,13 26,39 0,41 73,78 0,13 26,39 0,41 73,78 0,13 26,39 0,41 73,78 0,13 26,39 0,41 73,78 0,13 26,39 041
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Table 2: Results on 60 nodes test problems with discrete duration variability

alfa=0,8 alfa=0,85 alfa=0,9 alfa=0,95 alfa=0,99
P Tavg TcP jobrit | time Tavg | TcP | jobrit | time Tavg | TcP | jobrit | time Tavg | TcP | jobrit | time Tavg TcP jobrit time
7064 001 3 017 | 12635 002 414 016 | 7351 012 33.0 015 | 3338 043 190 0156 | 580 085 71 0.16
2 15463 0,01 39,2 017 | 11436 003 39,6 017 | 7305 014 319 015 | 2063 045 165 0174 | 576 0,87 39 016
16549 0,01 40,0 017 | 1279 003 412 018 | 7937 042 334 017 | 3535 038 196 0,161 592 084 41 016
4 15620 0,01 39,7 018 | 12015 004 40,6 018 | 7162 015 316 017 | 3139 043 174 015 | 535 087 37 017
15072 0,02 374 076 | 10725 009 36,6 075 | 7133 018 29,7 078 | 3110 046 166 0723 | 524 0,88 34 0.74
15562 0,02 38,1 061 | 11495 007 384 062 | 6917 020 293 059 | 3046 048 156 0575 | 506 0,88 33 059
14888 0,03 37,7 082 | 11181 008 37,5 082 | €806 015 295 080 | 2077 049 160 073 | 550 087 35 0.75
14147 0,04 37,1 061 | 10749 008 36,6 064 | 67,81 020 29,0 063 | 2803 051 150 0623 | 563 087 37 062
161,14 001 444 012 | 12034 002 40,8 0,11 7718 008 34,0 010 | 3202 047 185 0103 | 633 084 44 0,10
16062 0,01 44,6 012 | 11885 002 41,0 010 | 7695 008 34,1 012 | 3187 041 181 0108 | 611 083 43 0,11
16001 0,00 444 014 | 11913 003 40,9 0,11 7205 0,09 32,8 012 | 309% 035 183 0111 546 0,86 40 0,10
151,12 001 435 074 | 10712 004 38,5 066 | 7242 012 323 072 | 2881 051 165 0641 534 0,86 38 067
13 11580 010 37.0 229 | 7461 031 30.3 229 | 4174 051 208 229 | 2441 063 135 2286 | 393 0.90 27 229
20 3264 040 0.9 240 | 2679 047 89 240 | 2218 062 6.9 240 | 3125 084 88 2403 | 3020 0.7 7.9 240
21 3396 041 118 240 | 3708 046 12,1 240 | 3865 062 119 240 | 4102 081 112 2403 | 2052 096 7.7 240
22 27,02 040 99 240 | 3245 057 109 240 | 2580 063 74 240 | 2882 080 84 2403 | 2653 097 74 240
23 2286 038 90 240 | 2537 056 93 240 | 2156 068 7.1 240 | 2150 082 68 2403 | 2672 097 7.0 240
STC_| 38582 000 52.3 229 | 38582 000 52,3 229 | 38582 0,00 523 229 | 38582 000 523 2,286 | 38582 000 52,3 229
RDFF_| 19320 0,03 58,5 240 | 19329 003 58,5 240 | 19329 003 585 240 | 19329 003 585 2,403 | 19329 003 585 2,40
Table 3: Results on 30 nodes test problems with continuous duration variability
alfa=0,8 alfa=0,85 alfa=0,9 alfa=0,95 alfa=0,99
P Tavg TcP | jobrit | time Tavg | TcP [ jobrit | time Tavg | TcP [ jobrit | time Tavg | TcP [ jobrit | time Tavg | TeP jobrit | ex Norob
27,99 027 1304 004 | 1407 044 927 0,04 711 0,59 6.24 0,06 2,59 084 248 004 0,00 7,00 0.00 004
27,74 026 12,81 005 | 1354 045 9,02 005 757 062 645 005 265 084 2,50 004 0,00 1,00 0,00 004
3214 023 1426 009 | 1712 o036 1098 005 8,20 056 7,00 0,06 2,51 085 237 005 0,00 1,00 0,00 004
2 2657 028 1236 004 | 1399 041 9,39 0,06 6,81 0,60 593 005 234 085 2,22 005 0,00 1,00 0,00 005
3039 025 1355 021 1496 041 9,70 021 7,18 0,60 618 021 2,40 084 2,28 0,19 0,00 1,00 0,00 0,19
3042 025 1363 018 | 1396 044 9,39 020 8,05 058 6.86 020 245 084 234 017 0,00 1,00 0,00 018
2993 025 1370 o019 | 1560 038 1009 023 8,52 052 718 020 2,18 086 2,11 0,19 0,00 1,00 0,00 020
2882 025 129 0417 | 1428 041 942 0,19 8,06 056 6.82 019 238 086 2,26 017 0,00 1,00 0,00 018
9 2732 024 1298 004 | 1458 038 9,56 005 734 0,59 635 005 222 088 2,13 004 0,00 1,00 0,00 005
2622 020 1274 005 | 1420 042 9,53 005 7.56 058 652 005 230 088 2,19 004 0,00 1,00 0,00 005
2759 026 1320 005 | 1457 038 9,68 004 7,39 0,60 6.40 005 2,40 082 2,30 004 0,00 1,00 0,00 005
2663 026 1288 025 | 1365 040 9.11 026 736 064 637 026 225 086 216 025 0,00 1,00 0.00 026
1209 085 583 0,15 326 0.90 233 0,16 7,66 094 142 0,15 0,55 097 047 0,16 0,00 7,00 000 0,15
21 2692 069 1204 037 | 1470 074 8,36 037 7,30 085 535 038 1,77 094 1,53 037 0,00 1,00 0,00 036
22 22,31 0,71 9,78 023 9,90 083 6,47 023 5,77 088 447 023 1,58 095 1,20 024 0,00 1,00 0,00 024
23 2800 064 1164 020 | 1557 o077 8.74 022 641 087 4,82 019 1.73 093 1,42 020 | 26441 1,00 000 022
STC_| 16935 010 2410 321 | 16935 010 2410 321 | 16935 010 2410 3,21 | 16935 0,0 _ 2410 _ 321 | 16935 010 2410 321
RDFF | 8262 012 2728 358 | 8262 012 2728 35 | 8262 012 2728 35 | 8262 012 2728 358 | 8262 o012 2728 358
Table 4: Results on 60 nodes test problems with continuous duration variability
alfa=0,8 alfa=0,85 alfa=0,9 alfa=0,95 alfa=0,99
P Tavg | TPCP | jobrit | cPU Tavg | TPCP | jobrit | cPu | Tavg | TPcP | jobrit | cPu | Tavg | TPCP | jobrit | cpu Tavg | TPCP | jobrit | cpu
96,71 004 38,1 0,11 5355 0,18 307 010 | 2582 040 211 0.1 8.29 069 78 0.10 0.00 7,00 0.0 011
9543 003 37,1 011 | 4951 0.20 283 013 | 2300 040 188 0,11 712 0.73 6.7 013 0,00 1,00 00 0,11
103,35 0,05 39,3 012 | 5245 016 30,0 011 2425 038 19,9 011 844 074 8.0 011 0,00 1,00 00 012
8500 008 352 012 | 4961 0,20 28,2 0,11 26,21 040 20,9 012 8,02 0.73 74 0,11 0,00 1,00 00 0,11
96,06 006 364 050 | 4736 022 26,9 050 | 2202 043 17.9 0,50 7,82 075 73 0,50 0,00 1,00 00 0,50
9435 006 362 038 | 4720 021 26,6 039 | 2362 041 19,0 039 722 0.76 6.7 039 0,00 1,00 00 040
96,90 007 375 053 | 5021 019 28,7 054 | 2353 042 194 0,51 7.71 0.75 7.2 054 0,00 1,00 00 0,50
9249 007 35,1 040 | 4632 021 26,8 040 | 2469 043 19.7 040 647 078 6.0 040 0,00 1,00 00 041
90,56 005 375 010 | 4972 019 288 010 | 2517 033 208 0,10 7,91 072 74 0,10 0,00 1,00 00 0,10
10 9161 005 376 010 | 5091 017 293 012 | 2431 038 20,2 0,11 7,56 0.71 7.4 012 0,00 1,00 00 0,11
11 87,77 004 36,9 010 | 5097 017 294 0,11 24,51 039 203 0,10 8,17 0.75 7.7 0,11 0,00 1,00 00 012
12 9436 004 375 073 | 4534 018 26.7 074 | 2124 035 12336 074 7.93 068 74 074 0.00 1,00 00 0.75
A 553 0,96 34 035 377 092 23 0,51 0,81 0,99 08 0,84 0,38 7,00 0.4 051 0.00 7,00 0.0 0.86
B 2767 095 14,2 156 | 1418 096 9.0 1,57 6,54 098 56 1,95 1,90 099 18 051 0,00 1,00 00 086
c 5076 085 16,3 105 | 1351 0,96 94 1,30 6,56 098 59 1,95 1,49 099 15 1,57 0,00 1,00 00 1,96
D 5052 086 15,1 102 | 1615 095 107 1,30 5,66 097 53 1,09 235 099 23 1,30 000 1,00 00 1,58
STC | 30351 0.0 497 2178 | 30351 _ 0.10 497 2178 | 30351 0,10 497 2178 | 30351 0,10 497 2178 | 30351 _ 0.10 497 2178
RFDFF | 17497 004 60.1 21,78 | 17497 0,04 60,1 21,78 | 17497 0,04 60.1 21,78 | 17497 0,04 601 21,78 | 17497 0,04 60,1 21,78

6. CONCLUSIONS

This paper presents heuristic procedures for solving
project scheduling problems under uncertainty. The
heuristics exploits probabilistic information on random
activities duration within the framework of joint
probabilistic constraints. In the proposed algorithm, the
temporal aspect of the problem is treated at a higher
level, whereas the probabilistic aspect is tackled at
decision points, when activities are supplied by
available resources. This hierarchical view of the
problem has allowed to develop effective heuristics for
projects with high variability with the aim of obtaining
a schedule with good performances.
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