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ABSTRACT 
In this paper we analyze the resource-constrained 
project scheduling problem under uncertainty. Project  
activities are assumed to have known deterministic 
renewable resource requirements and probabilistic 
activity durations described by random variables with a 
given density function. We develop heuristic algorithms 
for building a schedule with protected starting times, 
obtained using a buffering mechanism guided by 
probabilistic information. 

 
Keywords: Stochastic project scheduling. 
 
1. INTRODUCTION 
The resource-constrained project scheduling problem 
(RCPSP) consists in minimizing the duration of a 
project, subject to the finish-start, zero-lag precedence 
constraints and the resource constraints. In its 
deterministic version the RCPSP, assumes complete 
information both on the resource usage and activities 
duration and determines a feasible baseline schedule, 
i.e. a list of activity starting times minimizing the 
makespan value. The role of the baseline schedule has 
been widely recognized in (Mehta and Uzsoy 1998; 
M hring and Stork 2000), and it stems in supporting 
project decision makers providing a basis for planning 
external activities and facilitating resource allocation. 
Notwithstanding its importance, the planned baseline 
schedule in real contexts may have little, if some value, 
since project execution may be subject to severe 
uncertainty and then may undergo several types of 
disruptions as described in (Zhu, Bard and Yu 2005). In 
this paper we limit ourselves to represent uncertainty 
with stochastic activity durations. We shall refer to the 
insensitivity of planned activity start times to uncertain 
events as stability or solution robustness.  
 The stability of the program depends on what 
extent project managers consider uncertainty as a key 
features of project behaviors. In this paper we propose 
new heuristic procedures for generating a predictive 
schedule which exhibits acceptable solution robustness 
in the presence of multiple and frequent activity 
disruptions. We observe, that very few research papers 
explicitly consider probabilistic information in solution 
methods. We should mention here, the works (Van de 
Vonder, Demeulemeester and Herroelen 2008; 
Lambrechts, Demeulemeester and Herroelen 2008) for 

the case of uncertain resource availability. Besides this, 
our approach differs from the cited paper in some 
important aspects. In our paper we consider the 
stochastic programming framework and, in particular, 
the probabilistic paradigm in the form of joint 
probabilistic constraints. At the best of our knowledge 
none of the methods proposed in the literature consider 
joint probabilistic constraints. Even with some 
limitation, our scheduling approach can be tailored to 
reflect the level of risk that an individual decision 
maker is willing to bear in hedging against processing 
time uncertainty. 
 The remainder of the paper is organized as follows. 
In Section 2, we present a review of the relevant 
literature on project scheduling under uncertainty. In 
Section 3 we describe our scheduling methodology for 
generating robust baseline schedules. Section 4 is 
devoted to the presentation of the benchmark heuristics 
used to assess the efficacy of the newly developed 
heuristics and of the design of computational 
experiments. Results are analyzed in Section 5 and 
conclusions are presented in Section 6. 
 
2. RELATED WORK 
The methodologies for stochastic project scheduling 
basically view the project scheduling problem as a 
multistage decision process. Since the problem is rather 
involved and an optimal solution is unlikely to be 
found, scheduling policies are used for defining which 
activities to start at random decision points through 
time, based on the observed past and the a priori 
knowledge about the processing time distributions. 
(Igelmun and Radermacher 1983), propose a set of 
preselective scheduling policies. These policies, roughly 
speaking, define, for each possible resource conflict, a 
preselected activity that is postponed from a set of 
activities that cannot be executed together due to 
resource conflicts. 
 A branch-and-bound algorithm is developed in 
order to compute optimal preselective policies, and 
computational tests are reported for small instances. 
(M hring and Stork 2000), introduce a new class of 
scheduling policies, called linear preselective policies 
intended to minimize the makespan for the RCPSP with 
stochastic activity durations. This new class combines 
the benefits of preselective policies and priority policies 
and is based on both determining sets of activities that 
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cannot be executed together due to resource conflicts 
and on choosing an activity to be postponed according 
to a priority list. (Stork 2000), compares four 
scheduling policies for minimizing the makespan for the 
RCPSP with stochastic activity durations. Dominance 
rules and lower bounds are developed and then 
embedded into a branch-and-bound algorithm.  
 Research on heuristic procedures for solving the 
stochastic RCPSP is an active field of research. (Tsai 
and Gemmill 1998), propose a tabu search which makes 
use of a reduced neighborhood based on feasible swaps 
that can be executed on the current feasible sequence. 
 Given a feasible schedule, the makespan is 
computed by sampling repeatedly activity durations in 
order to obtainan estimate of the expected makespan. 
(Golenko- Ginzburg and Gonik 1997), develop a 
heuristic procedure operating in stages, where the 
decision to schedule the next activity is based on the 
precedence constraints and current resource availability.       
 A multiple knapsack problem minimizing  expected 
project duration is proposed to solve resource conflicts. 
In a follow-up  work, (Golenko-Ginzburg and Gonik 
1998), apply a similar heuristic for a project scheduling 
problem where the duration of an activity is a random 
variable that depends on the amount of resources 
assigned to that activity. (Herroelen and Leus 2004), 
develop mathematical programming models for the 
generation of stable baseline schedules in a project 
environment without resource consumption.  
 They minimize the expected weighted sum of the 
absolute deviations between the planned and the 
actually realized activity starting times when exactly 
one activity duration disruption is expected to take place 
during project. (Tavares, Ferreira and Coelho 1998), 
study the risk of a project as a function of the 
uncertainty of the duration and the cost of each activity.   
 The authors make use of a buffering mechanism to 
increase the earliest activity start times. In (Rabbani, 
Fatemi, Ghomi, Jolai and Lahiji 2007), a newly 
developed resource-constrained project scheduling 
method in stochastic networks is presented which 
merges the critical chain concepts with traditional 
resource-constrained project scheduling methods. 
 The objective function takes into account the 
expected project duration and its variance. Since the 
developed model is a stochastic optimization model 
which cannot be solved in the general case, this paper 
suggests a heuristic algorithm where ready activities at 
each decision point are supplied by available resources 
on the basis of assigned priority level. These priority 
levels are the activities contribution in reducing the 
expected project duration and its variance. Therefore, 
the activities with the greatest probability to be on the 
critical chain and the greatest correlation with the 
project variance are fed-in first. 
 When resource availability constraints are 
considered, (Leus and Herroelen 2004), assuming the 
availability of a feasible baseline schedule, present 
exact and approximate formulations of the robust 
resource allocation problem, proposing for its solution a 

branch and-bound algorithm. The so-called resource 
flow network (Artigues and Roubellat 2000) is used to 
represent the flow of resources across the activities of 
the project network. In (Deblaere, Demeulemeester, 
Herroelen and Van de Vonder 2007) is presented a 
procedure for allocating resources to the activities of a 
given baseline schedule in order to maximize its 
stability in the presence of activity duration variability. 
The authors propose three integer programming based 
heuristics and one constructive procedure for resource 
allocation, thereby avoiding the use of stochastic 
variables. In (Van De Vonder, Demeulemeester, 
Herroelen and Leus 2006; Van de Vonder, 
Demeulemeester, Herroelen and Roel Leus 2005) a 
modi_cation of the ADFF heuristic presented in 
(Herroelen and Leus 2004; Herroelen and Leus 2004) is 
proposed in order to prohibit resource conflicts. In order 
to obtain a precedence and resource-feasible schedule, 
the resource flow-dependent float factor (RFDFF) 
heuristic uses information coming from the resource 
flow network in the calculation of the so called activity 
dependent oat factor. In (Van de Vonder, 
Demeulemeester and Herroelen 2008), multiple 
algorithms are introduced to include time buffers in a 
given schedule while a prede_ned project due date 
remains respected. While the virtual activity duration 
extension heuristic presented in (Van de Vonder, 
Demeulemeester and Herroelen 2008), relies on the 
standard deviation of the duration of an activity in order 
to compute a modified duration, the starting time 
criticality (STC) heuristic tries to combine information 
on activity weights and on the probability that activity 
cannot be started at its scheduled starting time. 
 Within the stochastic programming context, a two-
stage integer linear stochastic model is proposed in 
(Zhu, Bard and Yu 2007) to determine target times in 
the first stage followed by the development of a detailed 
project schedule in the second stage with the aim of 
minimizing the cost of project completion and expected 
penalty incurred by deviating from the specified values. 
 Temporal protection is used against machine failure 
in (Gao 1995). The durations of activities requiring 
resources prone to breakdown are extended to provide 
extra time for protection. The protection equals the 
original duration augmented with the duration of 
breakdowns that are expected to occur during activity 
execution, based on breakdown statistics. 
 In (Lambrect, Demeleumester, Herroelen 2008) the 
case of uncertain resource availability due to a 
breakdown is tackled. The objective is to build a robust 
schedule that meets the project deadline and minimizes 
the schedule instability cost. In the paper it is shown 
that protection of the baseline schedule may provide 
significant performance gains over the use of 
deterministic scheduling approaches. 
 For an extensive review of research in this field, the 
reader is referred to (Herroelen and Leus 2004; 
Herroelen and Leus 2005). 
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3. SCHEDULING ACTIVITIES EXPLOITING 
PROBABILISTIC INFORMATION 

The deterministic RCPS may be stated as follows. Let 
consider a project represented by a directed acyclic 
graph G = (N,V) and opt for activity on the node format 
(Wiest and Levy 1977). Each node in the set N 
corresponds to a single project activity and each arc in 
the set V corresponds to a precedence relation between 
each pair of activities. Each activity j ∈  N, has to be 
processed without interruptions requiring a constant 
amount of resource rjk, for each renewable resource type 
k, k = 1..., K. Each renewable resource is assumed to 
have a constant per period availability equal to ak.  
 Let St ⊆  V be the set of activities that are in 
progress at time period t. The RCPSP can be formulated 
as: 

 
min sn 
 
sj ≥ si + di  (i, j)  V        (1) 

                                             
   αk                     

 
where di is the deterministic duration of activity i and si 
the planned starting time of activity i. Two kinds of 
constraints subsist among activities: precedence 
feasibility constraints which force activity j to be started 
only when all its immediate predecessor activities have 
been processed, and renewable resource constraints 
which prevent activities to exceed limited capacities of 
resources. The problem becomes even more involved in 
the stochastic RCPSP, where the durations of activities 
are not known in advance, but are instead represented 
by random variables j j  N with known cumulative   
probability distribution function  .  

 Given the uncertainty in activity duration, the 
decision maker may be inclined to solve several 
deterministic programs involving different values of the 
uncertain problem parameters or to replace the random 
variables by their expected value. As a matter of fact, 
the well known PERT model replaces randomness with 
a certainty equivalent  in the form of expected value. 
However, none of these approaches can be considered 
satisfactory in face of uncertainty. 

 
min sn                                                 (2) 

 
P(sj ≥ si +    )      (i, j)  V      (3) 
                                             

   αk                       (4) 
 
 
 

 We observe that although the chance constraints 
paradigm has been tacitly accepted by the research 
community for over 30 years, recently, its validity as a 
tool for a point estimate of the project makespan or for 
the estimation of the complete cumulative density 
function of the makespan has been questioned. It is also 

well recognized that the chance constrained approach 
fails to give reasonable hints about the criticality of a 
path or activities, thereby destructuring critical chain 
approaches. 
 Indeed, the value taken by the starting time of an 
activity j, sj is a function of a random variable   and a 
decision variable si which is itself stochastic, its value 
depending on the starting times of preceding activities.      
 The appropriateness of a static chance constrained 
model, should at least be questioned. Nevertheless, a 
dynamic formulation in the form of a multistage 
recourse programming problem, may involve a huge 
number of scenarios, overwhelming form a 
computational point of view. These motivations are at 
the basis of the simplification of the problem on which 
our heuristics rely, based on a decoupling of the 
dynamic aspect of the problem from its probabilistic 
nature. In particular, the solution of the problem is 
viewed as a bilevel hierarchical process, where the 
temporal dependence is treated on the first level, 
whereas, stochasticity is introduced in a second level. 
 In the foregoing we shall present two different 
heuristics based on the general principle of joint 
probabilistic constraints. 

 
3.1. The Joint Probabilistic Constraints heuristic 

The Joint Probabilistic Constraints heuristic 
(JPCH) is inspired by heuristic algorithms for the 
deterministic RCPSP, but embeds the joint probabilistic 
constraints paradigm in its scheme. The schedule is 
constructed in two phases. In the first phase, a 
precedence feasible priority list is constructed following 
an ordering criterion. In the second phase, this priority 
list is transformed into a precedence and resource 
feasible schedule sequentially adding activities to the 
schedule until a feasible complete schedule is obtained.  
 In each step, g, or decision point tg, the activities in 
the priority list, that are also part of the set Eg, 
containing all eligible activities which can be 
precedence and resource feasibly started at tg, with 
better ranking are selected to be started at tg and inserted 
in Sg. The set of already scheduled activities is denoted 
by Ag.  
 An algorithmic description of the Joint 
Probabilistic Constraints heuristic is given below: 
 

• Initialization g = 0; tg = 0;A0 = { }, S0 = { }. 
 

• While |Ag  Sg |   |N| do 
 g:=g+1; 
 tg =  cj ; 
 

•  Calculate the residual resource availability and 
the set Ag and Eg. 
 

• Use the priority rule to select the activities to 
be included in the set Sg ⊆Eg. 
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• Calculate the completion times of activities in 
Sg. 
 

• end while 
 

 Let us analyze in greater detail the problem of 
determining the completion times cj of the set Sg of 
activities scheduled at decision point tg, i.e., the starting 
times of activities to be scheduled at next decision point 
tg+1. At each iteration g, the completion times are the 
solution of the following problem: 

 
min C       (5) 
C  cj      j  Sg    (6) 
P (cj  ≥  tg +  j       j  Sg     ) ≥ α                                    (7) 
 

where C is the next decision point tg+1. In problem (5-7) 
the probabilistic constraints are jointly imposed on all 
the activities in Sg. This ensure that the probability of 
disrupting the starting time of successor activities is 
kept above the prescribed probability level α. As 
evident, this time buffering mechanism is used with the 
aim of absorbing potential disruptions caused by 
activity shifts. Buffer sizes are computed on the basis of 
the joint probability that activities in Sg disrupt 
subsequent activities. We observe that not considering 
joint probabilistic constraints would lead, at decision 
point tg, to a probability disruption equal to the sum of 
the individual probability disruptions of activities in Sg.  

The proposed heuristic, on the contrary, imposes a 
joint probability of disruption α for all the activities in 
Sg. We further remark that, considering the expected 
duration increase of activities i would result in 
disruption probability for each activity of at least 50% 
which can be unacceptable in some contexts. 

 
3.2 The resource allocation heuristic 
Rather than using a priority rule for deciding the set of 
activities to be included in Sg the resource allocation 
heuristic (RAH) determines at each decision point tg, 
both the starting times and the resources allocated to 
each activity. Activities are not ordered in a list and if 
Eg contains more than one element a competition has to 
be arranged to choose the optimal subset of activities Sg 
that can be supplied by available resources. Decisions, 
at each tg are made on the basis of the solution of the 
following subproblem. 
 
max  C 
 
C  ci   | βi = 1 
 
P(ci  tg +   (i)   | βi = 1)                          (8) 
 

 *βi  rk(tg) k 
 
where rk(tg) is the residual resource availability at time 
tg. The objective function tries to balance two 
conflicting objectives, the resource and the time 

allocation  decisions. The two objective functions are 
weighted through the parameter γ, which is adjusted 
dynamically in order to find a good balance between 
conflicting objectives. 

An algorithmic description of the resource 
allocation heuristic is given below: 

 
 

• Initialization g = 0; tg = 0;A0 = { }, S0 = { }. 
 

• While |Ag  Sg |   |N| do 
 

•  g:=g+1. 
 

•  tg =  cj . 
 

 
•  Calculate Eg, and update the residual resource 
availability and the set Ag. Set β = 0:01 Sg = { } 
•  While no activities have been selected (Sg = 

{ }): 
 - Solve the competition problem (8). Let 

β*,C*, c* be the optimal solution. 
 -If i* = 0; ∀ i  Eg  β:= β/10. 
 -Otherwise, Sg := {i  Eg | βi *= 1}. 
 -Set the completion times of activities in                     
Sg ci := ci* 

• end while 
 

 Decision variables of problem (8) are the chosen 
activities to be supplied by resources and the resource 
capacities  assigned to those activities. The choice of the 
activities to be supplied with available resources at each 
decision point should also reduce the remaining projects 
duration as much as possible. Therefore, whilst the first 
term of the objective function tries to maximize the 
resource consumption at each decision point, the second 
term aims at reducing the partial makespan. Problem (8) 
has to be solved at each decision point, when at least 
more than one activity is ready to be operated and the 
residual available amount of resources is not zero. 

 
3.3 Remark 
Both the joint probabilistic constraints and the resource 
allocation heuristics involve the solution of a model 
under joint probabilistic constraints. In the following, 
we show how to transform them, in the case of 
independent random variables, into deterministic 
equivalent problems. 

With this aim, let consider the following 
problem: 
  
P( x i i = 1,…,m)                        (9) 

 
where the probabilistic constraints are jointly imposed 
on m separate constraints involving the random 
variables i. Under the independence assumption among 
the random variables i, the probabilistic constraints (9) 
can be rewritten as  
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and equivalently, denoting with Fi the marginal 
probability distribution function of the continuous 
random variable bi, as  

 
  

 
By taking logarithm we can rewrite the 

constraints as follows:  
 

  ln α.  
 

Since the logarithm is an increasing function 
and 0 < Fi  1, this transformation is legitimate.  

Furthermore, for log-concave distribution 
functions, convexity of the constraints is preserved. 
Fortunately, the class of log-concave random variables 
includes several commonly used continuous, univariate 
probability distributions as for example the Uniform, 
Normal, Exponential, Beta, Weibull, Gamma, Pareto, 
and Gompertz distributions. We observe that also in the 
case of discrete distributions, problems with joint 
probabilistic constraint can be reduced to deterministic 
equivalent problems that we shall report hereafter, for 
the sake of completeness. Let us introduce an integer 
vector zi, whose entries are defined as  zi =   i = 
1…,m.  In the case of log-concave marginal distribution, 
it is possible to rewrite zi in a 0 - 1 formulation. If li + ki 
is a known upper bound, where li represents the α-
fractile of the distribution function Fi, zi can be written 
as 
 zi = li+   

 
and the probabilistic constraints as 
 

  
 
where  
 

 = ln Fi(li + k) - ln Fi(li + k - 1)  
 
and  
 

= ln  - ln F(l). 
 
4.  COMPUTATIONAL EXPERIMENTS 
In this section we shall present the results of the 
computational study carried out with the aim of 
assessing the performances of the algorithms introduced 
in the previous section. We have compared our 
algorithm with the approaches found in the literature 
closer to our work (the STC and the RFDFF heuristics) 
and with a set of newly created benchmark heuristics, 
which rely on the use of separate chance constraints. 
 The computational experiments have been carried 
out on a set of benchmark problems with 30 and 60 
activities randomly selected from the project scheduling 

problem library PSPLIB (Kolisch and Sprecher 1997).  
 We have replaced the deterministic duration of 
each activity by two probability distributions, one 
continuous and one discrete, taking di as their mean.  
 In particular, we have tested the Uniform 
distribution U(0.75di; 2.85di) and the Poisson 
distribution with mean di and activity durations are 
assumed to be independent. 
 Extensive simulation has been used to evaluate all 
procedures on robustness measures and computational 
efficiency. For every network instance, 1000 scenarios 
have been simulated by drawing different actual activity 
durations from the described distribution functions.  
 Using these simulated activity durations, the 
realized schedule is constructed by applying the 
following reactive procedure. An activity list is obtained 
by ordering the activities in increasing order of their 
starting times in the proactive schedule. Ties are broken 
by increasing activity number. Relying on this activity 
list, a parallel schedule generation scheme builds a 
schedule based on the actual activity durations. We 
opted for railway execution never starting activities 
earlier than their prescheduled start time in the baseline 
schedule. Effectively, this type of constraint is inherent 
to course scheduling, sports timetabling and railway and 
airline scheduling, or when activity execution cannot 
start before the necessary resources have been 
delivered. 

 
4.1 Separate chance-constraints based heuristics 
Schedule generation schemes are the core of most 
heuristic solution procedures for the deterministic 
RCPSP. The best-known Schedule generation scheme 
order all activities according to a priority list and at 
every decision point select the next activities to start 
based on this priority list. Mainly two types of schedule 
generation scheme are used to build a schedule from an 
activity list, the Parallel Schedule generation scheme 
and the serial schedule generation scheme. These 
schedule generation schemes construct a precedence-
resource feasible sequence through a stepwise increase 
of a partial schedule. The serial method at each step,  
selects an activity from the set of activities eligible for 
scheduling and assigns to it the earliest possible start 
time according with both precedence and resource 
constraints. Selection of activities from the set of 
activities eligible for scheduling is performed according 
to a priority rule. The parallel method is based on a time 
incrementation procedure since at every decision time (t 
= 0 and the completion times of activities), it starts as 
many unscheduled activities as possible in accordance 
with the precedence and resource constraints selecting 
activities according to a priority rule. We use activity-
based priority policies as benchmark heuristics, 
considering, instead of the deterministic durations, the 
α-fractiles of activities. We shall refer to these heuristics 
in the following as Parallel Separate chance-constraints 
based heuristics (PSCCBH) e Serial Separate chance-
constraints based heuristics (SSCCBH). 
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 Regardless the schedule generation scheme applied, 
the resulting schedule depends on the ordering criterion 
adopted. The following static priority rules for 
generating the priority list have been tested in the 
computational experiments (Kolisch and Hartmann 
1999). Some of them have been proposed by the 
authors. 

 
• The MinC rule orders the activities by 

increasing value of their resource 
requirement. 
 

• The MinD rule orders the activities by 
increasing value of their α-fractile. 

 
 

• The MaxC rule orders the activities by 
decreasing value of their resource 
requirement. 
 

• The MaxD*C rule orders the activities Job 
ordered by decreasing value of their alfa-
duration*resource requirement. 
 

• The LST rule(Kolisch, Sprecher and Drexl 
1995) orders the activities by increasing 
value of their latest starting time. 
 

• The LFT (Davis and Patterson 1975) 
orders the activities by increasing value of 
their latest finish time. 

 
• The MTS (Alvarez-Valdes and Tamarit 

1989) orders the activities by decreasing 
value of the number of their successors. 

 
5.  ANALYSIS OF THE RESULTS 
A total of 13 scheduling procedures are evaluated. 
Algorithms 1-4 are the PSCCBH whereas algorithms 5-
8 are the SSCCBH with the first four priority rule listed 
in Section 4.1. Algorithms from 9 to 11 are the 
PSCCBH with the rules LST, LFT and MTS 
respectively, whereas Algorithm 12 is a SSCCBH with 
the LST priority rule. The JPCH Section 3.1 is executed 
considering the four priority rules (JPCH 1{4). All the 
algorithms, but the RFDFF and the STC heuristics, have 
been tested for 5 α values {0:8; 0:85; 0:9; 0:95; 0:99}.  
 The computational experiments were performed in 
a PC Pentium III, 667 MHz, 256 MB RAM. All 
procedures were coded in AIMMS language (Bisschop 
and Roelofs 2007) and the subproblems solved woth 
Cplex 10.1 and Conopt. We show in Tables 1-4 the 
average results calculated over all networks and 
executions for each approach. The complete set of the 
numerical results are fully reported in (Beraldi, Bruni, 
Guerriero and Pinto 2007). The quality of the algorithm 
on every problem instance has been evaluated by the 
following measures: average tardiness (Tavg) over all 
networks and executions, average timely project 
completion probability (TPCP) over all networks and 

executions, average number of jobs over all networks 
and executions, whose starting time in the actual 
schedule differs from the baseline schedule (delayed) 
and CPU time in seconds (time). 

 

 
Figure 1: Tardiness versus α values 

 

 
Figure 2: Delayed versus α values 

 
 For the sake of clarity, although RFDFF and STC 
heuristics construct exactly the same schedule whatever 
the risk averseness of the decision maker, we have 
reported the results of the RFDFF and STC heuristics 
for all the probability levels tested. As could be 
expected,   

 

 
Figure 3: TPCP versus α values 

 
proactive scheduling procedures, which use 
probabilistic information, always seem to outperform 
procedures that do not. It can be easily observed that 
even the simple benchmark heuristics 1-12 perform 
better than STC and RFDFF. In this respect, a note of 
caution is in order. The performances of the STC and 
RFDFF heuristics may have been biased by the high 
disruption probability associated with each activity. We 
have experimentally observed that, in the 1000 project 
simulations, almost all the activities showed a duration 
higher than their expected value, denoting a highly 
variable environment. This high variability is confirmed 
by the TPCP which is, as evident, on average very low. 
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JPCH 1-4 rank best among the heuristics. The gain in 
performances is more evident for increasing _ values, 
reflecting a more conservative strategy hedging against 
more disruptions scenarios. The performances of the 
algorithms 1-12 are clearly indistinguishable, and 
depend on the ordering criterion adopted.  
 Unfortunately, there is no unitary evidence of one 
criterion over the others. For these heuristics, the 
number of activities whose actual starting time exceed 
the planned starting time (reported in the column 
delayed) is quite satisfactory, especially for increasing α 
values. In particular, their performances are comparable 
with those of JPCH 1-4 for very high probability levels.  
 The RAH performs better than algorithms 1-12 but 
shows worse performances than JPCH 1-4. 
 With the aim of assessing the variation of the 
performance measures with respect to the probability 
level α we show in Figures 1, 2 and 3 the tardiness, the 
number of activities delayed and the timely project 
completion probability for different α values, for the 
same test problems. The average performance over the 
twelve separate chance constraints based heuristics has 
been considered for comparison. The tardiness of the 
STC and RFDFF heuristics has not been reported, since 
it was very high. As evident, the schedule performances 
deteriorate with decreasing α values. Similar behavior 
has been observed for all the other tests. This result is 
expected, since there is clearly a correlation between the 
schedule robustness and the values of α 
 Algorithms from 1 to 12 are computationally very 
cheap. This is due to the simple schedule construction 
procedures based on the parallel and serial schedule 
generation scheme. We observe that RFDFF and STC 
are slower due to the fact that the procedures have to be 
executed a number of times, until a creation of a 
deadline feasible schedule is allowed. 
 The computational time of JPCH 1-4 and of 
procedures STC and RFDFF is comparable for most 
instances. 

 However, we should observe that for larger 
networks JPCH 1-4 show worse computational times 
than STC and RFDFF heuristics. This is due to the extra 
effort required for solving, at each decision point, the 
probabilistic model. We notice, in addition, that 
depending on the nature of the probabilistic model to be 
solved (nonlinear continuous or linear integer), a 
different computational effort is required. In our 
experiments, it is evident that more CPU time is 
required to solve the integer deterministic equivalent 
problem related to discrete random variables. We 
observe also that for the continuous distribution 
function considered, the RAH is overwhelming from a 
computational point of view (no results are reported in 
Tables 3 and 4.  
 This is due to the mixed integer nonlinear nature of 
the problem to be solved at each iteration of the RAH. 
 As a final remark, we observe that our heuristic 
does not consider, in its present form, possible weights 
associated to activities representing the marginal cost of 
starting the activity earlier or later than planned in the 
baseline schedule. We remark, that the ordering 
criterion could be adapted to reflect the relative 
importance of the activities. Nevertheless, there is no 
absolute consensus on how to estimate such costs. 

 
 

 

 

 

 

 

 

 
Table 1: Results on 30 nodes test problems with discrete duration variability 

P Tavg TcP delayed time Tavg TcP delayed time Tavg TcP delayed time Tavg TcP delayed time Tavg oMn delayed time
1 52,12 0,17 17,09 0,05 37,89 0,20 14,83 0,06 26,55 0,30 11,82 0,04 9,78 0,68 5,40 0,05 1,69 0,93 1,10 0,05
2 53,04 0,15 16,74 0,05 36,47 0,20 14,34 0,06 22,49 0,36 10,64 0,05 8,98 0,63 5,17 0,05 1,66 0,91 1,12 0,06
3 58,04 0,14 17,53 0,05 38,73 0,19 14,64 0,07 28,11 0,30 12,21 0,05 10,07 0,62 5,61 0,06 1,73 0,91 1,14 0,06
4 51,37 0,15 16,90 0,05 37,89 0,23 14,83 0,06 24,38 0,35 11,26 0,05 8,80 0,68 5,04 0,07 1,69 0,92 1,16 0,06
5 53,38 0,16 16,79 0,23 37,19 0,25 14,38 0,24 25,82 0,36 11,15 0,22 10,74 0,62 5,81 0,24 1,65 0,94 1,07 0,24
6 57,19 0,15 17,30 0,23 37,85 0,23 14,36 0,26 25,80 0,33 11,25 0,21 10,96 0,59 5,79 0,26 1,90 0,91 1,19 0,28
7 50,39 0,17 16,60 0,26 37,13 0,25 14,02 0,29 25,20 0,35 11,06 0,23 9,09 0,67 4,82 0,27 1,87 0,91 1,19 0,27
8 53,63 0,17 16,88 0,17 38,42 0,23 14,52 0,27 25,10 0,37 11,01 0,21 10,00 0,64 5,34 0,25 1,72 0,92 1,12 0,25
9 52,10 0,14 17,13 0,05 35,51 0,24 14,47 0,04 23,38 0,30 11,09 0,04 9,80 0,59 5,82 0,04 1,64 0,91 1,11 0,08

10 50,62 0,15 16,99 0,05 36,45 0,22 14,61 0,05 23,78 0,33 11,21 0,04 9,56 0,65 5,35 0,04 1,52 0,94 1,03 0,09
11 50,37 0,14 16,97 0,05 38,16 0,18 15,34 0,04 24,18 0,28 11,31 0,05 9,30 0,62 5,49 0,05 1,61 0,92 1,11 0,12
12 50,20 0,14 16,64 0,31 36,58 0,22 14,43 0,31 22,70 0,31 11,03 0,31 9,21 0,63 5,50 0,30 1,54 0,91 1,08 0,40
13 45,05 0,23 15,16 0,41 30,70 0,35 12,32 0,35 19,75 0,47 9,29 0,35 8,06 0,74 4,34 0,35 1,22 0,94 0,79 0,35

JPCH-1 29,94 0,46 10,87 0,41 17,32 0,59 8,07 0,37 12,23 0,58 5,68 0,37 5,09 0,86 2,73 0,37 1,11 0,95 0,72 0,37
JPCH-2 32,33 0,28 11,95 0,41 28,58 0,32 11,70 0,37 17,80 0,41 8,78 0,37 5,45 0,81 3,04 0,37 1,23 0,95 0,90 0,37
JPCH-3 27,68 0,44 10,99 0,41 22,37 0,45 9,51 0,37 12,52 0,64 6,29 0,37 4,93 0,81 2,88 0,37 1,10 0,96 0,71 0,37
JPCH-4 26,30 0,35 9,97 0,41 24,25 0,27 10,01 0,37 12,87 0,52 6,14 0,37 5,31 0,82 2,95 0,37 1,00 0,95 0,68 0,37

STC 170,77 0,10 24,28 0,41 170,77 0,10 24,28 0,41 170,77 0,10 24,28 0,41 170,77 0,10 24,28 0,41 170,77 0,10 24,28 0,41
RDFF 73,78 0,13 26,39 0,41 73,78 0,13 26,39 0,41 73,78 0,13 26,39 0,41 73,78 0,13 26,39 0,41 73,78 0,13 26,39 0,41

alfa=0,8 alfa=0,85 alfa=0,9 alfa=0,95 alfa=0,99
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Table 2: Results on 60 nodes test problems with discrete duration variability 
P Tavg TcP jobrit time Tavg TcP jobrit time Tavg TcP jobrit time Tavg TcP jobrit time Tavg TcP jobrit time
1 170,64 0,01 41,3 0,17 126,35 0,02 41,4 0,16 73,51 0,12 33,0 0,15 33,38 0,43 19,0 0,156 5,80 0,85 4,1 0,16
2 154,63 0,01 39,2 0,17 114,36 0,03 39,6 0,17 73,05 0,14 31,9 0,15 29,63 0,45 16,5 0,174 5,76 0,87 3,9 0,16
3 165,49 0,01 40,0 0,17 127,90 0,03 41,2 0,18 79,37 0,12 33,4 0,17 35,35 0,38 19,6 0,161 5,92 0,84 4,1 0,16
4 156,20 0,01 39,7 0,18 120,15 0,04 40,6 0,18 71,62 0,15 31,6 0,17 31,39 0,43 17,4 0,156 5,35 0,87 3,7 0,17
5 150,72 0,02 37,4 0,76 107,25 0,09 36,6 0,75 71,33 0,18 29,7 0,78 31,10 0,46 16,6 0,723 5,24 0,88 3,4 0,74
6 155,62 0,02 38,1 0,61 114,95 0,07 38,4 0,62 69,17 0,20 29,3 0,59 30,46 0,48 15,6 0,575 5,06 0,88 3,3 0,59
7 148,88 0,03 37,7 0,82 111,81 0,08 37,5 0,82 68,06 0,15 29,5 0,80 29,77 0,49 16,0 0,736 5,50 0,87 3,5 0,75
8 141,47 0,04 37,1 0,61 107,49 0,08 36,6 0,64 67,81 0,20 29,0 0,63 28,03 0,51 15,0 0,623 5,63 0,87 3,7 0,62
9 161,14 0,01 44,4 0,12 120,34 0,02 40,8 0,11 77,18 0,08 34,0 0,10 32,02 0,47 18,5 0,103 6,33 0,84 4,4 0,10

10 160,62 0,01 44,6 0,12 118,85 0,02 41,0 0,10 76,95 0,08 34,1 0,12 31,87 0,41 18,1 0,108 6,11 0,83 4,3 0,11
11 160,01 0,00 44,4 0,14 119,13 0,03 40,9 0,11 72,05 0,09 32,8 0,12 30,96 0,35 18,3 0,111 5,46 0,86 4,0 0,10
12 151,12 0,01 43,5 0,74 107,12 0,04 38,5 0,66 72,42 0,12 32,3 0,72 28,81 0,51 16,5 0,641 5,34 0,86 3,8 0,67
13 115,80 0,10 37,0 2,29 74,61 0,31 30,3 2,29 41,74 0,51 20,8 2,29 24,41 0,63 13,5 2,286 3,93 0,90 2,7 2,29
20 32,64 0,40 10,9 2,40 26,79 0,47 8,9 2,40 22,18 0,62 6,9 2,40 31,25 0,84 8,8 2,403 30,20 0,97 7,9 2,40
21 33,96 0,41 11,8 2,40 37,08 0,46 12,1 2,40 38,65 0,62 11,9 2,40 41,02 0,81 11,2 2,403 29,52 0,96 7,7 2,40
22 27,02 0,40 9,9 2,40 32,45 0,57 10,9 2,40 25,80 0,63 7,4 2,40 28,82 0,80 8,4 2,403 26,53 0,97 7,4 2,40
23 22,86 0,38 9,0 2,40 25,37 0,56 9,3 2,40 21,56 0,68 7,1 2,40 21,50 0,82 6,8 2,403 26,72 0,97 7,0 2,40

STC 385,82 0,00 52,3 2,29 385,82 0,00 52,3 2,29 385,82 0,00 52,3 2,29 385,82 0,00 52,3 2,286 385,82 0,00 52,3 2,29
RDFF 193,29 0,03 58,5 2,40 193,29 0,03 58,5 2,40 193,29 0,03 58,5 2,40 193,29 0,03 58,5 2,403 193,29 0,03 58,5 2,40

alfa=0,8 alfa=0,85 alfa=0,9 alfa=0,95 alfa=0,99

 
 

Table 3: Results on 30 nodes test problems with continuous duration variability 
P Tavg TcP jobrit time Tavg TcP jobrit time Tavg TcP jobrit time Tavg TcP jobrit time Tavg TcP jobrit ex Norob
1 27,99 0,27 13,04 0,04 14,07 0,44 9,27 0,04 7,11 0,59 6,24 0,06 2,59 0,84 2,48 0,04 0,00 1,00 0,00 0,04
2 27,74 0,26 12,81 0,05 13,54 0,45 9,02 0,05 7,57 0,62 6,45 0,05 2,65 0,84 2,50 0,04 0,00 1,00 0,00 0,04
3 32,14 0,23 14,26 0,09 17,12 0,36 10,98 0,05 8,20 0,56 7,00 0,06 2,51 0,85 2,37 0,05 0,00 1,00 0,00 0,04
4 26,57 0,28 12,36 0,04 13,99 0,41 9,39 0,06 6,81 0,60 5,93 0,05 2,34 0,85 2,22 0,05 0,00 1,00 0,00 0,05
5 30,39 0,25 13,55 0,21 14,96 0,41 9,70 0,21 7,18 0,60 6,18 0,21 2,40 0,84 2,28 0,19 0,00 1,00 0,00 0,19
6 30,42 0,25 13,63 0,18 13,96 0,44 9,39 0,20 8,05 0,58 6,86 0,20 2,45 0,84 2,34 0,17 0,00 1,00 0,00 0,18
7 29,93 0,25 13,70 0,19 15,60 0,38 10,09 0,23 8,52 0,52 7,18 0,20 2,18 0,86 2,11 0,19 0,00 1,00 0,00 0,20
8 28,82 0,25 12,90 0,17 14,28 0,41 9,42 0,19 8,06 0,56 6,82 0,19 2,38 0,86 2,26 0,17 0,00 1,00 0,00 0,18
9 27,32 0,24 12,98 0,04 14,58 0,38 9,56 0,05 7,34 0,59 6,35 0,05 2,22 0,88 2,13 0,04 0,00 1,00 0,00 0,05
10 26,22 0,29 12,74 0,05 14,20 0,42 9,53 0,05 7,56 0,58 6,52 0,05 2,30 0,88 2,19 0,04 0,00 1,00 0,00 0,05
11 27,59 0,26 13,20 0,05 14,57 0,38 9,68 0,04 7,39 0,60 6,40 0,05 2,40 0,82 2,30 0,04 0,00 1,00 0,00 0,05
12 26,63 0,26 12,88 0,25 13,65 0,40 9,11 0,26 7,36 0,64 6,37 0,26 2,25 0,86 2,16 0,25 0,00 1,00 0,00 0,26
20 12,09 0,85 5,83 0,15 3,26 0,90 2,33 0,16 1,66 0,94 1,42 0,15 0,55 0,97 0,47 0,16 0,00 1,00 0,00 0,15
21 26,92 0,69 12,04 0,37 14,70 0,74 8,36 0,37 7,30 0,85 5,35 0,38 1,77 0,94 1,53 0,37 0,00 1,00 0,00 0,36
22 22,31 0,71 9,78 0,23 9,90 0,83 6,47 0,23 5,77 0,88 4,47 0,23 1,58 0,95 1,20 0,24 0,00 1,00 0,00 0,24
23 28,00 0,64 11,64 0,20 15,57 0,77 8,74 0,22 6,41 0,87 4,82 0,19 1,73 0,93 1,42 0,20 264,41 1,00 0,00 0,22

STC 169,35 0,10 24,10 3,21 169,35 0,10 24,10 3,21 169,35 0,10 24,10 3,21 169,35 0,10 24,10 3,21 169,35 0,10 24,10 3,21
RDFF 82,62 0,12 27,28 3,58 82,62 0,12 27,28 3,58 82,62 0,12 27,28 3,58 82,62 0,12 27,28 3,58 82,62 0,12 27,28 3,58

alfa=0,99alfa=0,8 alfa=0,85 alfa=0,9 alfa=0,95

 
 

Table 4: Results on 60 nodes test problems with continuous duration variability 
P Tavg TPCP jobrit CPU Tavg TPCP jobrit CPU Tavg TPCP jobrit CPU Tavg TPCP jobrit CPU Tavg TPCP jobrit CPU
1 96,71 0,04 38,1 0,11 53,55 0,18 30,7 0,10 25,82 0,40 21,1 0,11 8,29 0,69 7,8 0,10 0,00 1,00 0,0 0,11
2 95,43 0,03 37,1 0,11 49,51 0,20 28,3 0,13 23,00 0,40 18,8 0,11 7,12 0,73 6,7 0,13 0,00 1,00 0,0 0,11
3 103,35 0,05 39,3 0,12 52,45 0,16 30,0 0,11 24,25 0,38 19,9 0,11 8,44 0,74 8,0 0,11 0,00 1,00 0,0 0,12
4 85,00 0,08 35,2 0,12 49,61 0,20 28,2 0,11 26,21 0,40 20,9 0,12 8,02 0,73 7,4 0,11 0,00 1,00 0,0 0,11
5 96,06 0,06 36,4 0,50 47,36 0,22 26,9 0,50 22,02 0,43 17,9 0,50 7,82 0,75 7,3 0,50 0,00 1,00 0,0 0,50
6 94,35 0,06 36,2 0,38 47,20 0,21 26,6 0,39 23,62 0,41 19,0 0,39 7,22 0,76 6,7 0,39 0,00 1,00 0,0 0,40
7 96,90 0,07 37,5 0,53 50,21 0,19 28,7 0,54 23,53 0,42 19,4 0,51 7,71 0,75 7,2 0,54 0,00 1,00 0,0 0,50
8 92,49 0,07 35,1 0,40 46,32 0,21 26,8 0,40 24,69 0,43 19,7 0,40 6,47 0,78 6,0 0,40 0,00 1,00 0,0 0,41
9 90,56 0,05 37,5 0,10 49,72 0,19 28,8 0,10 25,17 0,33 20,8 0,10 7,91 0,72 7,4 0,10 0,00 1,00 0,0 0,10
10 91,61 0,05 37,6 0,10 50,91 0,17 29,3 0,12 24,31 0,38 20,2 0,11 7,56 0,71 7,1 0,12 0,00 1,00 0,0 0,11
11 87,77 0,04 36,9 0,10 50,97 0,17 29,4 0,11 24,51 0,39 20,3 0,10 8,17 0,75 7,7 0,11 0,00 1,00 0,0 0,12
12 94,36 0,04 37,5 0,73 45,34 0,18 26,7 0,74 21,24 0,35 1233,6 0,74 7,93 0,68 7,4 0,74 0,00 1,00 0,0 0,75
A 5,53 0,96 3,1 0,35 3,77 0,92 2,3 0,51 0,81 0,99 0,8 0,84 0,38 1,00 0,4 0,51 0,00 1,00 0,0 0,86
B 27,67 0,95 14,2 1,56 14,18 0,96 9,0 1,57 6,54 0,98 5,6 1,95 1,90 0,99 1,8 0,51 0,00 1,00 0,0 0,86
C 50,76 0,85 16,3 1,05 13,51 0,96 9,4 1,30 6,56 0,98 5,9 1,95 1,49 0,99 1,5 1,57 0,00 1,00 0,0 1,96
D 50,52 0,86 15,1 1,02 16,15 0,95 10,7 1,30 5,66 0,97 5,3 1,09 2,35 0,99 2,3 1,30 0,00 1,00 0,0 1,58

STC 303,51 0,10 49,7 21,78 303,51 0,10 49,7 21,78 303,51 0,10 49,7 21,78 303,51 0,10 49,7 21,78 303,51 0,10 49,7 21,78
RFDFF 174,97 0,04 60,1 21,78 174,97 0,04 60,1 21,78 174,97 0,04 60,1 21,78 174,97 0,04 60,1 21,78 174,97 0,04 60,1 21,78

alfa=0,8 alfa=0,85 alfa=0,9 alfa=0,95 alfa=0,99

 
 

6. CONCLUSIONS 
This paper presents heuristic procedures for solving 
project scheduling problems under uncertainty. The 
heuristics exploits probabilistic information on random 
activities duration within the framework of joint 
probabilistic constraints. In the proposed algorithm, the 
temporal aspect of the problem is treated at a higher 
level, whereas the probabilistic aspect is tackled at 
decision points, when activities are supplied by 
available resources. This hierarchical view of the 
problem has allowed to develop effective heuristics for 
projects with high variability with the aim of obtaining 
a schedule with good performances. 
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