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ABSTRACT 
This paper focuses on the simulation and optimization 
of car traffic, modelled through a fluid dynamic model, 
based on the conservation of the cars number. In 
particular, the case study of the harbour of Salerno, 
Italy, is presented. Simulations of vehicular flows are 
carried out by a graphical tool, that allows to reproduce 
the evolution of densities on the roads of the network 
through animated and coloured pictures. From the 
analysis of simulated densities on roads, obtained by a 
given input configuration for the network object of 
study, the tool is able to plan some strategies for the 
improvement of traffic conditions through an 
optimization routine.  
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1. INTRODUCTION 
The aim of this paper is to present some simulations of 
the car traffic dynamics in the harbour of Salerno, Italy, 
and to consider an optimization study of vehicular flows 
in order to improve traffic conditions. The choice of the 
considered urban network, that belongs to the harbour 
of Salerno, is due to the fact that it is a critical point, 
since it separates the centre of the city from the 
highway. Hence, the harbour is interested either from a 
heavy car traffic, mainly coming from the highway, or 
from trucks, daily crossing around the harbour areas.  
 The simulations of urban traffic flows have been 
obtained using a numerical tool, based on a fluid 
dynamic model for car traffic introduced in Coclite et 
al. 2005. In last years, fluid dynamic approaches have 
been often used for several reasons. For example, they 
are evolutive, allowing the description of a given 
physical phenomenon in every instant of time; they are 
characterized by few parameters, and this permits 
simulations based on numerical schemes that are, at the 
same time, fast and accurate, with consequent study of 
networks of big dimensions. Moreover, as such models 
are based on conservation laws, according to which a 
given quantity has to be conserved, they have a wide 
range of applications: road and telecommunication 
networks, supply chains, gas pipelines, irrigation 

channels, etc. In particular, the model for road 
networks, that we consider, is based on the conservation 
laws formulation proposed by Lighthill and Whitham 
(Lighthill et al. 1955) and Richards (Richards 1956). On 
each single road, the traffic evolution satisfies the 
conservation law:  
                                                                     

( ) 0,t x fρ ρ∂ + ∂ =                                                       (1)                      
 
where ( ) max, 0, ,t xρ ρ ρ= ∈⎡ ⎤⎣ ⎦  ( ) 2, ,t x ∈ �  is the 
density of cars, maxρ  is its maximal value, 

( ) ( )f vρ ρ ρ=  is the flux and ( )v ρ  the average 
velocity. In what follows, we assume that the velocity is 
a smooth decreasing function of the density, and that f  
is concave. A similar approach can be very useful for 
the description of phenomena, such as shock formation 
and their propagation (Bressan 2000, Dafermos 1999), 
although such formulation is limited for the 
reconstruction of some real traffic characteristics on 
highways, for which more rich models are necessary 
(Bellomo et al. 2005, Kerner 2004).  
 Recently, these approaches, of fluid dynamic type, 
have been extended to urban networks (for an 
exhaustive presentation, see Garavello et al. 2006b and 
for the relative numerical schemes Bretti et al. 2006): 
some are based on the LWR model (Cascone et al. 
2007, Cascone et al. 2008, Godunov 1959, Helbing et 
al. 2005), other on the second order model by Aw – 
Rascle  (Garavello et al. 2006a).  
 The greatest part of papers deals with results 
obtained by the LWR model because, if we consider the 
evolution of traffic in urban context, some particular 
situations (that are not present on highways, for 
example) can occur, for example short roads, traffic 
interruptions, reduced velocities, and so on, which can 
be captured by the LWR model.  
 Also optimization problems for traffic flows were 
addressed, in order to find the correct choice of traffic 
parameters for avoiding congestion phenomena and/or 
improving car traffic circulation: Helbing et al. 2005 is 
devoted to traffic light regulation, while the works of 
Gugat et al. 2005, Herty et al. 2003, are more related to 
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our analysis but focus on the case of smooth solutions 
(not developing shocks) and boundary control. 
 In Cascone et al. 2007, Cascone et al. 2008, two 
cost functionals have been introduced to measure the 
traffic behaviour. The first functional 1J  measures the 
average velocity of drivers on the network, while the 
second 2J  measures the expected mean travelling time 
on the network. The optimization is done over right of 
way parameters and traffic distribution coefficients.  
 Starting from the model of networks with LWR and 
using the optimization procedure developed in Cascone 
et al. 2007, Cascone et al. 2008, it was possible to build 
a numerical software for the evolution of car traffic, 
which is useful in order to make some prevision of real 
conditions of vehicular behaviour and to indicate the 
best interventions on the network (in terms of traffic 
lights, and signals) in order to improve traffic 
conditions. The tool for urban traffic elaborates 
animated and coloured graphics to let the traffic 
analysis easier for users. The goodness of simulation 
and optimization algorithms is tested on the case study 
of the harbour of Salerno, via simulations. 
 The paper is organized as follows. First, we give 
some basics about the model for car traffic and the 
optimization techniques and numerical schemes useful 
to approximate the equations of the model. Then, we 
consider the structure of the graphical tool and present 
some simulation and optimization results for the 
harbour of the city of Salerno, Italy.  
 
2. ROAD NETWORKS MODEL AND 

OPTIMIZATION TECHNIQUES 
A road network consists of a finite set of roads, 
modelled by intervals ,i i iI a b= ⊂⎡ ⎤⎣ ⎦ � , 1,..., ,i N=  

,i ia b<  with one of the endpoints that can be infinite. 
Roads are connected to some junctions, and each 
junction J  has a finite number of incoming and 
outgoing roads; hence, the complete model is described 
by the couple ( ),I J , where { }: 1,...,iI I i N= =  is the 
set of roads, while J is the set of junctions. On each 
road, the evolution is given by (1). We consider a linear 
decreasing velocity: 
 

( ) max
max

1 ,v v ρρ
ρ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
                                             (2) 

 
where maxv  represent the maximal velocity of cars. The 
flux is given by: 
 

( ) max
max

1 .f v ρρ ρ
ρ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
                                          (3) 

 
Without loss of generality, from now on, we can 
consider max max 1v ρ= = . Consider now a junction J  
with n  incoming roads and m  outgoing roads. For 
simplicity, assume that iI , 1,...,i n= , are the incoming 

roads and jI , 1,...,j n n m= + + , are the outgoing 
roads.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: a road junction. 
 
 If ( )1,..., ,n mρ ρ ρ +=  [ ]0,i iIρ ∈ +∞ × , is a weak 
solution (Bressan 2000) at the junction such that, for 
each ( ),ix t xρa  has bounded variation, then ρ  
satisfies the Rankine – Hugoniot relation at the junction 
J : 
                                                          

( )( ) ( )( )
1 1

, , ,
n n m

i i j j
i j n

f t b f t aρ ρ
+

+ −

= = +

=∑ ∑                (4)  

                           
for almost 0.t >  Notice that (4) expresses precisely the 
conservation of cars through the junction.  
 For a single conservation law (1), a Riemann 
Problem (shortly RP) is a Cauchy problem for a 
piecewise constant data with only one discontinuity. 
Solutions are either continuous waves, called 
rarefactions, or traveling discontinuities, called shocks. 
The velocity of waves is strictly connected to ( )' .f ρ  
In a similar way, we call RP at the junction the Cauchy 
problem corresponding to a constant initial data on each 
road. As the condition (4) does not guarantee the 
uniqueness of solutions, further conditions are needed.  
 The aim is finding a way to solve RPs at junctions.  
 
Definition. A Riemann solver for the junction J  is a 

map [ ] [ ] [ ] [ ]: 0,1 0,1 0,1 0,1n m n mRS × → ×  that 

associates to a Riemann data ( )0 1,0 ,0,..., n mρ ρ ρ +=  at 

J  a vector  ( )1ˆ ˆ ˆ,..., n mρ ρ ρ +=  and the solution on an 
incoming road  , 1,...,iI i n= , is given by the wave 

( ),0 ˆ,i iρ ρ  and on an outgoing road ,jI   

1,...,j n n m= + +  is given by the wave ( ),0ˆ ,j jρ ρ . The 

consistency condition is required:  
( )( ) ( )0 0 .RS RS RSρ ρ=     

 
 For the traffic flow, in Coclite et al. 2005, in the 
case m n≥  a Riemann solver, based on the following 
rules, was introduced:  
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(A)   there are some fixed coefficients, that represent the 
preferences of drivers. Such coefficients indicate the 
distribution of traffic from incoming to outgoing roads, 
and they can be kept in a traffic distribution matrix: 
 

{ } 1,..., , 1,...,
,m n

ji j n n m i n
A α ×

= + + =
= ∈ �

 
                           (5) 

   
such that 
 

1

0 1,  1,
n m

ji ji
j n

α α
+

= +

< < =∑                                               (6) 

 
for 1,...,i n=  and 1,...,j n n m= + + , where jiα  is the 
percentage of drivers who, arriving from the i  - th 
incoming road, direct to the j  - th  outgoing road.  
  
Remark. If we refer to junctions with one incoming road 
( 1n = ), a, and two outgoing roads ( 2m = ), b and c, 
respectively, then matrix A reduces to the column vector 
with components α  and 1 α− , where α  (resp. 1 α− ) 
represents the probability that drivers could go the 
outgoing road b (resp. c), from the incoming road a. 
 
(B) Respecting the rule (A), drivers behave such as the 
flux through J  can be maximized. 
 
 If m n< , a yielding rule is needed. For example, if 
we consider a road junction with two incoming roads 
( 2n = ), a  and b , and one outgoing road ( 1m = ), c,  
we need a right of way parameter ] [0,1p ∈ , and the 
yielding rule can be stated as follows: 
 
(C) Assume that not all cars can enter the outgoing road 
and let C  be the amount that can do it. Then, pC  cars 
come from the first incoming road and ( )1 p C−  cars 
from the second one. 
 
 For further details, see Coclite et al. 2005 and 
Garavello et al. 2006. 
 In order to measure the efficiency of the network 
and hence obtain optimization results, in Cascone et al. 
2007, Cascone et al. 2008, two cost functionals, 
measuring, respectively, the velocity at which cars 
travel through the network and the time taken by cars to 
travel on the network, were considered. 
 Since the model considers macroscopic quantities, 
the averages were estimated integrating over time and 
space the average velocity and the reciprocal of the 
average velocity, respectively. If iρ  represents the 
density on road i, the following functionals were 
defined: 
 

( ) ( )( )1 , ,
i

i
i I

J t v t x dxρ= ∑∫                                         (7) 

 

( )
( )( )2
1 .

,
i

ii I

J t dx
v t xρ

= ∑∫                                        (8) 

 
 A fixed temporal interval [ ]0,T , for some 0T > , 
was considered.  
 For the regulation of traffic, the aim was to 
maximize 1J  and to minimize 2J . In this way, optimal 
parameters for regulating the behaviour of car traffic on 
networks were obtained.  
 Unfortunately, the analytical treatment of 1J  and 

2J  for a complex network is very difficult, thus the 
following strategy, consisting of three steps, was 
adopted:  
 
 Step 1. Compute the optimal parameters for simple 
networks formed by a single junction and every initial 
data. For this, consider the asymptotic solution over the 
network (assuming infinite length roads so to avoid 
boundary data effects). 
 
 Step 2. For a complex network, use the (locally) 
optimal parameters at every junction, updating the value 
of the parameters at every time instant using the actual 
density on roads near the junction. 
 
 Step 3. Verify the performance of the (locally) 
optimal parameters via simulations. 

 
 The first step happens to be an hard task even for 
simple junctions. The reason for this is the hybrid 
nature of the problem, where continuous, time and 
space varying variables as ρ  influence and are 
influenced by discrete variables as right of way 
parameters and traffic distribution coefficients. Thus, 
two special cases were treated: the 2 1×  case with two 
entering and one exiting road; and the 1 2×  case with 
one entering and two exiting roads. For the first type of 
junction, one has only one right of way parameter, 
called p . The second type of junction has no right of 
way parameter and only one traffic distribution 
coefficient α . It is possible to prove that, for the flux 
function that is considered here, ( ) ( )1f ρ ρ ρ= − , the 
optimal solutions for p  and α  are the same either for 

1J  or for 2J . For a systematic presentation of the 
optimization algorithms and obtained results for such 
cost functionals, see Cascone et al. 2007, Cascone et al. 
2008. 
 The implementation of Step 2 is done for the case 
study of the harbour of Salerno. For Step 3, instead, we 
consider two different choices for right of way 
parameters and distribution coefficients: (locally) 
optimal (obtained through optimization algorithms), and 
fixed, assigned by the user on the basis of observations 
on the real network. Such choices are useful to test the 
goodness of the obtained optimization results. 

 

640



3. A FINITE DIFFERENCE SCHEME FOR THE 
APPROXIMATION 

The described mathematical model must be treated 
numerically in order to realize the tool for car traffic 
able to elaborate the densities for roads. We can refer to 
the finite difference method of Godunov (see Godunov 
1959).  
 We define a numerical grid in ( )0, LT ×�  
according to the following notation: 

 
• xΔ   is the space grid size; 
• tΔ   is the time grid size; 
• ( ) ( ), ,h mt x h t m x= Δ Δ    for  h ∈�   and  

m ∈�   are the grid points. 
 
 Consider the hyperbolic equation  
 

( ) [ ]0, , 0, ,t xf x t Tρ ρ+ = ∈ ∈�                                (9) 
 
with initial data 
 

( ) ( )0,0x xρ ρ= .                                                       (10) 
 
 A solution of the problems is constructed taking a 
piecewise constant approximation of the initial data, 

0vΔ . We set 
 

( )
1

0
0

1 ,
m

m

x

m
x

v x dx m
x

ρ
+

= ∈
Δ ∫ � ,                                  (11) 

 
and the scheme defines h

mv  recursively, starting from 
0
mv .  

 Notice that waves in two neighbouring cells do not 
interact before time tΔ  if the CFL condition holds: 
 

( )
( )

1, ,

1sup sup '
2h h

m mm h u I u u
t f u x

+∈

⎧ ⎫⎪ ⎪Δ ≤ Δ⎨ ⎬
⎪ ⎪⎩ ⎭

.                           (12) 

 
 Then, we define the projection of the exact solution 
on a piecewise constant function 
 

( )
1

1
1

1 ,
m

m

x
h
m h

x

v v x t dx
x

+

+ Δ
+=

Δ ∫  .                                    (13) 

 
 Under the CFL condition, the solutions are locally 
given by the Riemann Problems and, in particular, the 
flux in mx x=  for ( )1,h ht t t +∈   is given by  
 

( )( ) ( )( )1, 0; ,h h
m R m mf t x f W v vρ −=   ,                      (14) 

 

where ; ,R
xW v v
t − +

⎛ ⎞
⎜ ⎟
⎝ ⎠

  is the self – similar solution 

among v−  and v+ . As the flux is time invariant and 

continuous, setting ( ) ( )( ), 0; ,G
Rg u v f W u v=   under 

the CFL condition, the scheme can be written as: 
 

( ) ( )( )1
1 1, , .h h G h h G h h

m m m m m m
tv v g v v g v v
x

+
+ −

Δ
= − −

Δ
       (15) 

 The numerical flux Gg , for the flux we are 
considering, has the expression: 
 

( )

( ) ( )( )
( )
( )
( )

min , , ,

, ,,
, ,
, ,

G

f u f v if u v

f u if v ug u v
f if v u
f v if v u

σ
σ σ

σ

⎧ ≤
⎪

< <⎪= ⎨
< <⎪

⎪ < <⎩

 

 
 
 

        (16) 

 
where σ  represents the value of ρ  such that 

( ) ( )
max0,

maxf f
ρ ρ

σ ρ
∈⎡ ⎤⎣ ⎦

=
 

. 

 
4. A TOOL FOR THE MANAGEMENT OF 

ROAD TRAFFIC 
The tool for car traffic consists of three components: 
 

• a web configuration component for the 
topological representation of the network, 
realized by a Java applet.  

• The core of the application for the numerical 
methods, approximating conservation laws, 
that can be required by the Java applet. 

• An intermediate layer, that allows the 
communication among the calculus core, the 
File System (necessary for saving 
informations) and web components.  

 
 We report the UML scheme of the application:  

 

Figure 2: UML scheme. 
 

 We analyze the various components of the previous 
scheme. 
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File System 
It is necessary for storing the various informations 
produced by the tool. In particular, inside the folder of 
the realized simulation project, three different folders 
are contained: 
 

• the folder InputFile that contains .dat files, 
generated by the administration applet and 
used by the calculus engine for the elaboration 
of input informations. 

• The folder OutputFile in which all .dbf  files, 
that contain the numerical results of the 
simulation for every instant of time and 
produced as output of the engine, are stored. 

• The folder Images with the pictures of the 
traffic state along the network as function of 
the corresponding time instant.  

 
Administration Applet 
It gives all the instruments to draw the topology of the 
network, with the insertion of all informations useful for 
the various arcs. Such information are stored in .dat 
files, contained in the File System in the folder 
InputFile. Such informations represent the input file for 
the calculus engine.  
 
Engine 
It is the numerical core for the application. It has access 
to the folder named InputFile, elaborates the  .dat input 
files and produces .dbf files as output. Such files 
contain, for every instant of time, the densities for the 
various segments of each arc of the network to simulate. 
Such files are stored in the folder OutputFile. 
 
Image Traffic Builder 
It is the modulus that translates the numerical results 
(elaborated in .dbf files) of the folder OutputFile in 
images .jpg. Such images are stored in the folder 
Images.    
 
Simulation JSP 
It presents to the user all the saved projects for which 
animations are available (in such way that the user can 
refer to them if he wants).   
 
Applet Viewer   
The applet opens the files Images of the project 
associated to the simulation and executes in sequence 
the images of the simulation.  
 
Servlet 
This component allows to give to the applet all services 
available for building and simulating the network.  
 
 The tool for simulations is characterized by a 
simple user friendly interface. In particular, the use of 
mouse and some buttons allows to draw easily the 
network to analyze. For example, to draw arcs, it is 
necessary to click by the left button of the mouse at the 

center of the node and to direct the cursor toward the 
center of the node, that we want to connect (Figure 3). 

Figure 3: creation of an arc among two nodes. 
 

         For every arc and node, a menu is associated 
which is visualized clicking twice on them by the right 
button of the mouse. The menu for nodes consists of 
only one feature: remove, useful to remove the selected 
node. Instead, the menu for arcs is characterized by two 
features: remove, by which it is possible to clean the 
selected arc, and properties, by which it is possible to 
insert some characteristics for each arc (Figure 4).  Such 
characteristics are the following: 
 

• Name: name of the road; 
• Start Value: initial density on the road; 
• Start Density: incoming flux on the road 

(necessary as boundary data, if the node is 
virtual); 

• Precedence: the right of way parameter 
(necessary if the road belongs to a junction 
with a number of incoming roads greater than 
the number of outgoing roads); 

• Distribution: the distribution parameter, 
necessary to define traffic distribution matrix 
for the junction; 

• Length: length of the road (in meters). 

 
Figure 4: Edge property window. 

 
After the simulation time has been chosen, the tool 

allows to reproduce the traffic evolution of the 
considered area. Different intervals of car densities are 
represented with different colours, as shown in the 
following table.  

 
Table 1: Colours for densities. 

Density interval 
 

Colour 

0.0  ≤  density < 0.1  
0.1 ≤  density < 0.2  
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0.2 ≤  density < 0.4  
0 .4 ≤  density < 0.6  
0.6 ≤  density < 0.8  
0.8 ≤  density  ≤ 1.0  

 
An optimization routine allows to set the 

characteristic parameters in such a way to avoid 
congestion phenomena.  

 
5. THE CASE STUDY OF SALERNO HARBOUR 
We present some simulation results for the harbour of 
Salerno, Italy. The network, built through the numerical 
software, is the following (Figure 5): 
 

 
Figure 5: Network, that represents the harbour of 
Salerno. 

 
 In the following table, we show the input 
parameters for the network (notice that the incoming 
flux, that corresponds to the boundary data, is necessary 
only for roads connected to only one junction, which is 
to say roads with an infinite endpoint):  
 

Table 2: Parameters for roads. 
Name of 
the road 

Initial 
density 

Incoming 
flux 

p α 

Madonna 
del monte a 

0 0.6 1 1 

Croce usc. 0 0 1 0.3 

A. Gatto a 0 / 0.8 0.7 

Croce ent. a 0 0.6 0.2 1 

Croce ent. b 0 / 0.2 0.5 

A.Gatto b 0 / 0.7 0.5 

Ligea a 0 / 1 1 

Ligea b 0 / 0.6 0.6 

Entrata1 0 0 1 0.4 

Uscita 0 0.3 0.4 1 

Ligea c 0 / 1 0.6 

Entrata 2 0 0 1 0.1 

Ligea d 0 0 1 0.9 

Ligea e 0 0.6 0.7 1 

Ligea f 0 / 0.3 0.4 

Ligea g 0 / 0.3 0.5 

Ligea h 0 / 0.8 0.5 

Madonna 
del monte b 

0 0 1 1 

 
 These parameters are chosen by the user on the 
basis of the real networks observations and measures. 
We report the state of the considered vehicular flux in 
different instants of time. Such tool is very useful in 
order to detect queue formation on roads.  

 

 
 
 

Figure 6: situation of the network at t = 40 (up) and t = 
60 (down). 

 
 Let us refer to the Figure 6. At t = 40, we observe 
that, at the junction among Via Gatto b and Via Ligea g 
to Ligea a, there is a preliminary formation of queues 
along Ligea g, and this occurs because cars coming 
from these roads have not right of way with respect to 
cars coming from A. Gatto b. 
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 It is interesting to notice how, as there are no cars 
that, from via Ligea h, have not reached the junction of 
Croce ent b, the flux coming from this last road is 
totally directed to Madonna del monte b. 
 At t = 60, the image underlines how the congestion 
along Ligea g is also propagating along Ligea e. In such 
instant, the flux of cars along Ligea_h has reached the 
junction of Croce_ent_b, and, on this last road, there is 
a queue formation due to a less right of way of the road 
itself with respect to Ligea_h. 

 

Figure 7: situation of the network at t = 264. 
 

 In the final instant of simulation (Figure 7, t = 264), 
there is a congestion phenomenon at the exit of the 
highway (via Madonna del monte a), and from the city 
center (Ligea e) to the junction among via Ligea_e, 
Ligea f and Ligea g. Moreover, the behaviour of the 
considered traffic is such that roads, that are directed to 
the highway, Ligea h, Madonna del monte b e Croce ent 
b are almost empty. 
 The simulative tool, on the basis of the network 
traffic characteristics, is able to suggest the user which 
are the more congested areas, on which it is suitable to 
make some interventions for the improvements of cars 
flows. The optimization procedure, once that a road 
junction, which presents congestions problems, is 
chosen, gives the optimal values of the characteristic 
parameters that can alleviate the congestion.  
 It is evident that queues and backward propagation 
occur on the road junction, characterized by two 
incoming roads, A. Gatto b and Ligea g, and one 
outgoing road, Ligea a (see Figure 8); hence, some 
optimization criteria are needed. In this case, the 
optimization of right of way parameters for the 
incoming roads is necessary. 

 
Figure 8: junction to optimize. 

 Let us give a meaning to the optimization outputs 
in terms of interventions on traffic signals or on traffic 
lights.  
 The modification of traffic signals corresponds, in 
the fluid dynamic model, to a different choice of traffic 
parameters, which regulate the behaviour of traffic at a 
road junction. For a better comprehension, we can refer 
to the following figure: 

 

A

B

C

A

B

C

 
Figure 9: road junction with two incoming roads, A and 
B, and one outgoing road, C. 

 
 In this case, the regulation of traffic conditions for 
the road junction are the right of way parameters for the 
incoming roads A and B. In particular, if p is the right of 
way parameter for the road A, 1 – p is the corresponding 
one for the road B. Suppose that, for road A, a right of 
way parameter ] [0,  0.25p ∈  (and then for road B 

[ [1 0.75, 1q p= − ∈ ) was obtained from the optimization 
procedure. The tool suggests that, to improve the traffic 
conditions, road B must have a higher right of way than 
road A. To obtain this, a stop signal for the road A can 
be introduced. 

 

A

B

C

A

B

C

A

B

C

 
Figure 10: a STOP signal along road A. 

 
 Suppose that the optimal right of way parameter for 
road A is [ ]0.25,  0.4p ∈ . In this case, as road B has not 
a so high right of way as in the previous case, it is 
possible to insert a right of way signal for the road A, as 
in Figure:  

A

B

C

A

B

C

A

B

C

 
Figure 11: a yielding signal along road A. 

 
 Such traffic signals guarantee that cars, coming 
from the road A, will be able to stop if some cars are 
crossing the junction, coming from road B. Otherwise, 
they will be able to cross the junction, avoiding to 
necessarily stop, as in the previous case.  
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 The optimization routine, applied to the chosen 
junction of Figure 8, indicates that a stop sign should be 
used on Ligea g and then some decongestion 
phenomena occur. The performances of the network 
improve, as indicated by Figure 12, that shows the 
behaviour of the functional 1J  in the optimal case and 
in the fixed case (the simulation defined by the user on 
the basis on real observations on the network). Notice 
that the primal aim, the maximization of the cars 
velocity, has been reached.  

 
 
 
 
 
 
 

Figure 12: behaviour of the cost functional 1J  vs time 
in the optimal case (red) and in the fixed case (blue). 

 
 The insertion of traffic signals is surely the simplest 
intervention. However, in limit situations, determined 
by a high number of vehicles and frequent congestions, 
also in different hours of the day where it is necessary 
that drivers respect traffic rules, it is suitable to adopt 
traffic lights, which have to be adequately temporized.  
 Consider the road junction in Figure 13.  

 

 
  Figure 13: road junction with a traffic light. 

 
 The traffic light, in a generic instant of time, is red 
for a road and green for the other. In particular, if 
drivers for road A see the red phase, then drivers of road 
B can circulate. Hence, road A is characterized by a zero 
right of way parameter and, on the contrary, road B has 
a right of way parameter equal to 1. On the contrary, if 
drivers for road A see the green phase, they can 
circulate. Suppose that the optimization procedure 
establishes that, from the road A, a given percentage of 
traffic flux, p, should go the outgoing road. In this case, 
an adequate temporization of traffic light cycles is 
necessary. In particular, let vΔ , rΔ , and v rT = Δ + Δ , 
be, respectively, the green time, the red one, and the 
complete traffic light cycle. In this case, as p represents 
the percentage of drivers who, from road A, must cross 
the junction on average, then such parameter can be 

interpreted as the ratio among the green cycle and the 
total traffic light cycle. Hence, the road B is 
characterized by an averaged right of way parameter 
equal to 1 p− , or the ratio among the red cycle and the 
total cycle time. As a consequence, if p is the optimal 
right of way parameter, it is useful to design the traffic 
cycles such that v pTΔ =  e ( )1r p TΔ = − .  
 In the previous example, for the optimization of car 
traffic either with traffic signals or with a traffic light, a 
road junction with two incoming roads and one 
outgoing road is considered. Such choice is not 
accidental. The typology of the presented junction is the 
most difficult to optimize, as it requires the 
modification of the parameter, that regulates the 
behaviour of car traffic at the junction, or the right of 
way parameter for a given road. The choice of such 
parameter is independent on the destination of drivers 
and, as a consequence, from paths that drivers choose to 
reach it.   
 The discussion made here for the optimization is 
valid for right of way parameters. As for traffic 
distribution coefficients, their optimization corresponds 
to some decisional criteria for the habits of drivers, that 
can change in cases of particular situations, as 
congestions. In such sense, distribution coefficients 
optimization allows the redirection of car flows to more 
free urban areas.  
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