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ABSTRACT 
A method for extracting estimates of crowd movement 
from videos of the crowd was reported at EMSS 2007.  
The goal of this method is to provide a means to validate 
the accuracy of crowd models such as the Helbing-Molnar-
Farkas-Vicsek (HMFV) model and to provide a means to 
refine model parameters.  The method uses optical flow 
extracted from the video with an empirical calibration 
constant to convert the optical flow to boundary crossing 
rates of crowd movement. A simple proportional 
relationship between optical flow and crossing rates of 
people was postulated on the basis of theoretical 
considerations.  This paper reports on further crowd 
observations designed to confirm the simple form of the 
proportionality constant.  While the research is on-going, 
preliminary results support the relationship. 

Keywords: optical flow, people flux, culture differences, 
crowds, social force model. 
 
1. BACKGROUND 
 
1.1. Crowd Modeling 
In our research (Kaup, Fauth, Walters, Malone, and Clarke 
2006) we have been focusing on a continuous space crowd 
model, which we refer to as the Helbing-Molnar-Farkas-
Vicsek (HMFV) model. This model is described in Hel-
bing, Farkas, and Vicsek (2000). In the HMFV model, 
each pedestrian feels, and exerts on others, two kinds of 
forces, “social" and physical. The social forces do not have 
a physical source; rather, they reflect the intentions of a 
pedestrian not to collide with other people in the room or 
with walls and also to move in a specific direction (e.g., 
towards an exit) at a given speed.  Symbolically, the force 
exerted on pedestrian i by pedestrian j has the form: 

 

f
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ij = f
r

social repulsion + f
r

pushing + f
r

friction         (1) 
 

 The first term in Equation (1) describes the social 
force, 

 
f
r

social repulsion = ConstantB  ×  
   exponential(interpersonal distance)radial direction   (2) 
 
while the second and third terms describe the physical 
forces of pushing and sliding friction between the two pe-
destrian bodies. 

 

f
r

pushing = Constantk  ×  
  threshold(interpersonal distance)radial direction      (3) 

 

f
r

friction = Constantκ  ×   
  threshold(interpersonal distance)tangential direction  (4) 
 
The form of the latter two terms ensures that they vanish 
when the pedestrian bodies are not in physical contact. An 
expression similar to equations (3) and (4) holds for a force 
between a pedestrian and a wall or another immobile ob-
stacle (e.g., a column) in the room. 

 
1.2. Comparison to Real Crowds 
Video imagery of moving crowds was obtained for the 
purpose of providing experimental verification of predic-
tions of crowd models such as the Helbing-Molnar-Farkas-
Vicsek (HMFV) model.  With Institutional Review Board 
(IRB) approval, cameras were set up at university and oth-
er public events.  The field of view of the cameras was 
aimed at exit points or other locations that could be easily 
simulated.    

The optical flow field can be extracted from a video 
using the Lucas-Kanade algorithm (Lucas and Kanade 
1981) as implemented in the Intel OpenCV (Intel 2001) 
image processing library.  A frame from such a video taken 
at a local church is shown in Figure 1.  A 400-frame se-
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quence (13.3 seconds) from this video was used to create 
the optical flow field shown in Figure 2. 

We make the following assumptions concerning the 
relation between apparent optical flow and actual crowd 
motion or flux: 

 
1. Any motion is due only to that of people in the 

crowd 
2. The mapping between physical space in which 

people move and the image space  is assumed to 
be a simple scaling 

3. The reflectivity and illumination of people and 
other elements in the scene are taken to be uni-
form  

 

 
Figure 1:  Hispanic Crowd Exiting Church at Frame 200. 

 
It can be shown under these assumptions that the rate 

at which people cross a boundary is proportional to the op-
tical flow in a region surrounding that boundary.  Figure 3 
illustrates this; the number of people Fy crossing a horizon-
tal boundary in a vertical direction is simply proportional 
to the average vertical optical flow Vy in the shaded region 
surrounding the boundary.  A similar relation holds for Fx 
and Vx in the horizontal direction. 

The proportionality constant between Fx\y and Vx\y is 
not dependent on the number of people in the crowd and is 
primarily a function of the camera distance.  
 To determine the proportionality constant between op-
tical flow and actual crowd motion, hand counts of people 
crossing the boundaries of a 3 by 4 grid were pre- formed 
on selected segments of the videos taken at an American 
football game. These counts were compared with optical 
flow calculated on a 6 by 8 grid.  Use of a doubly fine grid 
for the optical flow facilitated the analysis of the relation 
shown in Figure 3.  Limited comparisons confirmed the re-
lation between flux of people and optical flow (Clarke, 
Kaup, Malone, Oleson, and Rosa 2007). 
 

 
Figure 2:  Optical Flow Field for Hispanic Case from 
Frames 1-400. 
 
2. CURRENT RESULTS 
To further confirm the relation between flux of people in a 
crowd and optical flow, further videos have been acquired 
and analyzed for optical flow and subjected to hand count-
ing of people flux.   
 These videos came from the following venues: 
 
1.  A primarily Hispanic congregation exiting a church 

2. A primarily Anglo congregation existing a church 
  

 
Figure 3:  The Geometrical Relation between Optical Flow 
and Boundary Crossing Rate. 
 
2.1. Hispanic Case 
The video taken of the Hispanic crowd exiting the church 
was 1100 frames long.  The first 400 frames (13.3 seconds) 
and the last 400 frames were separated out for analysis.  
Figure 1 shows the 200th frame in the center of the first 
analysis interval. The optical flow field calculated from 
frames 1-400 for the Hispanic case is shown in Figure 2. 
 The 3x4 grid boundary crossing rate was hand-counted 
from frames 1-400 and plotted versus the optical flow.  
The relation was essentially random for this case.  This is 
not too surprising, however.  Examination of frames 1-400 
shows the crowd is milling about during this time interval 
of 13.3 seconds as suggested by Figure 1 and the optical 
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flow field in Figure 2.  Whence the time interval used was 
too long to effectively pick out any motion other than the 
average; in this case the average is essentially zero. 
 Figure 4 shows the single frame 900 of the Hispanic-
exit case, and Figure 5 shows the optical flow calculated 
from frame 701-1100. 
 

 
Figure 4:  Hispanic Crowd Exiting Church at Frame 900. 

 
The results of plotting 3 by 4 grid crossing rates versus 

optical flow were much better for this case as illustrated in 
Figure 6.  The slope of the best fit line is 0.0092 and the 
correlation is 0.329.  The reason for this relatively good 
correlation seems to be the purposeful movement of the 
crowd as shown in Figure 4.  While the crowd appears 
sparse in frame 900 (Figure 4), in the video prior to frame 
900 the crowd is much denser. 

 

 
Figure 5:  Optical Flow Field for Hispanic Case From 
Frames 701-1100. 
 
 

Figure 6:  Correlation Plot of 3 By 4 Grid Crossing Rate 
Versus Optical Flow for Hispanic Frames 701-1100. 
 
2.2. Anglo Case 
Figure 7 shows frame 200 of the Anglo (English speaking) 
congregation leaving the church.  The Anglo-case video 
was 5400 frames long (180 seconds).  The camera angle 
and distance were also different from the Hispanic case. 
 

 
Figure 7: Anglo Crowd Exiting Church at Frame 200. 

 
 Figure 8 shows the optical flow field for the Anglo 
case for frames 1-400.  Note the minimum in the velocity 
at the position corresponding to a stationary priest who can 
be seen in Figure 7. 
 Despite the presence of the priestly obstacle in the 
Anglo case, the correlation between crossing rate and opti-
cal flow was good as can be seen in Figure 9. 
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Figure 8: Optical Flow Field for Anglo Case from Frames 
1-400. 
   
 The slope of the linear fit in Figure 9 is 0.0036 and the 
correlation coefficient is 0.467.  The relative magnitudes of 
the slopes in Figures 6 and 9 are consistent with the differ-
ence in camera distance and angle for the two cases. 
 

 
Figure 9:  Correlation Plot of 3 By 4 Grid Crossing Rate 
Versus Optical Flow for English Frames 1-400. 
  
 Figures 10 and 11 show frame 5200 (173.3 seconds 
into the video) and the optical flow field for frames 5001-
5400.  The crowd had become fairly sparse and was mill-
ing about more or less randomly by this time, so the cross-
ing rate/optical flow relation was random much like the 
first Hispanic case presented. 
 

 
Figure 10: Anglo Crowd Exiting Church at Frame 5200. 

 

 
Figure 11:  Optical Flow Field for Anglo Case from 
Frames 5001-5400. 

 
3. CONCLUSION 
On the basis of preliminary results, the correlation between 
hand counted boundary crossing rates and optical flow is 
high and statistically significant when the crowd is moving 
in a definite direction.  When the crowd is milling about 
the correlation is generally poor.  Thus, the easily meas-
ured optical flow could stand in place of time consuming 
manual counts of the flux of people moving in crowds to 
provide experimental validation of crowd models.  The de-
pendence of the proportionality constant on viewing dis-
tance has the form expected.  It is also clear that one 
should investigate comparisons at smaller time intervals 
(perhaps even as small as 10 frames) wherein one possibly 
could detect fluxes associated with random milling motion.  
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