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ABSTRACT 
Fault tolerant, large scale multi-server systems require 
an optimum number of repairmen for maximising 
performability. However, performability evaluation of 
such systems is difficult due to the state space explosion 
problem. In this paper, a simple and flexible 
approximate technique capable of overcoming state 
space explosion problem in computing the 
performability of large Markov models is presented. For 
validation of results, simulation has been used. It is 
shown that, this approach can handle large state space.  
The proposed method allows analysing the breakdown 
repair behaviour of large multi server systems. An 
optimisation study is presented together with numerical 
results showing the relationship of the number of 
servers and the number of repairmen for optimum 
performance. 

 
Keywords: Large scale multi-server systems, State 
Explosion problem, Markov Process, Performability 
and Simulation. 

 
1. INTRODUCTION 
The number of repairmen in a fault tolerant multi-server 
system can affect the system’s overall performability 
significantly. When multi-server systems are 
considered, some of the servers in the system may be 
redundant because of poor repair facilities. The 
availability of the servers highly depends on the ratio of 
failure and repair rates. The probability of failures 
linearly increases with the number of servers employed. 
It is necessary to address the effects of server 
availability on overall performability of large scale 
systems. In this paper large scale, homogeneous multi-
server systems are considered. The queuing model 
under study is a homogeneous multi server system with 
unreliable servers and a common queue. Homogeneous 
multi server systems with unreliable servers have been 
considered in (Chakka and Mitrani 1992; Boxma et al. 
1994; Chakka et al. 2002; Mitrani 2005). However a 
solution method to obtain the steady state probabilities 
of large scale homogeneous multi server systems which 

is applicable to both loaded systems and systems with 
relatively lighter loads have not been presented.  
 In order to handle large scale systems, a new 
method is presented in (Gemikonakli et al. 2007). 
Numerical results are computed and validated by 
simulation but the effects of various numbers of 
repairmen have not been analysed for large scale multi 
server systems. 
 Several analytical methods have been reported for 
the performability evaluation of multi-server systems. 
In (Chakka and Mitrani 1994; Chakka et al. 2002) 
multi-server systems are considered with various repair 
disciplines (e.g. first broken first repaired, round robin 
etc.). Markov models are presented for heterogeneous 
multi-server systems with various repair strategies. Also 
in (Chakka and Mitrani 1992; Ever et al. 2007) 
numerical results presented using the spectral expansion 
method for various multi-server systems with 
breakdowns and repairs. However, the solutions used in 
these publications are applicable to small and medium 
size systems only. Larger networks give rise to state 
space explosion problem and most analytical solution 
techniques become inadequate. Mitrani’s dominant 
eigenvalue approach (Mitrani 2005) works well 
especially for loaded networks due to the fact that 
dominant eigenvalue better represents loaded networks. 
This is an improvement of the Spectral Expansion 
method (Chakka and Mitrani 1992), however, state 
space is still limited with matrix sizes. Also the 
dominant eigen value approach may not give good 
approximations for systems which are not heavily 
loaded (Mitrani 2005). Furthermore, these works do not 
address the optimization of the number of repairmen for 
large systems. 
 Quasi Birth and Death processes (QBD) (Ciardo 
and Smirni 1999; Hung and Do 2001; Wallace 1969) 
have a wide range of applications in Queuing systems. 
A QBD process can be described as a two-dimensional 
Markov chain where transitions are only possible 
between adjacent states of a given model. The 
popularity of the QBD processes leads to the 
development of various numerical procedures for their 
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steady-state analysis (Akar and Sohraby 1997; Bini and 
Meini 1996; Chakka and Mitrani 1992; Haverkort and 
Ost 1997; Hung and Do 2001; Krieger et al. 1998; 
Latouch and Ramaswami 1993; Naumov et al. 1996; 
Neuts 1981). These approaches have received 
considerable attention. In (Haverkort and Ost 1997) two 
such approaches are compared. An important difficulty 
associated with these methods is the state space 
explosion problem (Haverkort and van Moorsel 1995), 
which, in case of clusters, limits the analysis and 
performability evaluation of the number of processors 
working in parallel. Events such as break-downs, and 
rebooting/reconfiguration further increase this problem.  
In today’s world, several hundred processors are likely 
to run in parallel. 
 Two-dimensional models with multiple 
components are effectively used for the modelling of 
queuing systems with multiple queues and/or multiple 
servers. The functional equations arising in the analysis 
of such processes usually present significant analytical 
difficulties (Boxma et al. 1994). These numerical 
difficulties are frequently caused by large number of 
steady states. In other words, difficulty caused by the 
rapid increase in the size of the state space of the 
underlying Markov process gives rise to the state space 
explosion problem. 
 When two dimensional models are considered, the 
cause of large number of state spaces can be either large 
(or infinite) number of jobs or large number of 
operative states (e.g. number of servers). For multi-
dimensional models, where one component is finite 
there are good analytic-algorithmic methods, such as 
Matrix-geometric solution (Neuts 1981), and Spectral 
Expansion method (Chakka and Mitrani 1992). These 
methods can be used to solve the state explosion 
problem caused by large or infinite number of jobs (El-
Rayes et al. 1999). Although systems with unbounded 
queuing capacities can be handled by Spectral 
Expansion and Matrix-geometric solution methods, as 
the number of operative states increases they become 
computationally expensive. The numerical complexity 
of the solutions depends on the number of operative 
states (Mitrani 2005). That number determines the size 
of the matrix R used in Matrix-geometric method, and 
the number of eigenvalues and eigenvectors involved in 
Spectral Expansion method. In both solution techniques 
the size of the matrices used depends on the number of 
operative states of the system considered. As the size of 
the matrices increases the computational requirements 
increase significantly. Because of the large size, ill-
conditioned (Mitrani 2005) matrices numerical 
problems occur. Also, the numerical stability of the 
solution gets affected especially when heavily loaded 
systems are considered. 
 In this paper, a simple and flexible approximate 
technique capable of overcoming state space explosion 
problem in computing the performability of large 
Markov models is presented. The technique is used to 
analyse the effects of the number of repairmen working 
on the repair of failed processors, on overall 

performability of large scale multi server systems. For 
validation of the approximate solution method 
employed, simulation has been used. It is shown that, 
this approach can handle large state space. The 
proposed method allows analysing the breakdown repair 
behaviour of large multi server systems. A Poisson 
stream of arrivals together with exponentially 
distributed service times, time between failures, and 
repair times are assumed. An optimisation study is 
presented together with numerical results showing the 
relationship of the number of servers and number of 
repairmen for optimum performance. 

 
2. APPROXIMATE SOLUTION FOR THE 

STEADY STATE PROBABILITIES OF 
LARGE MARKOV MODELS 

The proposed approximate solution method uses an 
iterative technique to calculate the steady state 
probabilities of a two-dimensional Markov chain. 
Consider a K-server, homogeneous system with a 
queuing capacity L, number of repairmen R, mean 
arrival rate σ, mean service rate µ, mean break-down 
rate ξ, and mean repair rateη. On the lattice, while one-
step downward transition rates (j to j-1) can be 
represented in terms of µ, i, and j, one step upward 
transition rates (j to j+1) depend on σ. The lateral 
transitions from i to i+1, and i to i-1 can be expressed in 
terms of  (Κ−ι), R, η, and iξ  respectively. Consider a 
continuous time, two-dimensional Markov process on a 
finite lattice strip. The Markov Process can be defined 
as X={In, Jn; n=0, 1, …} with a state space of ({0, 1, 2, 
…, K}x{0, 1, 2, …, L}) where, for a multiprocessor 
system, K and L represent the number of processors and 
the queuing capacity respectively. Then, i=0, 1, 2, …, 
K, and  j=0, 1, 2, …, L can be used to represent all 
possible states, (i,j), on the lattice strip. Hence, the 
steady state probabilities can be denoted as pi,j. Figure 1 
shows the states of such a system, where, ri = min(R, K-
i) and ki = min(j, i). 

 

 
Figure 1: The states of the system under study 

 
 Let’s define column vectors vi as follows: 
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{ }Liiiii pppp ,2,1,0, ,...,,,=v  for all i=0,1,.., K (1) 

 
where i represents the number of operative servers, and 
pi,j are the steady state probabilities. For each i, vi can 
be calculated using product form formulae. From Figure 
1, for each column (i.e. i=0, 1, …, K), a set of balance 
equations can be obtained. An example of these balance 
equations is given in Eq. (2) for (i, j), where, 0 < i < K, 
and 0 < j < L. 
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where, ρ = σ/µ.  
 Next, let’s introduce Si representing the sum of all 
state probabilities for each operative state 
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 Furthermore, Eq. (5) can be used to calculate the 
probability that all servers are idle for a given i. For 
this, first using (3), it can be shown that; 
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 Remaining state probabilities can then be 
calculated using (3). Furthermore, p0,0 can be obtained 
as follows: 
 

( ) 0,1
1

0,0 pRp −+= σηξ  (7) 

 
 (3)-(7) define all approximate steady state 
probabilities, vi, for i operative servers. These equations 
can now be used in calculating approximate pi,j. These 
probabilities are approximate because lateral transitions 
have not been taken into account yet. Once the 
approximate steady state probabilities are calculated, 
the balance equations given in (7) – (15) can be used to 
calculate the steady state probabilities more accurately. 
It is assumed that the number of repairmen is less then 
number of servers, and in case of breakdowns each 
server is repaired by a single repairman. Equations (8) – 
(15) can be given as follows: 
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 Since the steady state probabilities for state (i, j) are 
initially calculated independent of states (i-1, j) and 
(i+1, j), it is important to use a technique to compensate 
for the unaccounted effects of the latter two states on 
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state (i, j). This can be achieved through the use of the 
balance equations (7) – (15) together with an iterative 
process. We have K+1 vectors, if tx,,y represents 
transitions from vector x to vector y where x � y, then, 
the transitions can be summarized as follows: 
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Then, an iterative procedure can be followed to  

accurately calculate pi,j. The procedure can be given as 
follows:  
 

(i). First, vi are calculated for i = 0, 1, 2, …, K 
using (1) , (3), (4), (5), and (6). 

(ii). Knowing approximate pi,j, the balance 
equations given in (7) - (15) are used to 
calculate the correct steady state probabilities. 

(iii). The sum of all probabilities is calculated for 
the queuing system considered. 

(iv). Steps (ii) and (iii) are repeated until the sum of 
probabilities converges to one. Once the 
correct state probabilities are obtained, various 
performability measures can be calculated. 

 
 The iterative method presented in this study is 
much faster than simulation and more importantly, 
unlike most analytical techniques, it can handle large 
numbers of servers working in parallel without giving 
rise to state space explosion problem for most practical 
systems. Furthermore, the method provides accurate 
results for both heavily loaded networks and networks 
with relatively lighter loads. 

 
3. NUMERICAL RESULTS AND DISCUSSIONS 
Numerical results are presented in this section in order 
to show the effects of the number of repairmen on 
systems performability. For all computations 
parameters are taken as, µ=2, ξ=0.01, 
η=0.5, and L=1000. 
 Figures 2-7 show the MQL performance of K-
server systems as a function of σ, R and K. It is clear 
from Figure 2 that when only one repairman is present, 
increasing the number of servers will not result in an 
increase in MQL performance. As the number of 
repairmen is increased, the effects of the number of 
processors become more significant. Considering that, 
failure rate can be expressed as iξ, while mean repair 
rate is min(K-i, R)η, the relationship between these two 
parameters is important. For system efficiency, Rη > 
Kξ should be satisfied. As an example, for R=2, and 
K=64, we obtain 1 > 0.64. Results also show that there 
is an upper limit for R as well. For a 64-server system, 
increasing R from one to two significantly improves 
systems MQL performance and R>2 has no significant 
effect on system performance. Figure 8 shows the mean 
queue length of a 512-server system as a function of R 
and σ. Here, R plays a significant role, the significance 

of R will only diminish when the network is extremely 
loaded or R is large (e.g. R >10). 

 
 

 
Figure 2: MQL Using a Single Repairman 

 

 
Figure 3: MQL for R=2 

 
 Further computations have been carried out to 
demonstrate the effects of R on system performance for 
K=512. 

 

 
Figure 4: MQL for R=3 
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Figure 5: MQL for R=4 

 

 
Figure 6: MQL for R=5 

 
 Figure 9 shows the effect of R on the throughput of 
the system, while Figure 10 shows the effect of R on the 
mean response time of such a system. Results clearly 
show that there is a threshold for R which depends on 
not only K but also σ. Increasing R beyond that 
threshold does not have much significance on mean 
system response time. However, when the system 
throughput is considered, the significance of R increases 
as the system’s load increases. Again, large R does not 
seem to have much significance on system 
performability. 
 

 
Figure 7: MQL for R=6 

 

 
Figure 8: MQL as a Function of R and σ, for K=512  

 

 
Figure 9: Throughput for K=512 and Various R 

 

 
Figure 10: Mean Response Time as a function of R, for 
K=512 
 
4. MODEL VALIDATION 
In this section, we examine the validity of the 
approximate analytical model proposed in this paper by 
computer simulations. For this purpose, we have 
developed an event driven simulation system in the C++ 
programming language. The simulator developed 
simulates the actual multi-processor system under 
consideration. In order to ensure that the developed 
simulator correctly simulates the intended system, 
several tests have been carried out. Some of these tests 
are as follows: 
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• Unit tests and code walkthroughs have been 

conducted during the software development.  
• Job arrival, job service, processor failure, and 

processor repair events and the system state for 
several simulation runs are traced for 
consistency checking purposes.  

• For various multi-server system configurations 
with different parameters, the operative state 
probabilities obtained from the simulation are 
compared to the values obtained from closed 
form expressions (equations 4 and 5).  

• M/M/K/L queuing systems are simulated (by 
disabling failures) with different K, L, arrival 
rate, and service rate parameters and the results 
obtained from the simulation are compared to 
the values obtained from analytical solutions 
(using well-known closed form expressions - 
see equation 3).   

 
 For the validation of the proposed method, we have 
carried out extensive simulation experiments and 
reached very close performance conclusions for various 
scenarios. For simulations we used a 5% confidence 
interval with a confidence level of 95%.  
 Figures 10-11 and Tables 1-4 present MQL results 
obtained using both the proposed analytical method and 
simulation.  

 
Table 1: A Comparison of MQL Results From the 
Proposed Analytical Approach and Simulation for 
K=512 

Analytical 
� R=1 R=2 R=3 R=4 R=5 R=6 
64 32.947 32 32 32 32 32 
128 982.425 64.030 64 64 64 64 
256 999.345 994.127 147.429 128 128 128 
510 999.755 999.384 998.537 995.915 719.123 257.359 

1020 999.891 999.755 999.582 999.351 999.031 998 
Simulation 

� R=1 R=2 R=3 R=4 R=5 R=6 
64 32.234 31.971 32.007 32.017 32.035 32.0078 
128 983.018 64.032 63.999 64.011 63.989 64.0056 
256 997.652 991.711 150.787 128.107 127.925 128.022 
510 999.011 998.529 997.493 994.611 729.035 257.7967 

1020 999.851 999.702 999.55 999.3 998.986 998.4893 
 

Table 2: A Comparison of MQL Results From the 
Proposed Analytical Approach and Simulation for 
K=256 

Analytical 
� R=1 R=2 R=3 R=4 R=5 
64 32.9465 32 32 32 32 
128 982.425 64.0302 64 64 64 
256 999.345 994.127 147.429 128 128 
510 999.755 999.348 998.537 995.944 973.966 

Simulation 
� R=1 R=2 R=3 R=4 R=5 
64 33.0037 31.9974 32.0007 32.0014 31.9592 
128 977.6245 64.0356 64.0141 63.9736 63.9754 
256 998.3492 991.6139 146.1522 128.0276 128.0276 
510 999.6659 999.2278 998.3227 995.7597 973.394 

 
Table 3: A Comparison of MQL Results From the 
Proposed Analytical Approach and Simulation for 
K=128 

Analytical 
� R=1 R=2 R=3 R=4 
64 32.9465 32 32 32 
128 982.425 64.0303 64 64 
200 998.956 553.004 100.232 100.051 
256 999.345 995.419 965.345 952.776 

Simulation 
� R=1 R=2 R=3 R=4 
64 33.3109 32.0099 32.0271 32.0043 
128 978.3478 64.0106 63.9932 64.0448 
200 998.3102 551.8926 100.1956 100.027 
256 999.1635 995.2569 964.1577 953.292 

 
Table 4: A Comparison of MQL Results From the 
Proposed Analytical Approach and Simulation for 
K=64 

Analytical 
� R=1 R=2 R=3 R=4 
64 32.9694 32 32 32 
100 542.46 50.416 50.2514 50.2358 
128 994.453 959.3 949.691 947.646 

Simulation 
� R=1 R=2 R=3 R=4 
64 32.3929 32 32.035 32.0099 
100 548.9022 50.5001 50.2368 50.2445 
128 993.862 958.5472 951.5519 945.927 

 
 The results presented in Tables 1-4 clearly show 
that the discrepancy of analytical results and simulation 
results are less than 5%. 
 In addition to MQL, throughput and response times 
have also been computed using the analytical approach 
and compared to simulation results. Response time 
results are shown in Figure 10. 
 In (Gemikonakli et al. 2007) computational 
efficiencies of the proposed system and the Spectral 
Expansion method are compared. In that study K=49 
has been considered; this is due to state space 
limitations of the Spectral Expansion method. 
Computational performances of the two methods are 
close for a range of utilisation values, however, for 
loaded networks, the proposed technique is slower than 
the Spectral Expansion method, but still much faster 
than simulation. 
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Figure 11: MQL as a function of R and σ and K=512 

 
5. CONCLUSION AND FUTURE 

DEVELOPMENTS 
In this paper, an analytical approach is used to calculate 
the optimum number of repairmen for large scale, fault 
tolerant, homogeneous, multi-server systems, to achieve 
the best performability possible. Inter-arrival times, 
service times, mean time between failures, and repair 
times have been assumed to be exponentially 
distributed. In order to avoid the state space explosion 
problem inherent to most analytical approaches, an 
approximate solution technique is proposed for the 
performance evaluation of such systems. Results 
obtained using this approach has been confirmed to be 
accurate using simulation results. The proposed 
technique has been used to compute the mean queue 
length, mean response time and throughput of various 
systems for different numbers of repairmen. The 
approach lends itself as a powerful technique in 
evaluating and optimising the performance of large 
scale networks under various scenarios. The case 
studies concerned show the strong relationship between 
number of processors and number of repairmen for 
operating a large scale multi-server system efficiently. 
Some threshold values have been obtained for specific 
case studies. For small and medium scale systems 
Rη/Kξ >> 1, and hence specific relationship between R 
and K is not that evident. This case further highlights 
the importance of the approach used. The proposed 
method is a flexible one and can be extended to the case 
of heterogeneous systems, systems with rebooting and 
reconfiguration delays, highly available systems, 
Beowulf systems and many other practical, fault 
tolerant multi-server systems. 
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