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ABSTRACT 
The basic selection ideas of the different representatives 
of evolutionary algorithms are sometimes quite diverse. 
The selection concept of genetic algorithms (GAs) and 
genetic programming (GP) is basically realized by the 
selection of above-average parents for reproduction 
whereas evolution strategies (ES) use the fitness of 
newly evolved offspring as the basis for selection 
(survival of the fittest due to birth surplus). This 
contribution considers aspects of population genetics 
and Evolution Strategies in order to propose an 
enhanced and generic selection model for Genetic 
Algorithms which is able to preserve the alleles which 
are part of a high quality solution. Some selected 
aspects of these enhanced techniques are discussed 
exemplarily on the basis of travelling salesman 
benchmark (TSP) benchmark problem instances. 

 
Keywords: softcomputing, evolutionary computation, 
selection, self adaptation 

 
1. INTRODUCTION 
As some kind of approximation for the gradient 
information which is not available for many 
optimization problems, neighborhood search aims to 
obtain information about the descent/increase of the 
objective function in the local neighborhood of a certain 
point. Conventional neighborhood search starts from an 
arbitrary point in the search space and iteratively moves 
to more and more promising points along a given 
neighborhood structure (w.r.t. the objective function) as 
long as no better solution can be detected in the local 
neighborhood. 
 The self-evident drawback of this method is that for 
more complex functions the algorithm converges and 
gets stuck in the next attracting local optimum which 
may be far away of a global optimum. It is a common 
feature of all methods based upon neighborhood search 
to counteract this essential handicap.  
 Simulated annealing (SA) for example also allows 
moves to worse neighborhood solutions with a certain 
probability which decreases as the search process 
progresses in order to scan the solution space broader at 

the beginning and to become more and more goal-
oriented at the end. Tabu search on the other hand 
introduces some kind of memory in terms of a so-called 
tabu list which stores moves that are considered to lead 
to already visited areas of the search space. However, 
also evolution Strategies (ES), a well-known 
representative of Evolutionary Computation, have to be 
considered as some kind of parallel neighborhood 
search as asexual mutation (a local operator) is the only 
way to create new individuals (solution candidates) in 
the classical ES-versions. Therefore, in the case of 
multimodal search spaces, global optima are detected by 
an ES only if one of the starting values is located in the 
absorbing region (attracting basin) of a global optimum. 
 
 By considering recombination (crossover) as their 
main operator, GAs and also GP take a basically 
different approach compared to neighborhood-based 
techniques as recombination is a sexual operator, i.e. 
properties of individuals from different regions of the 
search space are combined in new individuals. 
Therefore, the advantage of applying GAs to hard 
problems of combinatorial optimization lies in their 
ability to scan broader regions of the solution space than 
heuristic methods based upon neighborhood search do. 
Nevertheless, also GAs are frequently faced with a 
problem which, at least in its impact, is quite similar to 
the problem of stagnating in a local but not global 
optimum. This drawback, called premature convergence 
in the terminology of GAs, occurs if the population of a 
Genetic Algorithm reaches such a suboptimal state that 
the genetic operators are no longer able to produce 
offspring that are able to outperform their parents 
(Fogel 1996; Affenzeller 2005). This happens if the 
genetic information stored in the individuals of a 
population does not contain that genetic information 
which would be necessary to further improve the 
solution quality. Therefore, in contrast to the present 
contribution, the topic of premature convergence is 
considered to be closely related to the loss of genetic 
variation in the entire population in GA-research.  
 In this contribution we do not identify the reasons 
for premature convergence in the loss of genetic 
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variation in general but more specifically in the loss of 
what we say essential genetic information, i.e. in the 
loss of alleles which are part of a global optimal 
solution. Therefore, we will denote the genetic 
information of the global optimal solution (which is 
usually unknown a priori) as essential genetic 
information in the following. 
 But what are the reasons for premature 
convergence, or in other words what are the reasons that 
this essential genetic information is not or no more 
available: 

• Firstly, one reason for this loss of essential 
genetic information may be that these alleles 
are simply not represented in the initial 
population of the Genetic Algorithm.  

• Then, especially in the earlier phase of genetic 
search it frequently happens that essential 
genetic information is hidden in individuals 
with bad total fitness and is therefore 
eliminated due to selection.  

• Furthermore, for the majority of GA 
applications it is absolutely not guaranteed that 
the applied crossover operators are able to 
create new children in a way that the newly 
evolving child contains exactly the genetic 
information of its own parents. If this is not 
guaranteed this fact represents a further reason 
for a genetic algorithm to loose essential 
genetic information and therefore cause 
premature convergence.  

 The main measure in conventional GA-theory to 
counteract against this phenomenon is mutation (and 
migration in the parallel variants) and indeed - as will 
be shown in the empirical part of the paper - this works 
quite well and a lot of already lost essential genetic 
information can be recovered by mutation. 
The main aim of the present work is to discuss, analyze 
and improve new generic theoretical concepts for 
avoiding or at least retarding premature convergence in 
a non-problem-specific way by taking the above stated 
considerations into account: 
 A very essential question about the general 
performance of a GA is, whether or not good parents 
are able to produce children of comparable or even 
better fitness (the building block hypothesis implicitly 
relies on this). In natural evolution, this is almost 
always true. For Genetic Algorithms this property is not 
so easy to guarantee. The disillusioning fact is that the 
user has to take care of an appropriate coding in order to 
make this fundamental property hold. In order to 
somehow overcome this strong requirement we try to 
get to the bottom of reasons for premature convergence 
from a technical as well as from a population genetics 
inspired point of view and draw some essential 
interconnections. 
 The basic idea of the new selection model, 
introduced as offspring selection (Affenzeller and 
Wagner 2004a) is to consider not only the fitness of the 
parents in order to produce a child for the ongoing 
evolutionary process. Additionally, the fitness value of 

the evenly produced child is compared with the fitness 
values of its own parents. The child is accepted 
definitely as a candidate for the further evolutionary 
process if and only if the reproduction operator was able 
to produce a child that could outperform the fitness of 
its own parents. This strategy guarantees that evolution 
is presumed mainly with crossover results that were 
able to mix the properties of their parents in an 
advantageous way. I.e. survival of the fittest alleles is 
rather supported than survival of the fittest 
individuals which is a very essential aspect for the 
preservation of essential genetic information stored in 
many individuals (which may not be the fittest in the 
sense of individual fitness). 
 The experimental part analyzes the characteristics 
of offspring selection on the basis of some rather small 
TSP benchmark problems: As commonly done when 
evaluating the capability of heuristic techniques, some 
main features are analyzed separately. 
 
2. SELECTION 
In terms of goal orientedness, selection is the driving 
force of GAs. In contrast to crossover and mutation, 
selection is completely generic, i.e. independent of the 
actually employed problem and its representation. A 
fitness function assigns a score to each individual in a 
population that indicates the 'quality' of the solution the 
individual represents. The fitness function is often given 
as part of the problem description or based upon the 
objective function.  
 In the Standard Genetic Algorithm the probability 
that a chromosome in the current population is selected 
for reproduction is proportional to its fitness (roulette 
wheel selection). However, there are also many other 
ways of accomplishing selection. These include for 
example linear-rank selection or tournament selection 
(Michalewicz 1996; Schöneburg, Heinzmann and 
Feddersen, 1994).  
 However, all evenly mentioned GA-selection 
principles have one thing in common:  
 They all just consider the aspect of sexual selection, 
i.e. mechanisms of selection only come into play for the 
selection of parents for reproduction. The enhanced 
selection model which will be described in the 
following section defies this limitation by considering 
selection in a more general sense. 

 
2.1. Parent Selection vs. Offspring Selection 
In the following we describe and aim to bring together 
technical as well as biologically motivated 
considerations in order to motivate the concepts 
proposed in this paper. The following listing itemizes 
the most essential aspect in the development phase of 
the new methods in the above mentioned sense 

 
2.1.1. Selection and Selection Pressure 
In the theory of Genetic Algorithms selection and 
selection pressure are predetermined by the so-called 
mating scheme and by the replacement strategy actually 
deployed. By that it should be achieved that offspring of 
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highly fit individuals are represented in the next 
generation with a higher probability than offspring of 
average or below average individuals. The goal of this 
procedure is a continuous advancement of the 
population over the generations. Typical mating 
schemes are roulette wheel, linear rank or tournament. 
This classical GA selection concept is known as sexual 
selection in the terminology of population genetics. In 
the population genetics view, sexual selection covers 
only a rather small aspect of selection which appears 
when individuals have to compete to attract mates for 
reproduction. The population genetics basic selection 
model basically considers the selection process in the 
following way: 

 
Random mating → selection → random mating → 
selection → ………. 
 
I.e. selection is considered to depend mainly on the 
probability of surviving of newborn individuals until 
they reach pubescence which is called viability in the 
terminology of population genetics.  
 The essential aspect of offspring selection in the 
interpretation of selection is rarely considered in 
conventional GA selection. The classical (µ, λ) 
Evolution Strategy in contrast does this very well: 
Reconsidering the basic functioning of a  
(µ, λ)-ES in terms of selection µ parents produce λ  
(µ ≤ λ) offspring from which the best µ are selected as 
members of the next generation. In contrast to GAs 
where selection pressure is predetermined by the choice 
of the mating scheme and the replacement strategy, ES 
allow an easy steering of selection pressure by the ratio 
between λ and µ. The selection pressure steering model 
introduced in (Affenzeller 2001) and further developed 
in (Affenzeller and Wagner 2004) picks up this basic 
idea of ES and transforms these concepts for GAs in 
order to have an adjustable selection pressure 
(independent of the mating scheme and replacement 
strategy) at one's disposal.  
 Our advanced selection scheme allowing self-
adaptive steering of selection pressure aims to transform 
the basic ideas for improving the performance of GAs. 
In doing so the survival probability is determined by a 
comparison of the fitness of the newly generated 
individual with the fitness values of its parents. Indeed, 
as demonstrated in the experimental part, it appears that 
the first sexual selection step (selection before 
reproduction) as in case of a standard GA does not 
drastically effect the qualitative or quantitative 
performance of the algorithm if being equipped with the 
newly defined offspring selection step (selection after 
reproduction). Even with random sexual selection 
(corresponding to the basic model of the population 
genetic's selection model) the results are about the same 
or even better than with roulette wheel or linear-rank as 
the first selection step. A very important consequence of 
selection in population genetics as well as in 
evolutionary computation is its influence on certain 

alleles. As a matter of principle there are four 
possibilities for each allele in the population: 
 

• The allele may be fixed in the population 
• The allele may disappear from the population 
• The allele may converge to an equilibrium 

state 
• No change in allele frequency 

 
The basic approaches for retarding premature 
convergence discussed in GA literature aim to maintain 
genetic diversity. The most common techniques for this 
purpose are based upon preselection (Cavicchio1970), 
crowding (DeJong 1975), or fitness-sharing (Goldberg 
1989). The main idea of these techniques is to maintain 
genetic diversity by the preferred replacement of similar 
individuals (Cavicchio1970), (DeJong 1975) or by the 
fitness-sharing of individuals which are located in 
densely populated regions (Goldberg 1989). While 
methods based upon crowding (DeJong 1975) or fitness 
sharing (Goldberg 1989) require some kind of 
neighborhood measure depending on the problem 
representation, (Goldberg 1989) is additionally quite 
restricted to proportional selection. Moreover, these 
techniques have the common goal to maintain genetic 
diversity which is very important in natural evolution 
where a rich gene pool is the guarantor in terms of 
adaptiveness w.r.t. changing environmental conditions. 
 In case of artificial genetic search as being 
performed by a Genetic Algorithm the optimization 
goal does not change during the run of a GA and the 
fixing of alleles of high quality solutions is desirable in 
the same manner as the erasement of alleles which are 
definitely not part of a good solution in order to reduce 
the search space and make genetic search more goal-
oriented. I.e. we claim that pure diversity maintenance 
mechanisms as commonly proposed in GA theory do 
not support goal-oriented genetic search w.r.t the 
locating of global optimal solutions. 

 
2.1.2. Adjustable Selection Pressure 
One interpretation of GA-selection similar to the 
concepts of a (µ, λ)-ES is to generate an intermediate 
population (what is called virtual population in our 
notation) of size |POP|·T (where T ≥ 1) by sexual 
selection, crossover and mutation from the actual 
population of size |POP|.  
 Then, similar to the interpretation of ES-selection, 
the best |POP| members from the virtual population are 
chosen as members of the real next generation that 
contains the genetic information for the evolutionary 
process yet to come.  
 The remaining (1-T) |POP| candidates can be seen 
as individuals that do not reach the age of sexual 
maturity. A practical problem in the technical appliance 
of this technique is that it does not contain any indicator 
about the effectiveness of actual genetic search, the 
effectiveness of the actually used operators, etc.  
 I.e. there is no information about the amount of 
selection pressure to be employed at a certain stage of 
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genetic search. The aim is on the one hand to provide 
enough selection pressure for not losing essential 
building block information. On the other hand, too 
much selection pressure may support unwanted 
premature convergence to a suboptimal solution. Even 
if this concept of selection pressure steering has already 
proven to be very powerful in terms of stability and 
global solution quality (Affenzeller 2001; Affenzeller 
2002) it is a time consuming task to find an 
advantageous steering of (T) that requires an 
experienced user. 
 These considerations already highly indicate the 
need for some kind of self-adaptation. The essential 
question is how to introduce self-adaptation into the 
GA-selection process in a generic i.e. non problem 
specific way. The approach which we have developed 
for this reason will be described in the following. 

 
3. OFFSPRING SELECTION 
The basic idea to create and evaluate a certain amount 
(greater or equal population size) of offspring, to be 
considered for future members of the next generation, is 
adapted from Evolution Strategies. Self-adaption comes 
into play when considering the question which amount 
of offspring is necessary to be created at each round, 
and which of these candidates are to be selected as 
members of the next generation, i.e. for the ongoing 
evolutionary process. In order to keep the concepts 
generic, no problem specific information about the 
solution space is allowed to be used for stating the self-
adaptive model. Thus, it is desirable to systematically 
utilize just the fitness information of the individuals of 
the actual generation for building up the next generation 
of individuals, in order to keep the new concepts and 
methods generic. In principle, the new selection strategy 
acts in the following way: 
 The first selection step chooses the parents for 
crossover either randomly or in the well-known way of 
Genetic Algorithms by proportional, linear-rank, or 
some kind of tournament selection strategy. After 
having performed crossover and mutation with the 
selected parents we introduce a further selection 
mechanism that considers the success of the apparently 
applied reproduction in order to assure the proceeding 
of genetic search mainly with successful offspring in 
that way that the used crossover and mutation operators 
were able to create a child that surpasses its parents' 
fitness. Therefore, a new parameter, called success ratio 
(SuccRatio ∈ [0, 1]), is introduced. The success ratio 
gives the quotient of the next population members that 
have to be generated by successful mating in relation to 
the total population size. Our adaptation of 
Rechenberg's success rule (Rechenberg 1973) for 
Genetic Algorithms says that a child is successful if its 
fitness is better than the fitness of its parents, whereby 
the meaning of 'better' has to be explained in more 
detail: is a child better than its parents, if it surpasses 
the fitness of the weaker, the better, or is it in fact some 
kind of mean value of both? 
 

 For this problem we have decided to introduce a 
cooling strategy similar to Simulated Annealing. 
Following the basic principle of Simulated Annealing 
we claim that an offspring only has to surpass the 
fitness value of the worse parent in order to be 
considered as 'successful' at the beginning and while 
evolution proceeds the child has to be better than a 
fitness value continuously increasing between the 
fitness of the weaker and the better parent. Like in the 
case of Simulated Annealing, this strategy effects a 
broader search at the beginning whereas at the end of 
the search process this operator acts in a more and more 
directed way. Having filled up the claimed ratio 
(SuccRatio) of the next generation with successful 
individuals in the above meaning, the rest of the next 
generation ((1-SuccRatio)·|POP|) is simply filled up 
with individuals randomly chosen from the pool of 
individuals that were also created by crossover but did 
not reach the success criterion. The actual selection 
pressure ActSelPress at the end of a single generation is 
defined by the quotient of individuals that had to be 
considered until the success ratio was reached and the 
number of individuals in the population in the following 
way:  
 

ݏݏ݁ݎ݈ܲ݁ܵݐܿܣ ൌ  
݋݅ݐܴܽܿܿݑܵ|ܱܲܲ| ൅ |ܮܱܱܲ|

|ܱܲܲ|
 

 

 
Figure 1: Flowchart for Embedding the new Selection 
Principle (Offspring Selection) into a Genetic 
Algorithm 

 
Figure 1 shows the operating sequence of the above 
described concepts. With an upper limit of selection 
pressure MaxSelPress defining the maximum number of 
children considered for the next generation (as a 
multiple of the actual population size) that may be 
produced in order to fulfill the success ratio, this new 
model also functions as a precise detector of premature 
convergence: 
 

If it is no longer possible to find a sufficient 
number of SuccRatio·|POP| offspring 
outperforming their own parents even if 
(MaxSelPress·|POP|) candidates have been 
generated, premature convergence has occurred. 
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As a basic principle of this selection model a higher 
success ratio causes higher selection pressure. 
Nevertheless, higher settings of success ratio and 
therefore of selection pressure do not necessarily cause 
premature convergence as the preservation of fitter 
alleles is additionally supported and not only the 
preservation of fitter individuals.  
 Also it becomes possible within this model to state 
selection pressure in a very intuitive way that is quite 
similar to the notation of selection pressure in Evolution 
Strategies. Concretely, we define the actual selection 
pressure as the ratio of individuals that had to be 
generated in order to fulfill the success ratio to the 
population size.  
 For example, if we work with a population size of 
say 100 and it would be necessary to generate 2000 
individuals in order to fulfill the success ratio, the actual 
selection pressure would have a value of 20. Via these 
means we are in a position to attack several reasons for 
premature convergence as illustrated in the following 
sections. Furthermore, this strategy has proven to act as 
a precise mechanism for self-adaptive selection pressure 
steering, which is of major importance in the migration 
phases of parallel evolutionary algorithms. The aspects 
of offspring selection w.r.t. parallel GAs are combined 
in the parallel SASEGASA-algorithm (Affenzeller and 
Wagner 2003; Affenzeller and Wagner 2004a). 

 
4. EMPIRICAL DISCUSSION 
The empirical section is subdivided into three parts: 
The first subsection aims to highlight the main message 
of the paper (preservation of essential alleles) whereas 
the second subsection aims to touch on further subjects 
concerning the effects of self-adaptive offspring 
selection (Affenzeller 2004b). As the scope of the 
present work does not allow a deeper and more 
sophisticated analysis of different problem situations, 
the third part of the experimental discussion gives some 
references to related contributions which include a more 
detailed and statistically more relevant experimental 
discussion on the basis of several benchmark but also 
practical problems on which we have applied the new 
selection model recently. 
 
4.1. Preservation of Essential Genetic Information 
This subsection aims to point out the importance of 
mutation for the recovery of essential genetic 
information in the case of conventional GAs in order to 
oppose these results with the results being achieved 
with the enhanced selection model discussed in this 
paper. By reasons of compactness, the results are 
mainly shown on the basis of diagrams and give only a 
brief description of introduced operators, parameter 
settings, and test environments. Furthermore, the chosen 
benchmark instance is of rather small dimension in 
order to allow the observation of essential alleles during 
the run of the algorithm. 
The results displayed in Figure 2 show the effect of 
mutation for reintroducing already lost genetic 

information. The horizontal line of the diagram shows 
the number of iterations and the vertical line stands for 
the solution quality. The bottom line indicates the 
global optimal solution which is known for this 
benchmark test case. The three curves of the diagram 
show the performance of a Genetic algorithm with no 
mutation, with a typical value of 5% mutation as well as 
a rather high mutation rate of 10%. For each of the three 
curves the lower line stands for the best solution of the 
actual population and the upper line shows the average 
fitness value of the population members. The results 
with no mutation are extremely weak and the quality 
curve stagnates very soon and far away from the global 
optimum. The best and average solution quality are the 
same and no further evolutionary process is possible – 
every allele is fixed and premature convergence has 
occurred. As already stated before, mutation is a very 
essential feature of standard GAs in order to avoid 
premature convergence. But also a rather high mutation 
rate of 10% produces results which are not very 
satisfying and indeed the best results are achieved with 
a mutation rate which is in a quite typical range for a lot 
of GA applications - namely a mutation rate of 5%. 

 

 
Figure 2: The Effect of Mutation in Case of a Standard 
GA for the ch130 benchmark TSP. 

 
Considering a rather low dimensional standard 
benchmark problem like the ch130 with a unique and 
well known global optimal solution (a 130 city TSP 
taken from the TSPLib; (Reinelt 1991)) allows to 
consider the edges of the shortest path as the essential 
alleles whose preservation during the run can be 
observed.  
 The following figures indicate the spreading of 
essential alleles during the runs of the certain 
algorithms. This is visualized by inserting bar charts 
which have to be considered as snapshots after a certain 
number of iterations approximately corresponding to the 
position in the figure. The higher a certain bar (130 bars 
for a 130-city TSP) the higher the relative occurrence of 
the corresponding essential allele in the population. 
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Figure 3: The Distribution of Essential Genetic 
Information in case of a Standard GA for the ch130 
benchmark TSP 

 
Figure 3 shows the distribution of essential alleles over 
the iterations for a standard GA with a mutation rate of 
5%. The interesting thing is that some minor ratio of 
essential alleles is rapidly fixed in the population and 
the majority of essential alleles which are still missing 
have disappeared in the entire population. During the 
further run of the algorithm it is only mutation which 
can reintroduce this essential genetic information. As it 
could be seen in Figure 2, without mutation premature 
convergence would already have occurred at this early 
state of evolutionary search. But with an appropriate 
mutation rate (5% in this example) more and more 
essential alleles are discovered ending up with quite a 
good solution. But there is still a gap to the global 
optimum caused by those alleles which could not be 
recovered due to mutation. The next figures will show 
how the new selection concept is able to close this gap 
and make the algorithm much more independent of 
mutation. 
 So let us take a closer look at the distribution of 
essential genetic information in the population when 
using the enhanced selection concepts. The next curve 
(Figure 4) shows the quality curve and the distribution 
of essential alleles for 5% mutation which was able to 
achieve the best results in case of a standard GA. 

 

 
Figure 4: The Distribution of Essential Genetic 
Information when using the Enhanced Selection 
Concept considering the ch130 benchmark TSP 

 
When applying the GA with the new offspring selection 
principle to the same benchmark test case one can see 
that the global optimal solution is detected in only about 
100 iterations. Nevertheless, the computational effort is 

comparable to the standard GA as much more 
individuals have to be evaluated at each iteration step 
due to the higher selection pressure. Considering the 
distribution of essential alleles we see a totally different 
situation. Almost no essential alleles get lost and the 
ratio of essential alleles continuously increases in order 
to end up with a final population that contains almost all 
pieces of essential genetic information and therefore 
achieving a very good solution. This shows that the 
essential alleles are preserved much more effectively 
and indicates that the influence of mutation should be 
much less. But is this really the case? In order to answer 
this question, let us consider the same example with the 
same settings - just without mutation. 
 

 
Figure 5: The Distribution of Essential Genetic 
Information when using Offspring Selection without 
Mutation  
 
And indeed the assumption holds and also without 
mutation the algorithm finds a solution which is very 
close to the global optimum. The essential alleles 
interfuse the population more and more and almost all 
of them are members of the final population. 
Reconsidering the standard GA without mutation the 
algorithm was prematurely converging very soon with a 
very bad total quality.  

 
4.2. Experimental Studies of Some More Aspects on 

the Basis of some TSP instances 
The analysis of producible results considering various 
algorithms and benchmark test cases still denotes the 
most commonly used and possibly also the most 
objective way to analyze the potential of heuristic 
optimization techniques. 
 In our experiments, all computations are performed 
on Pentium 4 PCs with 2 GB RAM under Windows XP. 
The environment in which the algorithms are 
implemented and tested is HeuristicLab1 (Wagner and 
Affenzeller 2005). For the tests shown here we have 
selected some rather small instances of the Travelling 
Salesman Problem (TSP) taken from the TSPLIB 
(Reinelt 1991). Reference to more sophisticated tests 
also on higher dimensional TSP instances are given in 
the next subsection. In all experiments, the results are 

                                                           
1 More details can be found on the HeuristicLab 
homepage http://www.heuristiclab.com 
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represented as the relative difference to the best known 
solution defined as 

 

݁ܿ݊݁ݎ݂݂݁݅ܦ ݁ݒ݅ݐ݈ܽ݁ݎ ൌ ൬
ݐ݈ݑݏܴ݁

݈ܽ݉݅ݐ݌ܱ െ 1൰ · 

 
However, it is to be pointed out once again that the 
newly introduced methods are by no means restricted or 
somehow optimized to routing problems like the TSP. 
Similar effects could also be observed for other 
combinatorial optimization problems and especially for 
genetic programming applications. References are given 
in subsection 4.3. 
 In order to not dilute the effects of the different 
aspects too much, some selected aspects are pointed out 
separately in this section. 
 The first aspect to be considered is the effect of the 
enhanced selection model (offspring selection) to the 
quality improvement of different crossover operators. 
To visualize the positive effects of the new methods in a 
more obvious way we also present results that were 
generated by a classical GA with generational 
replacement and 1-elitism. 
 Remarkable in this context is the effect that also 
crossover operators that are considered as rather 
unsuitable for the TSP (Larranaga, Kuijpers, Murga and 
Dizdarevic 1999) achieve quite good results in 
combination with the new selection model. The reason 
for this behavior is given by the fact that in our 
selection principle only children that have emerged as a 
good combination of their parents' attributes are 
considered for the further evolutionary process; the 
success ratio levels off at a higher range. In combination 
with a higher upper value for the maximum selection 
pressure genetic search can therefore be guided 
advantageously also for poor crossover operators as the 
larger amount of handicapped offspring is simply not 
considered for the further evolutionary process. 
 Additionally to the already mentioned aspect that 
the enhanced selection mechanism is able to improve 
the performance of the certain crossover operators it is 
furthermore observable that the new self-adaptive 
selection model makes the performance of the GA 
almost independent of sexual selection in terms of 
qualitative performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Parameter values used in the Test Runs of the 
several algorithms 

Classical GA with several selection mechanisms (Tab.2, Tab. 3, Tab. 4) 
Generations 100.000 

Population Size 120 
Elitism Rate 1 

Mutation Rate 0.05 
Selection Operator Roulette, Linear Rank, Random 
Mutation Operator Inversion & Translocation 

 

GA with offspring selection in combination with several sexual selection 
mechanisms (Tab.5, Tab. 6, Tab. 7) 

Population Size 500 
Elitism Rate 1 

Mutation Rate 0.1 
Selection Operator Roulette, Linear Rank, Random 
Mutation Operator Inversion & Translocation 

Success Ratio 0.7 
Maximum Selection Pressure 250 

 
In Tab. 2, 3, and 4 the results achieved with the 
conventional GA using either roulette-wheel (Tab. 2), 
linear-rank (Tab. 3) respectively random, i.e. no, (Tab. 
4) selection are listed. On the other hand Tab. 5,6, and 7 
show the results achieved with the enhanced self-
adaptive selection concept using either roulette-wheel 
(Tab. 5), linear-rank (Tab. 6), or no (Tab. 7) sexual 
selection. 
 The fixed parameter values for all algorithms that 
were used in the different test runs of the present 
subsection are given in Tab. 1. All values presented in 
the following tables are the best resp. average values of 
twenty independent test runs executed for each test 
case. 
 Similar improvements of solution quality are also 
observable when comparing the GA using linear-rank 
selection with the enhanced GA using linear-ranking as 
the first selection step. So far the results underpin the 
crossover improvement not only for roulette-wheel 
selection but also for linear-ranking.  
 Especially notable is the comparison of Tab. 4 and 
Tab. 7. Firstly, it is barely remarkable that a GA with no 
(i.e. random) sexual selection is unable of producing 
high-quality results. So the results of Tab. 4 are in the 
region of random search which is caused by the 1-
elitism (the only goal-oriented force under these 
settings). What is really remarkable is that the results of 
the new GA with enhanced selection and no sexual 
selection (Tab. 7) are about the same than the results 
obtained with roulette-wheel respectively with linear-
rank as the first selection step. This observation 
supports the theory of population genetics that sexual 
selection really plays a rather inferior role in the natural 
selection process. 
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Table 2: Experimental Results achieved with the 
Classical GA using Roulette-Wheel Selection 

Results for standard GA with proportional selection 
Problem  Crossover 

 

Best  Av.  Eval. Sol. 
 

 
berlin52 

OX 
ERX 
MPX 

 

0.00 
5.32 
21.74 

3.76 
7.73 
26.52 

12.000.000
12.000.000
12.000.000 

 

 
ch130 

OX 
ERX 
MPX 

 

3.9 
142.57 
83.57 

5.41 
142.62 
83.57 

12.000.000
12.000.000
12.000.000 

 

 
kroA200 

OX 
ERX 
MPX 

 

3.14 
325.92 
146.94 

4.69 
336.19 
148.08 

12.000.000
12.000.000
12.000.000 

 

 
 
Table3: Experimental Results achieved with the 
Classical GA using Linear Rank Selection 

Results for standard GA with linear rank selection 
Problem  Crossover 

 

Best  Av.  Eval. Sol. 
 

 
berlin52 

OX 
ERX 
MPX 

 

0.00 
2.52 
20.9 

5.40 
4.58 
27.31 

12.000.000
12.000.000
12.000.000 

 

 
ch130 

OX 
ERX 
MPX 

 

5.60 
99.18 
85.78 

8.88 
128.47 
97.46 

12.000.000
12.000.000
12.000.000 

 

 
kroA200 

OX 
ERX 
MPX 

 

8.58 
351.41 
144.25 

12.24 
365.8 
150.34 

12.000.000
12.000.000
12.000.000 

 

 
 
Table 4: Experimental Results achieved with the 
Classical GA using Random Selection 

Results for standard GA with proportional selection 
Problem  Crossover 

 

Best  Av.  Eval. Sol. 
 

 
berlin52 

OX 
ERX 
MPX 

 

25.07 
80.54 
52.24 

31.85 
89.96 
78.52 

12.000.000
12.000.000
12.000.000 

 

 
ch130 

OX 
ERX 
MPX 

 

148.54 
397.46 
252.59 

161.77 
406.94 
286.18 

12.000.000
12.000.000
12.000.000 

 

 
kroA200 

OX 
ERX 
MPX 

 

296.22 
667.71 
420.76 

309.71 
692.22 
464.49 

12.000.000
12.000.000
12.000.000 

 

 
 
Table 5: Experimental Results achieved with Offspring 
Selection and Proportional Parent Selection 

Results for offspring selection GA with proportional sexual selection 
Problem  Crossover 

 

Best  Av.  Eval. Sol. 
 

 
berlin52 

OX 
ERX 
MPX 

OX, ERX, MPX 
 

0.00 
0.00 
0.00 
0.00 

3.88 
3.10 
1.45 
0.72 

15.964.680 
16.337.700 
11.775.071 
7.204.601 

 

 
ch130 

OX 
ERX 
MPX  

OX, ERX, MPX 
 

3.88 
4.02 
1.83 
0.00 

5.40 
5.30 
3.53 
2.71 

15.602.824 
16.920.451 
13.994.686 
7.702.818 

 

 
kroA200 

OX 
ERX 
MPX  

OX, ERX, MPX 
 

2.25 
5.10 
5.21 
0.00 

5.72 
5.99 
7.65 
2.78 

10.814.980 
18.268.888 
12.296.581 
6.647.256 

 

 
 
 
 
 
 
 

Table 6: Experimental Results achieved with Offspring 
Selection and Linear Rank Parent Selection  

Results for offspring selection GA with proportional sexual selection 
Problem  Crossover  Best  Av.  Eval. Sol. 

 

 
berlin52 

OX 
ERX 
MPX 

OX, ERX, MPX 

2.29 
0.00 
0.00 
0.00 

4.94 
1.92 
3.92 
1.59 

7.448.762 
399.296 
8.199.592 
60.920.006 

 

 
ch130 

OX 
ERX 
MPX  

OX, ERX, MPX 

3.04 
4.36 
2.22 
2.16 

7.90 
5.36 
3.61 
2.80 

2.515.637 
1.245.727 
9.029.870 
61.759.481 

 

 
kroA200 

OX 
ERX 
MPX  

OX, ERX, MPX 

8.14 
6.28 
5.63 
1.75 

9.30 
8.12 
6.37 
2.79 

2.011.929 
4.822.588 
8.527.427 
57.493.081 

 

 
 
Table 7: Experimental results achieved with Offspring 
Oelection and Random Parent Selection  

Results for offspring selection GA with proportional sexual selection 
Problem  Crossover  Best  Av.  Eval. Sol. 

 

 
berlin52 

OX 
ERX 
MPX 

OX, ERX, MPX 

3.09 
0.00 
0.00 
0.00 

5.62 
1.35 
3.78 
1.45 

16.045.200 
16.938.904 
19.307.034 
7.233.215 

 

 
ch130 

OX 
ERX 
MPX  

OX, ERX, MPX 

2.24 
2.27 
3.60 
0.00 

4.59 
5.20 
4.77 
2.05 

15.281.043 
18.840.038 
23.164.733 
6.797.867 

 

 
kroA200 

OX 
ERX 
MPX  

OX, ERX, MPX 

3.77 
118.6 
3.13 
0.00 

6.49 
121.7
4.04 
2.72 

13.188.469 
28.406.603 
22.728.010 
6.171.308 

 

 
4.3. References to Offspring Selection Applications 
The basic concepts of the enhanced selection ideas as 
published in the present paper have already emerged a 
couple of years ago. As the actual focus (like also stated 
in the present contribution) is to study the properties of 
the new selection concepts systematically, the potential 
w.r.t. achievable advancements in global solution 
quality were obvious immediately. Therefore, the main 
aim of the first works in this area was to check the 
generality of the new algorithmic concepts by applying 
them to various theoretically as well as practically 
relevant problems. And indeed this worked out very 
well and it was possible to demonstrate similar effects 
and achievements in global solution quality in various 
areas of application under very different problem 
codifications with exactly that enhanced generic 
selection techniques as being proposed in this paper. 
 While the last subsections considered only 
relatively small TSP instances in order to illustrate 
some selected aspects, journal article (Affenzeller and 
Wagner 2004) includes a detailed and comprehensive 
empirical analysis also based on TSP instances of much 
higher dimension. Furthermore, (Affenzeller and 
Wagner 2003; Affenzeller and Wagner 2004; 
Affenzeller 2005) give a comprehensive solution 
analysis based on several real valued n-dimensional test 
functions (like the n-dimensional Rosenbrock, 
Rastrigin, Griewangk, Ackley, or Schwefel's sine root 
function). Also here it is possible to locate the global 
optimal solution in dimensions up to n=2000 with 
exactly the same generic extensions of the selection 
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model as being stated here - only the crossover- and 
mutation-operators have been replaced with standard 
operators for real-valued encoding. 
 In (Winkler, Affenzeller and Wagner 2005; 
Winkler, Efendic, Affenzeller, Del Re and Wagner 
2005) we report promising results achieved in the 
context of nonlinear structure identification based on 
time-series data of a diesel combustion engine. 
Concretely the aim of this project is the development of 
models for the NOx emission. Already until now it has 
become possible with a GP-based approach equipped 
with offspring selection to identify models which are 
superior to the models achieved with conventional GP-
techniques and also superior to machine learning 
techniques which have also been considered in earlier 
stages of this project. Such results including also 
extensive empirical comparisons between offspring 
selection GP, conventional GP and other machine 
learning techniques like artificial neural networks are 
reported for dynamical mechatronical systems as well 
as for well known medical benchmark data sets taken 
from the UCI machine learning library (Winkler, 
Affenzeller and Wagner 2006; Winkler, Affenzeller and 
Wagner 2007; Winkler, Affenzeller and Wagner 2008)2. 

 
5. CONCLUSION 

 
Possibly the most important feature of the newly 
introduced concepts is that the achievable solution 
quality can be improved in a non-problem specific 
manner so that it can be applied to all areas of 
application for which the theory of Genetic Algorithms 
and Genetic Programming provides suitable operators. 
Further aspects worth mentioning concern the 
robustness and self-adaptiveness of the population 
genetics inspired measures: 
Basically weak operators become powerful and the 
selection pressure is steered self-adaptively in a way 
that the amount of selection pressure actually applied is 
that high that further progress of evolutionary search 
can be achieved. Nevertheless the newly developed 
selection techniques are not problem specific at all (cf. 
subsection 4.3.). Possible future research topics in that 
area are certainly to open new areas of application due 
to the increased robustness and also more theoretical 
topics like the analysis of various aspects of population 
genetics and their interaction with concrete applications 
of evolutionary computation. Especially for the theory 
of parallel genetic algorithms the interactions between 
genetic drift and migration should be a very fruitful 
field of research. 
 
 
 
 
 
 

                                                           
2 A complete list of publications is available at 
http://www.heuristiclab.com/publications/  
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