
MODELLING, SIMULATION AND OPTIMIZATION OF LOGISTIC SYSTEMS 
 
 

Pasquale Legato (a), Daniel Gullì (b), Roberto Trunfio (c) 
 
 

(a) DEIS, Università della Calabria, Via P. Bucci 41C, 87036, Rende (CS), Italy 
(b) CESIC – NEC Italia S.r.l., Via P.Bucci 22B, 87036, Rende (CS), Italy 
(c) CESIC – NEC Italia S.r.l., Via P.Bucci 22B, 87036, Rende (CS), Italy 

 
(a) legato@deis.unical.it, (b) daniel.gullì@eu.nec.com, (c) roberto.trunfio@eu.nec.com  

 
 
 
 
ABSTRACT 
In the last two decades, discrete simulation has become 
the most powerful tool in modelling logistic systems in 
a dynamic stochastic environment. An open challenge is 
trigged by the need to devise ways of developing easy-
to-read and expressive visual modelling paradigms. 
Most modelling paradigms, as Event Graphs and Petri 
Nets, currently adopted mainly in an academic context, 
have been generally supplanted by simulation packages 
in real system applications. Nevertheless, our belief is 
that these are more expressive and powerful in 
modelling logistic systems. We rely on an innovative 
visual modelling paradigm based on the process 
interaction conceptual framework and on the holistic 
modelling approach, which we are presenting in this 
paper. The paper focuses on the way of representing 
processes, resources and entities that compose our 
simulation modelling paradigm. Modelling capabilities 
of our modelling paradigm are compared to those of 
Event Graphs and Petri Nets within a real case study. 

 
Keywords: modelling, simulation, optimization, 
logistics, container terminal 

 
1. INTRODUCTION 
In a stochastic dynamic environment, discrete event 
simulation (DES) models are well capable of 
representing the behaviour of large and complex logistic 
systems. Thus DES models are widely adopted as 
planning and control tools to estimate system 
performances under uncertainty and conduct scenario 
analysis.  

Modern, commercial DES simulation packages 
based on a “point & click” logic – that is what Pidd 
(2004) calls VIMS – are devoted to minimize the 
system modelling effort by hiding the behavior of the 
components adopted to construct the model, but at a 
loss of model readability, understanding and 
customization. In opposition, a modelling paradigm 
(MP) is a visual modelling approach based on a 
formalism designed on a worldview which requires a lot 
of modelling ability, and which provides superior 
representational capabilities. 

In the past, a lot of interesting and powerful DES 
modelling paradigms (MPs) have been developed based 

on the three classical worldviews (or conceptual 
frameworks), i.e. Event Scheduling (ES), Activity 
Scanning (AS) and Process Interaction (PI) (Derrick et 
al. 1989). The most notable MPs developed using these 
conceptual frameworks are respectively: Event Graphs 
(Schruben 1983), Petri Nets (Petri 1962) and 
Hierarchical Control Flow Graphs (Fritz and Sargent 
1995). Derrick et al. stated that a worldview is an 
underlying structure and organization of ideas which 
constitute the outline and basic frame that guide a 
modeller in representing a system in the form of a 
model.  

The PI conceptual framework better suits the needs 
for model readability and understanding. In fact, while 
ES and AS modelling approaches are based respectively 
on events and activities, the PI is based on the concept 
of process. A process is a complex concept which 
represents a flow of events and activities through which 
a particular model object moves; therefore, in a model 
specification, it describes the life cycle of a model 
object. Whilst a model object moves through its 
process, it may experience certain delays and be hold in 
its movement. Thus, the first thing to do in the PI 
worldview is to identify all the model objects which are 
involved in the model specification. Subsequently, the 
modeller must specify the sequence of events and 
activities for each model object. For this reason, a 
process is often represented with a schematic 
representation known as flow-chart, where the events 
and activities that compose the process are the nodes of 
the chart. A flow-chart is usually represented as a 
directed graph. For each activity included in a process 
routine there is a stretch of simulated time (even null). 
The PI qualities are a moderate burden for the modeller, 
a high maintainability, an excellent natural 
representation capability. The most notable drawback is 
the high burden on execution, even if modern object-
oriented approaches better fit the implementation needs 
of this conceptual framework, and the effort required 
for the developmental time, which is quite high. 

Modelling a stochastic system using a MP or, in 
alternative, a commercial VIMS (e.g., GPSS and Arena) 
implies the use of a specific modelling approach. The 
two classical dichotomous modelling approaches are 
reductionism and holism. Reductionism relies on the 

569



belief that a complex system may be decomposed into 
its constituent parts without any loss of information, 
predictive power or meaning (Pidd and Castro 1998). 
The totality of MPs and VIMS are developed using this 
modelling approach. Unfortunately reductionism does 
not consider that large and complex logistic systems 
cannot be decomposed into their constituent parts with 
the guarantee of all the above conditions. This statement 
can be practically proved by trying to analyse real 
systems, e.g. supply chains and container terminals: in 
the latter case, it is easy to verify that it is not possible 
to decompose the system into its constituent parts 
(logistic processes) and analyze them separately, 
because they are partially or entirely related: some 
significant loss of information, predictive power and 
meaning will occur. Pidd and Castro (op cit) have 
shown that the best approach for the management of a 
complex system is based on holism. Holism assumes 
that systems possess some properties that are 
meaningful only in the context of the whole and not in 
the parts (e.g., in a maritime container terminal, shuttle 
vehicles must be assigned to the quay cranes 
considering the whole work-load). Therefore, using a 
holistic approach to model a whole system achieves 
better results in terms of the replication of the real 
system behaviour. Thus, developing an MP or VIMS by 
using the holistic approach should be appropriate. 
However, considering that both alternatives are affected 
by an intrinsic difficulty in model understanding, which 
makes simulation models unpopular at the model end-
users, here we propose an MP which provides: i) a high 
representational capability from the conceptual point of 
view, as well as ii) a common language for both 
modellers and end users from the model understanding 
sight.  

We believe that a stimulating possibility is to 
define an innovative MP for modelling logistic systems 
under uncertainty using a holistic approach, having in 
mind the goal of developing a simulation based 
optimisation platform. Besides, the considerations about 
strong and weak points of the ES, AS and PI 
worldviews provided by Derrick et al. (1989) convince 
us that we must define our MP using the PI conceptual 
framework. Thus, we dedicate the next section 
describing our MP, based on a previous work (Legato 
and Trunfio 2007). Successively, to compare our MP 
with two different, successful MPs, EG and PN, we 
model the same real logistic process in a container 
terminal, showing the different way of modelling this 
reality by using these MPs. Finally, we discuss some 
specific issues when developing a friendly tool for the 
integration of optimisation techniques within simulation 
models.   
 
2. WHOLISTIC DISCRETE EVENT 

SIMULATION WITH PROCESS 
INTERACTION  

In this paper we propose a holistic MP for DES 
modelling based upon the PI, that we call Holistic 
Modular Process (HMP) simulation models. In the 

following, we define the main concepts of our 
simulation MP. In the subsequent section we illustrate 
its potentiality by modelling a typical logistic process 
that arises in a maritime container terminal and 
comparing it with the EG and PN models. 

 
2.1. Holistic Modular Process Simulation Models 
The MP proposed in this paper is aimed to be flexible 
and expressive in the modelling of complex systems.  It 
tries to achieve three primary objectives: model 
readability, reusability and customizability.  

Model readability is a property which allows a 
model to be simple-to-read for a non-modeller. This 
property has a special importance when top managers 
are directly involved in scenario analysis: in our MP 
readability is achieved by describing the components’ 
behaviour within a simulation model by a sort of flow-
chart. As for reusage property, our experience at the 
Gioia Tauro Container Terminal confirms the 
requirement that a specialised simulation tool has to be 
reused in some of its forms (model reuse, component 
reuse, function reuse and code scavenging). Model 
reuse, under calibration and repeated tuning, occurs as 
soon as traffic conditions change over time. 
Furthermore, component and function reuse are both 
required to give the operational manager the possibility 
of quickly implementing a first order model of some 
emerging situations, before the structured intervention 
of external expertise. According to our concept of 
holistic MP, we provide model reusability by means of 
hierarchical, modular model definition and redefinition 
of simulation parameters.  

Model customizability is the base of an MP for the 
effective modelling of complex systems. It relies on the 
user-definition of process properties that allow 
describing uncommon situations, as it is the case when 
the modeller is asked to represent local, best practices in 
logistics organisation and management. 

An outline of the HMP simulation models follows 
now. An HMP model includes a set of model objects, or 
objects for short. For each model object an inner and 
outer view is defined. The outer view is depicted as a 
box equipped of input and output ports (see Figure 1). 
The inner view depicts a sequence of activities and 
events. The sequence is also called the model object 
process routine, or simply process.  

 

 
Figure 1: The Outer View of a Model Object in a HMP 
Simulation Model. 

 
In a similar way as described for HCFG models, 

relationships between model objects are depicted using 
directed edges (channels). Model objects are equipped 
with input and output ports (depicted as shown in 
Figure 1) that can, eventually, be renamed to improve 
model readability. Two model objects are linked by 
means of only one channel from an output port of the 
first object to an input port of the second object and vice 

570



versa, i.e. no more than two channels connect directly 
two model objects. Two model objects interact by 
message passing via channel, despite a channel has its 
own direction (the head of the edge is connected to an 
output port, while the tail to an input port). Multiple 
types of messages flow forward and backward along a 
channel, whilst entities (or jobs) of the simulation 
model can flow only through the proper channel 
direction.  

In this way, by adopting a modular approach, an 
HMP simulation model is a net of model objects. 
Therefore, hierarchical modelling is pursued by 
coupling different processes and grouping the resulting 
net of model objects into a sub-model (which is 
depicted in a similar to a model object, as proposed in 
Figure 2). In this case, the sub-model can be used to be 
coupled together with other model objects or sub-
models. A requirement when constructing sub-models is 
that at least one input or output port must be defined 
and linked to the inner model-objects, otherwise, the 
depicted model is a super-model or final model. The 
inner view of a sub-model is just another HMP model 
where some channels link the inner part to the outer part 
of the model through its boundaries. 

 

T: Buffer
I: Queue OI

T: Server
I: Machine OI

T: ServiceStation
I: aStation OI

ModelType
InstanceName

OI

(a)

(b)  
Figure 2: (a) The Outer View of a Sub-Model depicting 
a Service Station. (b) The Inner View of a Service 
Station, Composed by a Buffer and a Server. 

  
As stated above, the inner view of a model object 

is a process, or rather a sequence of activities and events 
that define the model object behavior. The process is 
represented as a particular hierarchical flow-chart, 
called Event-Activity Diagram (EAD), where activities 
and events are nodes and edges fix the logical and 
temporal sequence between nodes (other node types 
will be introduced in the following). A process can be 
constructed hierarchically by grouping events and 
activities to compose a sub-process. Thus, a sub-process 
is an EAD itself.  A sub-process we provide component 
reuse and model readability.  

A detailed model definition is obtained by the 
EAD. An EAD provides the process definition. In fact, 
an EAD defines the structure of a process by means of a 
sort of flow-chart. Because of the possible use of sub-
processes for the process definition, an EAD could be a 
hierarchical structure (composite nodes are expanded 
revealing a new EAD) and a hierarchical tree may be 
used to explore the EAD structure.  

 

2.2. Model Objects 
Following the PI worldview, the first step consists in 
identifying all the model objects which are involved in 
system modelling and detect all common features. 
Then, class-dependent features are described for the few 
classes of model objects introduced in our MP. The 
objects are contextual, so it is necessary to specify the 
model in which they are defined. The model name 
parameter is used to declare which model an object 
belongs to. This parameter serves two reasons: first of 
all, the holistic approach says that such objects can only 
be used in some contexts; furthermore, the use of sub-
models could cause a lot of confusion, especially if a 
sub-model is exploded (i.e. deleting model boundaries) 
and the same object is used in a model and in its sub-
models. Objects of the same type are identified by the 
type name parameter. If the model name is a parameter 
that depends on the model, the type name is a non-
changeable parameter. Each instance of a certain type of 
object is also identified by the instance name parameter. 
The set composed by these three parameters univocally 
identifies a model object within an HMP simulation 
model.  

There is at least another important parameter that 
allows managing heterogeneous objects, known as 
category name. The use of the category name allows us 
to make associations between objects that are 
apparently disjoined. A possible use can be seen in the 
development of a simulation package, in the packages 
for statistical analysis and optimization of system 
performance measures. As a matter of fact, in this 
context generic rules and algorithms can be defined 
over a class of mixed objects. 

Model objects have a set of variables and data 
structures used to support the logical representation of 
the process behavior. These properties are not explicitly 
depicted and refer to the code implementation of each 
model object type. Model objects variables and data 
structures are accessed by a set of public functions 
which allow their manipulation. A function is called by 
message passing, or rather sending an explicit message 
to call a specific model object function. 

Model objects are illustrated in detail in the 
following.  

There are two basic classes of objects: resources 
and resource managers. As stated above, entities of the 
simulation model are depicted as messages that are able 
to envelop properties, data structures and other entities 
(e.g., a ship that carries thousands of containers loaded 
in different holds). 

Resources are active or passive depending on their 
role in the simulation model. Passive resources are not 
depicted explicitly and are not able to execute 
action/events or process entities. Nevertheless, a passive 
resource is able to execute incoming requests and 
actions of other model objects (as declared above, a 
passive resource shows a set of public functions that can 
be used to manipulate the resource). Passive resources 
are generally managed by an active resource or a 
resource manager. Whenever a passive resource is 

571



managed by a resource manager, active resources linked 
to the resource manager are able to overwork it only 
under the conditions specified by the resource manager. 
A passive resource must be managed by a resource 
manager if more than one resource may request it for 
use during a simulation (e.g., items storage into a shelf 
using forklifts). An active resource can possess passive 
resources and it can offer a service to one or more 
entities per time. It can also make queries to other 
objects to which it is linked by message passing via 
input/output ports. The behavior of an active resource is 
described using an EAD.  

By means of resources one can only represent just 
a system governed by a few simple rules. As matter of 
fact, the need of modelling complex systems in a 
holistic approach leads us to introduce the resource 
managers. A resource manager is a high-level object, 
which is able to interact with a set of model objects 
(also heterogeneous). Resource managers can take 
decisions (e.g., solve a scheduling or an assignment 
problem, negotiating the use of a sub-system, etc.) by 
applying rules and policies and making queries to other 
model objects. They have free access to modify the 
behaviour of all the resources in their own model to 
which they are linked. In a holistic approach, as 
demonstrated by Pidd and Castro (op cit), the use of that 
kind of model objects avoids the explosion of object 
links and therefore it represents a more easy-to-use 
modelling tool. 

 
2.3. Processes and Event-Activity Diagrams 
The role of a process in model object specification is 
analysed here and process representation is shown. The 
interaction of processes during the simulation is briefly 
described. 

According to the definition of process given in the 
PI worldview overview, a process is a series of 
temporally related events and activities. Usually flow-
charts may be used to represent processes. In our flow-
charting methodology, called Event-Activity Diagram 
(EAD), events and activities are nodes, while directed 
edges define one or more paths that can be covered by a 
process. Other useful elements compose a process, 
namely the logical nodes.  

Activities and events are not intended to perform 
actions, but to show to non-modellers, in a friendly-
way, how a process can work. The role of executing 
requests, performing actions and introducing time 
delays between activities and/or events is assigned to 
directed edges. Therefore, the use of a flow-charting 
graphical methodology to depict a process allows us to 
achieve at a good extent the readability objective. 
Bearing in mind the list of the process components, let 
us start an in-depth discussion about these components.  

In our MP, activities are classified focusing on the 
simulation duration of the activity; hence activities are 
partitioned in timed and instantaneous. The first type of 
activities are those able to start operations at a simulated 
time instant and finish operations in a future simulated 
time instant. For instance, timed activities are those that 

perform operations characterized by a variable 
simulated time length, e.g. waiting or servicing 
activities. The second type refers to activities that start 
and end operations at the same simulated time instant, 
e.g. activities representing a choice or check by a 
resource or resource manager. Nevertheless, also timed 
activities can starts and ends operations at the same 
simulated time instant. 

A process needs the specification of an initial 
activity that is enabled, or rather the activity that 
possesses the process checkpoint (more details about 
checkpoints are provided in the following). The initial 
activity is the activity from which the process starts 
when it becomes active (initial process state). In an 
EAD one or more activities per time can be enabled, i.e. 
when the process flow has been forked in different 
logical paths. The set of currently enabled activities is 
called the process state.    

An event is a fact that forces one out of a set of 
possible changes of the current state. It may precede or 
follow an activity, thus representing something that is 
just happened or that is going to happen. If an event 
precedes an activity, then it is processed at the same 
simulated time of the activity start; if an event follows 
an activity, then it is processed at the same simulated 
time of the activity end.   

As stated before, EADs have a hierarchical process 
structure. In fact, nodes are activities and events and 
even sub-processes. A sub-process is itself an EAD, 
therefore it can be zoomed revealing the included flow-
chart. The EAD of a sub-process can refer to input and 
output ports of the including process, i.e. a sub-process 
is only a convenient arrangement for grouping an EAD 
sub-net and depicting it as a single node (this solution 
aims to improve model readability).     

The different shapes for the main nodes of an EAD 
are depicted in Figure 3. 

 

 
Figure 3: EAD Activities, Events and Sub-Processes 
Nodes. 

 
The core of the process behavior is designed 

adding directed edges. Edges are used i) for message 
passing and the evaluation of conditions through 
functions call, and ii) for the introduction of timing into 
process activity flows. We classified edges in four 
types: null edges (or true edges), inner edges, incoming 
edges, outgoing edges. A null edge can be used only to 
connect events to activities or activities to activities. An 
inner edge connects an activity to another activity or to 
an event. These edges are depicted as arcs (see Figure 
4). Incoming edges are used to depict incoming 
messages from an input/output port, while outgoing 
edges depict outgoing messages to an input/output port. 
Incoming edges connect only activities to activities or 

572



activities to events, while outgoing edges also link 
events to activities. Edges may not have any node 
linked to the head, thus they work as a termination arc 
(i.e, the process becomes definitely terminated when 
one of these nodes is traversed). 

Edges produce a transition from the current 
enabled node (connected to the edge tail) to the future 
enabled node (that is linked to the edge head). To avoid 
deadlock, edge tail and head must be different nodes. 
While the transition rule for a null edge is always true, 
for the other edge types the edge traversal is allowed 
only if certain conditions are met. To understand the 
nature of these conditions, we introduce the following 
edge functions: a Timer and a Request.  

A Timer is a time function that generates a delay 
time using a distribution (e.g., exponential) and the 
appropriate set of parameters. Only inner and outgoing 
edges may have a Timer. Whenever an inner/outgoing 
edge is selected by an activity to be eventually 
traversed, the Timer generates the simulated delay time 
and an “alarm” is scheduled to warn the edge after the 
delay time. When an edge has been warned, it is 
allowed to enable its head node (i.e., the process state 
has been changed), or rather it is traversed. 

The transition rule of an edge is composed by a set 
of Requests. A Request is a (public or private) function 
of a process that can be called to check conditions, to 
set up model objects and entities parameters and (in 
case) exchange entities among model objects. If the 
conditions are met, the function returns true; false, 
otherwise. A set of primary Requests can be used on the 
same edge by the formulation of a logical expression 
using boolean operators (and, or, xor) and negation 
(not), that we call the primary rule; moreover, the 
verification of the primary rule may depend on a set of 
conditioning Requests, or what we call the conditioning 
rule. Both conditioning and primary rules compose the 
transition rule in the following way: “primary rule | 
conditioning rule”. Only if the conditioning rule is 
evaluated as true, then the primary rule is evaluated.  

All the edge types (excepted null edges) may have 
a transition rule. A considerable difference exists 
between inner and incoming/outgoing edges. In fact, by 
using incoming/outgoing edges, a process can: i) make 
a call to a public function of an external process 
(receiver process) linked to an input or output port; ii) 
receive a call to its own public functions by an outer 
process (sender process) linked to an input or output 
port. In this way we enable communication among 
processes (e.g., exchanging entities and assigning 
work). In particular, the primary rule of an incoming 
(outgoing) edge must only include the call of a Request 
by (of) another process linked to an input/output port. 
The symbolism used to call a Request of an outer object 
is “PortName<Request”, while to depict the call of a 
Request by an outer object “PortName>Request” is 
used. For incoming/outgoing edges, the conditioning 
rule may also include calls to outer functions.  

If a sender process calls a function of a receiver 
process, and this occurs only if at least an incoming 

edge starting from the current node of the receiver has 
the called Request as primary rule, then the call to the 
Request function may return true; otherwise, false is 
automatically returned (i.e. the call is not accepted).  
Indeed, incoming edges work as triggers for processes 
that are waiting for an external input.  

With the exception of null edges, which are always 
traversed, if an inner edge (or an outgoing edge) is 
selected to be traversed by the current node, then it is 
traversed once the traversal rule is true. 

 Timers and Requests are the condition functions 
that may be involved to cause an edge traversal. 
Nonetheless, inner and outgoing edges may have both a 
Timer and Request function. In this case, the execution 
priority states that the Timer must be executed before a 
Request, i.e. the transition rule is verified when the edge 
has been warned. 

  All the edges may also have a list of Action 
functions. An Action is a function that performs such 
operation, e.g. changing the parameters of the process 
or of an owned entity. If a Timer and/or a transition rule 
have been defined for the same edge, the Action must 
always be executed at last, i.e. after the edge has been 
warned and if true has been returned by the transition 
rule. 

Each Request and Action can explicitly receive a 
set of parameters; therefore, the behavior of a 
Request/Action may change in function of the received 
parameters.   

 

Requests |Conditioner Requests

Actions

Inner Edge

T()

Incoming Edge

Actions

Port>Request |Conditioner Requests

Outgoing Edge

Actions

Port<Request |Conditioner Requests

Null Edge

T()  
Figure 4: Edges of an EAD. 

 

 
Figure 5: Logical Nodes of an EAD. 

 
To improve MP scaling and model object 

reusability, as proposed in Sargent (1997), each process 
may use multiports. A multiport is an indexed set of k 
ports named portname[1],…, portname[k]. A multiport 
is explicitly depicted as different ports in the external 
view of a model object; in the inner view, multiport 
may be used either in an explicit or implicit way by 
incoming/outgoing edges. For instance, an explicit use 
of a multiport may occur when the process needs to call 
a Request function of an external process linked to the 
port “portname[i]” (where the suffix [i] stands for the 

573



 

O
>Pull

I>Push

R:IsFull()

Full Load

O
>Pull

Sub-Process “Working”

Inner view

Outer view

Limited Buffer

T:LimitedBuffer
I:aBuffer OI

Free
I>Push

Buffering
O<Push

Verification for Buffer 
Capacity

IsEmpty

O
>Pull

I>Push

Is
Fu

ll Full Load

O
>Pull

Free
I>Push

Buffering
O<Push

Verification for Buffer 
Capacity

IsEmpty

Working

Add PopAdd Pop

Pop

Pop

Pop

Pop Pop

Pop

Inner view (using sub-process “Working”)

 
Figure 6: An Example of Use of a Sub-Process for a Model Object that is Designed as a Buffer with a Limited Capacity.

index of a port that is included in the multiport 
portname[1,…,k]), then the name of the port is 
explicitly depicted in the transition rule of the function 

as follows: “portname[i]<Request”. Another example is 
introduced to show the implicit use of a multiport. If the 
process needs to call the same Request function of the 
external processes linked to the multiport, the following 
notation must be used in the transition rule of the 
outgoing edge: “portname[i:1,…,k]<Request”. In this 
way, for each portname[i], where index i varies 
between 1 and k, the edge must check the associated 
transition rule and the edge is traversed whenever at 
least one transition rule is true. The implicit use of a 
multiport allows our MP to be compact and to easily 
implement the behavior of dynamic processes. 
Moreover, by using implicitly a multiport, it is possible 
to specify a sub-set of port indexes that i) must be called 
through an outgoing edge or ii) allow an external 
process to call an inner Request through an incoming 
edge. The sub-set of port indexes can also be a list name 
generated at runtime using an Action function. 

Our MP allows defining a process behavior via 
EAD using activities, events, sub-processes and directed 
edges. Another type of nodes, called logical nodes, has 
been defined in order to support the definition of 
process paths. These nodes are: i) boolean fork; ii) split; 
iii) and; iv) or; v) unconditional flow (Figure 5). A 
logical node may be used to represent alternative paths 
to be chosen under specified conditions.  

A boolean fork can be connected to the head of a 
conditional edge, or rather those edges that have a 
transition rule. Using this node, if the transition rule is 

true, than the edge is traversed and the process control 
flows through an edge starting by the boolean fork 
node; otherwise, the edge is also traversed, but the 
process control flows through a special edge, depicted 
with a dashed line, which starts by the boolean fork 
node. Therefore, using the boolean fork node after a 
conditional edge, the edge is always traversed. The 
outgoing edges from a boolean fork node are of the null 
or inner type. In case inner edges are used, another 
boolean fork must be used for each inner edge to catch 
the result of the transition rule.  

The unconditional flow node acts in a similar way 
of a boolean fork, but whatever be (true or false) the 
transition rule of the incoming edge, only one edge 
must leave this node.  

The remaining logical nodes may be connected to 
the head of any edge type. Once the edge is traversed, 
the process control passes at the logical node. A split 
node is used to separate the process path in two or more 
alternative paths. When the process path is separated in 
more paths, to recombine two or more paths, an and/or 
node is required. The and node, becomes enabled at the 
time all the edges incoming to the node have been 
traversed. The or node become enabled at the time at 
least one of the edges incoming to the node has been 
traversed. 

574



The and, or and split nodes can be part of the 
process state. Typically the process state has only one 
active activity per process state. However, anytime the 
process flow is separated by using a split, many 
activities and the split/and/or nodes may be enabled, 
thus they may be part of the process state. 

Some explanations are required about the use of 
sub-processes as nodes of an EAD. As they are EAD 
nodes, edges that start and arrive to these nodes are of 
the types defined in the previous. The only restriction is 
for edges that start by a sub-process node. If an edge 
that starts from a sub-process node is not a null edge 
type, a boolean fork must catch the edge transition 
results (otherwise the process checkpoint may stay on 
an edge included in the sub-process). The inner view of 
a sub-process is a particular EAD which consists of at 
the most one edge that links the outer view to an inner 
node (or rather from the inner boundary to a node) 
and/or at the most one edge that links an inner node to 
the outer view (or rather from a node to the inner 
boundary). Also if the edge that starts from the sub-
process inner boundary to a sub-process node is not of 
null edge type, a boolean fork must catch the edge 
transition results (otherwise the process checkpoint may 
stay on an edge included in the sub-process). An 
example about a limited buffer is shown in Figure 6 
(details of the Request and Action functions used in this 
model object are provided in a PhD thesis). 

Processes are usually executed during more 
simulation time periods. For this reason the nodes of a 
process can be visited during different time periods. To 
track this possibility, we adopt the process checkpoint. 
A process checkpoint is a property of the processes that 
shows the set of nodes from which a process starts or is 
reactivated, i.e. the checkpoint locates the enabled 
nodes (the process state). A process checkpoint is also 
called reactivation point. For each process, the 
reactivation point must be explicitly shown to depict the 
initial active states as done in Figure 6 for the “Free” 
node (that is the initial state of the buffer model object): 
the reactivation point is depicted as a “target” and is 
usually placed on the upper-left corner of a node. 

In HMP simulation models, a process can have the 
following status in the sense of simulation execution: 
active, passive or terminated. Focusing on a non-
concurrent simulation, only one process can be active at 
a time. A process is active in the sense that it is moving 
through its paths, until it enters the passive state or is 
terminated. A process enters the passive state when a 
Timer schedules a delay time or a message is sent to an 
input/output port. In a similar way, a process becomes 
active by means of an external trigger (a message from 
an input/output port) or a previously scheduled warning 
time. To start model simulation, at least one process 
must receive a message to be activated for the first time. 
An active process may become terminated whenever an 
outgoing or transfer edge is traversed and the edge head 
is not linked to any node. A terminated process returns 
false to each incoming message and will never be active 
during the simulation.  

3. A MODELLING CASE STUDY 
In this section, a real case study of modelling and 
optimization of a complex logistic process is presented, 
with the aim of comparing the expressiveness of our 
MP with other well-known approaches.  

The system that we are intended to model concerns 
the management of quay crane operations and it 
includes some key logistic processes, such as the 
“vessel discharge/loading” and the “container transfer 
from ship to yard (and vice versa)”. This is a typical 
operative management problem that requires both 
simulation and optimization to be successfully 
approached. We refer to the Gioia Tauro terminal, one 
of the major container terminals in the Mediterranean 
Sea, located in Southern Italy.  

 

 
Figure 7: Map with Discharge/Loading Info per Vessel 
Hold  
 

To fix ideas, we give a brief description of the 
system which includes the quay crane operations 
problem. Once a vessel is moored in a maritime 
container terminal, a certain number of containers must 
be discharged/loaded from/into the vessel’s holds 
according to a pre-established operation plan (an 
example is shown in Figure 7). 

Container discharge/loading can be initiated only if 
mechanical (and human) resources are allocated; if not, 
the ship waits in its berth position until resource 
assignment. Discharge/loading operations are 
performed by Rail Mounted Gantry Cranes (RMGCs) 
placed along the berth: one or multiple cranes move 
containers between the ship and the quay area. When 
multiple cranes are assigned to the same ship, crane 
interference has to be avoided and a complex 
scheduling problem arises to manage the relationships 
(precedence and non-simultaneity) existing among the 
holds of the same ship (this is the “Quay Crane 
Scheduling Problem” - Legato et al. 2008). 
 

Table 1: Events. 
Event Description 

StartDO Cranes start discharging operations 
EndDO[i] Crane i-th ends assigned discharging 

operations 
StartHD[i] Crane i-th starts discharging of current 

hold 
EndHD[i] Crane i-th ends discharging of current 

hold 
StartD[i] Crane i-th starts discharge of a 

container from the current hold 
EndD[i] Crane i-th ends discharge of a 

container from the current hold 
WaitNH[i] Crane i-th waiting to acquire the next 

hold 

575



Buffer Area Under 
Crane 16

Num 
SC

Crane 1 Discharge 
Time

Straddle Carrier 
Loading Time

80 100 35

Hold 1 Hold 2 Hold 3

Straddle Carrier 
Yard Cycle Time

Buffer Area Under 
Crane 2 6

Num 
SC

Crane 2 Discharge 
Time

Straddle Carrier 
Loading Time

120 90 60

Hold 4 Hold 6 Hold 5

Straddle Carrier 
Yard Cycle Time

StartD
[1]

EndD
[1]TD

StartHD
[1]

EndHD
[1]

Rule 1 AND Rule 2

Rule 5

N
O

T R
ule 4

Rule 1
StartL

[1]
EndL

[1]
TSU

Rule 6

TC

InQ
[1]

Rule 7

N
O

T R
ule 4

Rule 6

Rule 6 
AND Rule 7

R
ul

e 
3

Rule 3 AND Rule 4

R
ul

e 
3

WaitNH
[1]

NOT Rule 3

Rule 3

StartD
[2]

EndD
[2]TD

StartHD
[2]

EndHD
[2]

Rule 5

Rule 1

Rule 1 AND Rule 2

WaitNH
[2]Rule 3

Rule 3 AND Rule 4

NOT Rule 3

EndDO
[1]

EndDO
[2]

StartL
[2]

EndL
[2] TSU

TC

InQ
[2]

Rule 7
Rule 6 AND 

Rule 7

StartDO

(a) (b)
Figure 8: (a) The Event Graph of the Quay Crane Operations Model. (b) The Petri Net for the Quay Crane Operations 
Model.  

InQ[i] Straddle carrier arrival in quay 
StartL[i] SC starts container loading 
EndL[i] SC completes container loading 

 
Table 2: Enabling conditions. 

Edge 
Condition Description 

Rule 1 Buffer area under crane capacity is less 
than 6 

Rule 2 Hold has not been completely 
discharged 

Rule 3 No violation of precedence and non-
simultaneity constraints 

Rule 4 Crane has more holds to be discharged
Rule 5 Current hold is completely discharged 
Rule 6 At least one SC waiting in quay 
Rule 7 At least one container under the crane 
 
The transport of containers from the quay side to 

the yard side and the reverse movement depends on the 
transfer mode of the container terminal. At Gioia Tauro, 
containers are transferred according to the direct 
transfer mode, i.e. the transport of containers and the 
container stacking processes are performed by a fleet of 
straddle carriers (SCs). SCs take in charge containers 
and cycle between the berth area and the assigned 
storage positions within the yard. SCs are guided to a 
slot within the yard structure to stack/retrieve 

containers. They are also able to cover the distance from 
the assigned RMGC to the yard slot and back.  

Here, we are interested in depicting the container 
discharge process of a certain vessel and depicting the 
container transfer from the limited buffer area (max 6 
containers) under a RMG quay crane to the yard side by 
means of SCs.  

Since the process of transferring containers from 
the quayside to the yardside is performed by SCs that 
are used to cycle among these areas with (outward path) 
and without containers (backward path), this process 
may also be depicted as a unique service time, or rather 
“the yard cycle time”, which includes the outward time, 
the container unloading time and the backward time.  

In the following, we suppose for simplicity that 
two RMGCs must simultaneously perform the 
discharging operations of the vessel depicted in Figure 
7. The sequence of holds that must be respectively 
discharged by the two cranes is the following: {Hold 1, 
Hold 2, Hold 3}, and {Hold 6, Hold 5, Hold 4}. 

Figure 8(a) shows the Event Graph model of the 
logistic processes described above; events are labeled 
with numbers in squared brackets that refer to a specific 
crane.  

Tables 1 and 2 report the descriptions of the events 
(the vertices of the graph) and the edge conditions. The 
edge delay time functions TD, TSU, TC, are respectively: 
i) container discharging time for each RMGC, ii) 
container set-up time for a generic SC, and iii) cycle-
time for an SC (i.e. the time to transfer a container from 
the quay to the assigned yard-slot, to set-down the 
container and, finally, to move back to the assigned 
RMG quay crane). As a matter of fact, the possibility to 
discharge a hold by a crane is due to the respect of the 
precedence and non-simultaneity constraints. In this 

way, the availability of a hold depends on the current 
task that is assigned to the next crane. In our example, if 
crane 1 is discharging hold 3, then crane 2 to discharge 
hold 3 must wait the completion of hold 1 (and vice 
versa). To depict this process, every time a crane 
completes its discharging operation on a hold, then it 
warns the next crane (edges in blue and red). 

576



T:LimitedBuffer
I:Container waiting 
line under Crane 1 CC

T:Crane
I:Crane 1 C

T:CraneManager
I:Crane Coordinator

R
M

G
1

T:ContainerLoader
I:Container Set-up L-SCC

SC

T:ContainerStoraging
I:Yard Cycle Time SC

L-SC

LEGEND

CM = Crane manager          V = Vessel          C = Container          SC = Empty Straddle Carrier          L-SC = Loaded Straddle Carrier

R
M

G
2

T:LimitedBuffer
I:Container waiting 
line under Crane 2 CC

T:Crane
I:Crane 2 C

W
or

k

T:ContainerLoader
I:Container Set-up L-SCC

SC

T:ContainerStoraging
I:Yard Cycle Time

SCL-SC

W
or

k

T:UnlimitedBuffer
I:SC Waiting line on 

Quay SCSC

T:UnlimitedBuffer
I:SC Waiting line on 

Quay SCSC

T:VesselSource
I:Vessel Source

V

V

 
Figure 9: The HMP for the Quay Crane Operations Model.  

Using Petri Nets, we can model the system as 
depicted in Figure 8(b). In this model, seeing that the 

number of tokens in some places were too large to be 
explicitly depicted (e.g. the tokens which stand for the 
containers to be discharged) we have directly put in 
each place the number of tokens. Using Petri Nets, we 
are able to design the non-simultaneity constraint 
between Hold 3 and Hold 6 (edges and nodes in blue), 
as well as precedence between holds to be discharged 
(inhibitor arcs in red). Nevertheless, we do not provide 
reasonable model readability, and the net explosion is 
inevitable every time the number of holds and 
constraints rise up, as in real cases.   

Finally, we provide a representation of the quay 
crane operations model using an HMP model, as shown 
in Figure 9, based on the coupling of six types of model 
objects and a sub-system. The model objects are: i) a 
VesselSource for the generation of vessels, ii) a Crane 
for depicting the quay RMGC resource, iii) a 
CraneManager to manage the interactions among 
RMGCs working on the same vessel and assign the 
sequence of holds of the berthed vessels, iv) a 
ContainerLoader (Figure 10) to perform container set-
up operations for empty SCs, v) an UnlimitedBuffer 
(Figure 6) to depict the waiting line of empty SCs that 
wait for load discharged containers and vi) a 
LimitedBuffer to depict the buffer area under a crane 
(for no more than 6 TEUs). The EADs for the 
UnlimitedBuffer, VesselSource, Crane and 
CraneManager model objects will be provided in a 
companion paper. 

With this approach, a modeller can design the 
behavior of a set of context specific model objects (e.g., 
cranes and queues), even unrelated, and then he/she can 
reproduce a certain system by linking these model 
objects and simply specifying suitable parameters (e.g., 
the distribution function for the crane discharge time). If 
the designed model objects are collected in a library in a 
“point & click” simulation environment, they are close 
at hand to be reused to design a new system.   

It is clear that by using this approach we provide a 
compact way of representing the system logic: in fact, 
entities flow through the model objects and the 

relationships between the model components are very 
clear. This is true especially if the model end-user looks 

at name of the ports, which explicitly indentifies which 
are the input(s) and the output(s) of each model object.  

Moreover, if one wishes to further simplify the 
readability of the model by hiding a given part of the 
system, this can be performed in a simple way by 
grouping and depicting the selected system part as a 
sub-model. For instance, in Figure 9 the 
ContainerStoraging is a sub-model that receives in 
input a loaded SC and returns an empty SC after a while 
(the yard cycle time); focusing our attention on the 
quayside operations, we are not interested in 
understanding how an SC has been unloaded and why it 
has returned after a certain time period, therefore the 
use of a sub-model in this context appears convenient.  

 

Inner view Outer view

Container Loader

T:ContainerLoader
I:aLoader L-SCC

SCIdle

C
>Push | SC

<Pull

S
C

>P
ush | C

<Pull

Loading

Start Loading

End Loading

Hold

LoadingTime()

L-SC<Push

L-
SC

>P
ul

l

Load

DeSetStraddleCarrier

SetC
ontainer

S
etStraddleC

arrier

D
eS

et
St

ra
dd

le
C

ar
rie

r

Verification for 
Container-SC Ready

SC
<C

an
IP

ul
l 

A
N

D
 C

<C
an

IP
ul

l

SC
<P

ull
 A

ND C
<P

ull

Figure 10: EAD for the ContainerLoader model object.  
 
The behavior of each model object is designed by 

using an EAD. Each EAD is composed by i) default 
components (events, activities, logical nodes, edges) 
and ii) context specific timers and functions. Both 
timers and functions are developed around a set of 
global variables of each process (e.g., a list of entities 
for the infinite queue depicted by the model object 

577



UnlimitedBuffer) and using a scripting language like 
TCL (www.tcl.tk). 

This approach has its strong point on the use of 
functions to check conditions and execute algorithms 
devoted to take decisions. For instance, once a vessel 
arrives at berth, the CraneManager uses a function that 
solves a mathematical model (the Quay Crane 
Scheduling model proposed by Legato, Mazza and 
Trunfio – 2008) to dynamically assign the holds of the 
vessel to a specific set of cranes. Obviously, this 
approach is possible using our MP or EGs and HCFGs. 
Petri Nets are a powerful tool for modelling a system at 
a very low level, describing also conditions and 
complex constraints by means of its intuitive formalism, 
but a PN cannot be re-designed at runtime in case of 
need (e.g., is not possible to use the PN in Figure 8(b) to 
simulate the discharge process of a vessel with a 
different structure). 

 
4. SIMULATION-BASED OPTIMIZATION 
A modern simulation platform for logistic systems must 
provide an easy-to-understand language for system 
modelling, but also a tool for designing of optimization 
problems. We are developing a platform for the optimal 
management of logistic systems management based on 
the following three phases: i) system modelling, ii) 
model analysis and iii) system optimization. In the first 
phase, the real system is modelled by using our MP, as 
discussed in-depth in the second and third section.  

Numerical results from the simulation model 
obtained in the system modelling phase are analyzed in 
the second phase by means of a statistical analysis tool. 
Performance measures are evaluated on the outputs 
from the simulation runs of the simulation model. In the 
model analysis phase, indices and parameters are 
defined on the simulation model by means of some tool 
or language. The evaluation of these indices and 
parameters provides the set of performance measures 
necessary for the simulation-optimization platform.        

After that, in the third phase an optimization 
problem is defined. General problem setting is made of 
input and output variables, objective function and 
constraints. The nature of the optimization problem is 
intrinsically stochastic, due to the nature of the 
simulation output variable). Output variables are 
simulation model performance measures; input 
“variables” are quantitative or qualitative in nature. In 
this context, a language to easily develop simulation-
based optimization algorithms must be planned, e.g. by 
using the TCL language.  

 
5. CONCLUSIONS 
We have proposed a Modelling Paradigm to support the 
development of simulation models oriented to the 
optimal management of logistic activities. The MP uses 
a holistic approach to capture the complex relationships 
among sub-systems and allows for a direct 
representation of the hierarchical structure of the 
decision making process for system management. 
System modelling is completed by a flow-chart based 

definition of processes involved in the model at hand. 
Real case examples of modelling have been presented, 
comparing our approach to those provided by Event 
Graph models and Petri Nets, with the aim of 
supporting the future design of simulation-based 
optimisation techniques. Currently, a Java tool is under 
development. 
 
REFERENCES 
Derrick, E. J., Balci, O., Nance, R.E., 1989. A 

Comparison of Selected Conceptual Frameworks 
for Simulation Modelling. Proceedings of the 1989 
Winter Simulation Conference. 711-718, 
Blacksburg (VI, USA). 

Fritz, D.G., Sargent, R.G., 1995. An Overview of 
Hierarchical Control Flow Graph Models. 
Proceedings of the 1995 Winter Simulation 
Conference. 1347-1355, Arlington (Virginia, 
USA). 

Legato, P., Mazza, R.M., Trunfio, R., 2008. Simulation-
based optimization for the quay crane scheduling 
problem. Proceedings of the 2008 Winter 
Simulation Conference. Miami (FL, USA). 

Legato, P., Trunfio, R., 2007. A Simulation Modelling 
Paradigm for the Optimal Management of 
Logistics in Container Terminals. Proceedings of 
the 21th European Conference on Modelling and 
Simulation. 479-488 , Prague (Czech Republic). 

Petri, C.A., 1962.  Kommunikation mit Automaten, 
Ph.D. Thesis, Schriften des Institutes füt 
Instrumentelle Matematik, Bonn. 

Pidd, M., 2004. Computer simulation in management 
science (5th edition). John Wiley & Sons: 
Chichester. 

Pidd, M., Castro, R.B., 1998. Hierarchical Modular 
Modelling  in Discrete Simulation. Proceedings of 
the 1998 Winter Simulation Conference. 383-389, 
Washington (DC, USA). 

Sargent, R., 1997. Modelling queuing systems using 
hierarchical control flow graph models. 
Mathematics and Computers in Simulation 44(3): 
233-249. 

Schruben, L.W., 1983. Simulation Modelling With 
Event Graphs. Communications of the ACM 
26(11):957-963. 
 

AUTHORS BIOGRAPHY 
 

PASQUALE LEGATO is an Assistant Professor of 
Operations Research at the Faculty of Engineering 
(University of Calabria). His home-page is 
http://www.deis.unical.it/legato. 

 

DANIEL GULLÌ is devoted to research in numerical 
simulation at the Center for High-Performance 
Computing and Computational Engineering (CESIC) in 
NEC Italy.  

 

ROBERTO TRUNFIO is currently pursuing a Ph.D. 
degree in Operations Research from the University of 
Calabria and is a logistics engineer at the CESIC in 
NEC Italy. 

578


