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ABSTRACT 
Given a set of competing system alternatives to be 
evaluated and compared via simulation, Ranking and 
Selection (R&S) procedures are commonly applied to 
select the best system with respect to a predefined 
performance measure. In this paper we focus on two 
major classes of R&S techniques usually referred to as 
the subset selection and indifference-zone formulations. 
In particular, we discuss the performance of primitive 
and combined procedures that, at every iteration, 
evaluate different system configurations by sampling 
multiple or single additional simulation output 
observations to deal with complex systems. Procedure 
application is presented for different test cases in which 
either a small number of system configurations are 
known a priori or a large number of configurations are 
actually generated during simulation run by means of 
simulation-based optimization algorithms. Preliminary 
numerical results are given with reference to 
performance measures within the sub-systems of a real-
world complex logistic system. 
 
Keywords: discrete-event simulation, combinatorial 
optimization, statistics, metaheuristics. 
 
1. INTRODUCTION 
In a wide variety of application fields, such as logistics, 
production engineering and plant layout, computer-
communication systems organization and others, 
discrete-event simulation is well recognized as an 
effective planning and control tool. By commonly 
adopting a simple what-if approach, simulation is also 
used for supporting decisions in system management 
and performance evaluation of policies and rules for 
resource allocation. The main reason for such versatility 
of simulation lies in its capability of representing the 
process of interest in a realistic, dynamic framework 
subjected to several elements of uncertainty and 
randomly occurring events and activity durations.  

On the other hand, operations research models 
based on integer programming formulations 
(Nehmauser and Wolsey 1988) of combinatorial 
optimization problems are well consolidated as stand-
alone tools for supporting specific decisions of resource 
allocation and activity scheduling. This is especially 

successful whenever the idea of fixing the process of 
interest at any given instant, in which the modeller may 
identify a set of resources and a set of tasks in a static, 
deterministic operational framework, results as a cost-
effective choice. 

The ultimate effort to spark and steer strong 
interplay and even overlap between these neighbouring 
fields of operations research is known as simulation-
based optimization (Andradóttir 1998). This 
methodology consists in optimizing an expected 
performance measure based on outputs from stochastic 
simulations of any given system/process, whose 
dynamic behaviour is partially defined by some 
decision variables and constraints that could be 
optimally determined by an IP model. To fix ideas, one 
may think of a queuing network model of a general job 
shop system where the performance measure is the 
expected value of the makespan or the system 
throughput and should be estimated by solving the 
queuing network model proposed via simulation 
(Laganà, Legato, Pisacane et al. 2006; Canonaco, 
Legato and Mazza 2007; Canonaco, Legato, Mazza et 
al. 2008). Assuming that the allocation of servers to 
different queuing stations, as well as the selection of the 
service discipline are, respectively, the major resources 
to be allocated and the major scheduling policies to be 
organized, then it should not be difficult to recognize 
that a possible formulation of the simulation-based 
optimization problem would require replacing the 
objective function of the formulated combinatorial 
optimization problem with the following: ( )[ ]θfEmin . 
The “f” function also accounts for implicit additional 
process features and queuing phenomena when 
searching for the optimal vector of decision variables, 
θ  (representing resource allocation and scheduling 
policies). 

Practically speaking, simulation-based optimization 
methods feature a “comparison step” between 
alternative feasible solutions and policies which is 
always based on the use of statistics to estimate the 
expected performance measure of interest (throughput, 
makespan, and so on). The above statistics are 
computed on a certain number of observations. Since 
these observations are random variates returned from a 
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simulation process, at each comparison there are no 
guarantees of selecting the true best (optimal) solution, 
despite it being truly representative of the best system 
configuration. Therefore, at the comparison step of a 
simulation-based optimization algorithm one should 
carefully design a statistical procedure to perform a 
correct selection with at least a user-specified 
probability. To this end, we discuss some Ranking and 
Selection (R&S) procedures (Goldsman, Kim, Marshall 
et al. 2002) which are commonly applied to select the 
system with the “best” (i.e. greatest or smallest) 
expected value of the predefined performance index 
(Kim and Nelson 2003). 

The paper is organized as follows. In Section 2 we 
discuss the two major R&S approaches when all 
alternative simulated system designs are known in 
advance. In Section 3 we propose the combination of 
R&S and simulation-based optimization procedures to 
deal with system designs that are revealed during 
simulation experiments. Numerical experiments are 
presented in Section 4 and conclusions are drawn in 
Section 5. 

 
2. RANKING AND SELECTION 
In literature, homogeneity tests (Milton and Arnold 
1986) are conventionally applied to assess whether 
there are statistically significant differences in various 
populations with respect to some characteristics. 
However, they provide no information in the prospect 
of selecting the “best” of these populations. Bearing in 
mind this expectation, Ranking and Selection 
techniques are the next step to take when searching for a 
decision procedure that allows to perform a correct 
selection at a pre-assigned level of probability. 

Most of the research work in R&S can be classified 
into the following general approaches: 

 
• subset selection procedures, which aim at 

producing a subset of (small) random size that 
contains the best system, with a user-specified 
probability; 

• indifference-zone procedures, where either the 
best or whatever solution evaluated within a 
fixed distance from the best can be selected, 
with a user-specified probability. 

 
When operating a selection of the best system or a 

subset of the best among a set of simulated competing 
alternatives, using an R&S technique rather than 
another depends on which of the available procedures 
will most benefit a given objective or constraint set by 
the experimenter. 

Whatever the objective, an “educated” choice of an 
R&S procedure also requires a good knowledge of the 
structure of the problem space in view of the fact that 
the said structure impacts on the performance of the 
procedures that can be used for problem solving. 

Everything considered, the performance level of an 
R&S procedure is affected by: 

 

• the probability of selecting the alternative 
which is truly representative of the best system 
configuration (PCS – probability of correct 
selection); 

• the above probability returned within a given 
predetermined time budget; 

• the existence of extreme configurations in 
which, for example, all solutions have an equal 
mean value or every solution is distant exactly 
delta units from the best (a.k.a. the least 
favorable configuration) or ordered solutions 
are equally spaced from one another; 

• the difference between solutions which is 
assumed to be statistically insignificant; 

• the structure of the problem space. 
 
This stated, it is quite logical that different 

problems require different approaches. For example, in 
complex systems one of the following situations might 
occur: i) all the possible alternative system 
configurations are known before experimentation or ii) 
system configurations are revealed (meaning generated) 
during experimentation. Obviously, these cases also call 
for the use of specific (meaning different) procedures. 

In this paper, we consider selecting the best 
system(s) according to a user-defined probability under 
a pre-assigned time budget, whenever the solutions are 
either all known a priori (see Bechhofer, Santner and 
Goldsman 1995 for a complete summary) or revealed 
during experimentation (Hong and Nelson 2007). For 
the former case, we examine two stand-alone R&S 
procedures that belong to the subset-selection and 
indifference-zone approaches; for the latter, we combine 
the above R&S procedures with a simulation-based 
optimization algorithm whose objective is to generate 
new alternative systems at run-time. 

In both cases, as far as notation is concerned, we 
use k  to call the number of alternative simulated 
system designs ( ki ..1= ); n  the number of 
observations ( nj ..1= ) sampled from each system 
design; kµµµ ,...,, 21  the unknown k  expected values of 
the performance measure of interest; [ ] [ ]1... µµ ≥≥k  the 
ordered unknown k  expected values of the 
performance measure of interest (i.e. the system design 
in position k  is the greatest); 1,..., XX k  the sample 
means of the performance measure of interest for each 
system design; 2σ  the common unknown variance of 
the alternative system designs; 2

1
2 ,..., SSk  the sample 

variance of the performance measure of interest for each 
system design; α−1  the confidence level (or user-
specified probability *P ). In a maximization problem, 
we also use k  to call the system with the best (meaning 
greatest) performance measure of interest. 

It is worth observing that the basic underlying 
assumptions for all these R&S procedures, meaning 
independent and identically distributed normal data with 
common variance, usually depart from the realistic 
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settings involved when simulating real-world systems. 
However, some important statistical results allow to 
extend the application of simulation-based optimization 
methods to problems in which simulation output data is 
not independent, nor normally distributed. These issues 
range from performing the proper process initialization 
(Law and Kelton 2000) to finding a consistent estimator 
for the sample variance (Meketon, and Schmeiser 1984; 
Goldsman, Meketon and Schruben 1990; Damerdji 
1994; Song and Schmeiser 1995; Glynn and Whitt 
1997; Steiger and Wilson 2002). 

 
2.1. Subset-selection Procedures 
Rather than claiming that one population is the best, 
perhaps it is more convenient to claim that one is 
confident that the best population is contained in a 
subset I  of the { }k,...,2,1  competing simulated 
systems. Subset selection procedures are based on this 
logic. These R&S procedures aim at producing a subset 
of (small) random size that contains the best system, 
with a user-specified probability. 

This R&S approach was first introduced by Gupta 
(1965) with the purpose of obtaining a subset 

{ }kI ,...,2,1⊆  according to which 
 

{ } .1 α−≥∈ IkP   (1) 
 

Basically, Gupta’s idea was to include in I  all the 
systems k  that fall in the following interval: 

 

( ) ( )
⎥
⎥
⎦
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⎢
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hnX kk ,2σ   (2) 

 
where σ  is the common, known standard deviation and 

( )nX k  is the maximum among the sample means. 
Obviously, the most favorable case would be 1=I . 

In order to guarantee (1), the value of h  in (2) is 
determined as follows: 
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If kµ  is the unknown performance measure of the 

“best” system, then ( )

n

ki

2σ

µµ −
−  is a positive value, thus 
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and finally 

 
{ } { } α−=−=≤≥∈ 11,...,2,1, kihZPIkP i  (6) 

 
where ( )121 ,...,, −kZZZ  are distributed according to a 
multivariate normal distribution with means equal to 0, 
variances equal to 1 and common pair-wise correlation 
equal to 21 . In order to guarantee (1), h  must be the 

α−1  quantile of the maximum value of 
( )121 ,...,, −kZZZ . 

The following pseudo-code provides a high-level 
description of Gupta’s approach:   

 
0. select 1-α, n and h;  
1. take a random sample of n from each of the k 

systems; 
2. compute an estimate of the performance index 

of interest for each of the k systems; 
3. include a system in subset I if the system’s 

sample mean falls in (2). 
 
In the above procedure, the choice of  α−1  is left 

to the experimenter. Practically, α−1  should be greater 
than or equal to 5.0 , since any system could be 
included in I  by simply tossing a fair coin. At the same 
time, α−1  should also be greater than or equal to k1  
which is the probability of randomly selecting a system 
for inclusion in the subset. A pure empirical rule 
(Gibbons, Olkin and Sobel 1979) recommends 

( )k5.05.01 +≥−α . 
 

2.2. Indifference-zone Procedures 
Similar to any other selection procedure dealing with 
random variates returned from a simulation process, the 
indifference-zone based approach may or may not select 
the simulated system configuration which is truly 
representative of the best solution (if it does, then a 
correct selection (CS) is said to have been made). The 
novelty lies in the fact that this selection approach is 
statistically indifferent to which system configuration is 
chosen among a set of competing alternatives when 
these alternatives all fall within a fixed distance from 
the best solution. 

This stated, let { }CSP  be the probability of correct 
selection and δ  the indifference-zone chosen by the 
experimenter. In a maximization problem the 
probability of performing a correct selection with at 
least probability *P  is 

 
{ } { } .|ˆ *PkiPCSP ikik ≥≥−≠∀>= δµµµµ  (7) 
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The probability of correct selection (7) was first 
computed in Rinott (1978) by resorting to numerical 
integration under the hypothesis of normality of the 
statistics involved. If ( )CSP  is the probability that 

( )kk nX  is the true “best” sample mean, namely it 
corresponds to [ ] ( )kk nX , then 
 
( ) =CSP  

 
( ) [ ]( )[ ]kkkk nXnXP ==   (8) 

 
( ) ( )[ ]11 −−>= kkkk nXnXP ,  for short [ ]1−> kk XXP  (9) 
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distributed according to Student’s law with 
01 nnn kk === − L  degrees of freedom (Law and Kelton 

2000) and since kX  and 1−kX  are assumed to follow a 
Normal distribution, then 
 
( ) =CSP  
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According to the total probability distribution 
conditioned on kT ,  
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Because of independence between kT  and 1−kT  then 
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In the particular case (maximization) under examination 
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Since [ ] [ ] δµµ ≥− −1kk , the final result is 
 

( ) ( ) ( ) .
0

1∫
∞

=

+≥
−

t
TT dttfhtFCSP

kk
 (17) 

 
Note that equality is verified when [ ] [ ] δµµ =− −1kk . If 

the integral is set equal to *P  and solved numerically 
for h , for different values of n  (the number of 
observations taken from the system to compute the 
sample mean), the results can be tabled and read to 
obtain h , which is also known as Rinott’s constant. 
Numerical values for h  are tabled in Wilcox (1984). 

The following pseudo-code provides a high-level 
description of a two-stage indifference-zone procedure: 

 
Stage 1 
0. select 1-α,δ, n0 and h;  
1. take a random sample of n0 from each system; 
2. compute the sample variance Si

2 of the 
performance index of interest for each system; 

3. compute Ni=max(n0, h2Si
2/δ2); 

Stage 2 
4. if n0>=maxi Ni then select the system with the 

greatest sample mean otherwise take an 
additional sample of Ni-n0 from each system i 
and then select the system with the greatest 
sample. 

 
As shown at step 3, the total number of samples to be 
taken from each system mostly depends on sample 
variance and, thus, also on how the sample mean is 
computed. In two-stage R&S approaches, different 
methods are used for this purpose. Rinott (1978) uses a 
classic sample mean, while Dudewicz and Dalal (1975) 
use a weighted sample mean during the second stage. In 
(Canonaco, Legato and Mazza 2009), we investigate a 
moving-average sample mean whose early results are 
very promising. 

 
3. SEQUENTIALLY REVEALED 

CONFIGURATIONS 
The R&S procedures examined in the previous section 
are based on the common assumption that a (small) 
number of system configurations are known a priori. In 
this particular case, the guarantee of selecting the best 
or near-best alternative when all solutions have already 
been sampled and retained appears to be both very 
appealing and practicable. However, at times, a 
combinatorial, unknown number of configurations need 
to be explored. When this occurs, k  different systems 
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configurations (with 1≥k ) can be revealed sequentially 
during a simulation run by means of a so-called system 
generating algorithm (SGA). Under this hypothesis, 
should an exhaustive coverage of all the possible 
system combinations be not reasonable, nor affordable 
from a computational point of view, then metaheuristic-
based approaches would have to be addressed. 
Examples of similar new, promising methodologies are 
simulated annealing (Ahmed and Alkhamis 2002; 
Andradóttir and Prudius 2005) and adaptive balanced 
explorative and exploitative search (Prudius and 
Andradóttir 2004; Prudius 2007). Although these 
algorithms are not used to perform an exhaustive 
coverage of the sample space, nor do they provide any 
sort of control running on which part of the feasible set 
is being explored, the solutions returned as final output 
are likely to belong to the set of optimal global 
solutions (Legato, Mazza and Trunfio 2008). This is a 
major issue in light of how demanding a statistical 
guarantee of correct selection in each iteration can be, 
especially when the number of candidate solutions 
visited by the optimization process is very large. As 
matter of fact, the new sequential selection procedures 
presented in (Hong and Nelson 2007) are applicable to 
small-scale optimization problems alone (with a number 
of systems 500≤ ), while extensions of these 
procedures to optimization problems with a very large 
number of alternatives is currently a subject of ongoing 
research efforts. 

This stated, an overall scheme of the experimental 
framework, providing both system design generation 
and evaluation for selecting the best among these 
competing alternatives, can be summarized by the 
following pseudo-code. 

 
0. set initial system design to be the best system 

design and set iteration equal to 0; 
1. update iteration and generate k (k≥1) 

alternative system designs during the current 
iteration;  

2. compare alternative system designs generated 
with current best system design and, 
eventually, update the best; 

3. if stopping condition is met then exit, otherwise 
go to Step 1. 

 
The R&S procedures examined in the previous section 
are used for system comparison in the above schema 
(Step 2), while the simulated annealing (SA) algorithm 
now described is used as SGA (Step 1). 
 

0. set input parameters (initial Temperature, 
lower bound Temperature, time-budget) and 
best system design to be initial system design; 

1. while elapsed time is less than time-budget and 
the Temperature is less than the lower bound 
value: 
(a) generate a system design from the current 

system design; 

(b) if the new design is “better”, then set best 
system design to be new design; else 
accept new design as best with probability 
p=exp(∆/Temperature), where ∆ is the 
difference between the two designs.  

 
In brief, the SA approach is aimed to generate feasible 
schedules, explore them in a more or less restricted 
amount without getting caught in local minima and, 
finally, stop at a satisfactory solution. 

 
4. NUMERICAL EXPERIMENTS 
In this section, we present our efforts in searching for 
“intelligent” sample allocation when solving well-
structured problems with significant constraints, 
especially within large, real-sized contexts. From a 
practical point of view, avoiding over-sampling affects 
the termination of the selection procedures and, thus, 
results are obtained with the least amount of simulation 
(i.e. execution time) possible. 

Let us first examine the empirical performance of a 
primitive Gupta-like subset-selection procedure to 
select the best yard crane assignment and transfer policy 
in a terminal container. In particular, the objective is to 
select the policy which allows to minimize the 
maximum average time to complete stacking/retrieval 
operations of suitable batches of containers (BCT) in 
the yard. The scenario proposed features medium 
container traffic intensity and high crane transfer time 
among yard blocks. All experiments are carried out by 
setting 90.0* =P , 5=k  and 10=n , under the 
realistic assumption of unknown, but common variance 
for each system design. To this end, Bartlett’s test 
(1937) has been used to verify the common variance 
assumption. 

 
Table 1: Simulation Results for the Five Alternative 
Yard Policies 

N° of Observations Policy i SSP RP OP 
Average BCT 

(minutes) 
Policy 1 10 31 10 97.369 
Policy 2 10 27 17 91.043 
Policy 3 10 10 10 78.177 
Policy 4 10 32 26 100.052 
Policy 5 10 48 17 92.343 
 
According to the subset-selection procedure (SSP), 

the interval defined by (2) for this particular problem is 
[ ]90.155 78.117, , thus { }3=I . This result has also 
been compared with those returned by another two R&S 
procedures: Rinott’s procedure (RP) (1978) and our 
procedure (OP) (Canonaco, Legato and Mazza 2009). 
As one may easily calculate from Table 1, a cumulative 
(over all policies) number of 148 and 80 observations 
are required by these two procedures, respectively, 
whereas the SSP accomplishes the same result with 
only 50 observations. The case study just presented is 
representative of a typical situation where system 
configurations are well-spaced from each other, with 
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respect to the performance metric adopted for 
comparison. Here one may recognize that the SSP 
allows to screen suitable configurations with a very 
limited number of observations. 

We now present a second case which requires the  
combination of multi-stage R&S procedures with 
simulation-based optimization approaches since the 
alternative systems are revealed during the execution of 
the experiment. 

In the combined procedure (CP) proposed herein, 
we pursue the idea of “efficient” sampling by basing the 
number of observations to be taken from each system 
on the convergence of process variance and whether this 
occurs within a certain number of simulation runs. In 
other words, at each iteration, this variance-weighted 
decisional mechanism decides to switch between adding 
a single (Chen and Kelton 2005) or multiple additional 
simulation output observations (Kim and Nelson 2003). 
With this multi-stage approach, the procedure is 
expected to terminate faster. 

We use the above framework to deal with a 
complex scheduling problem that arises in a container 
terminal when multiple quay cranes must be assigned to 
holds of the same vessel to perform discharge (D) and 
loading (L) operations. In this problem (also referred to 
as the quay crane scheduling problem QCSP, (Legato, 
Mazza and Trunfio 2008)), the classical objective is to 
minimize the vessel’s overall completion time 
(makespan), while taking into account precedence and 
non-simultaneity constraints between holds when they 
are operated by crane. According to our experience 
based on real data, D/L operation rates have been fixed 
to an average value of 26 containers/hour. For sake of 
sensitivity analysis, we have defined two D/L 
distributions for operation times: a realistic 8-order 
Erlang distribution and a basic exponential distribution. 

 
Table 2: Comparison of Simulation Results Produced 
by Rinott’s Procedure and Combined R&S Procedure 

Average Makespan 
(hours) D/L 

Distribution 
Solutions 
Evaluated RP CP 

20 17.74 17.4 
135 14.05 14.45 

Erlang  

1379 12.93 12.67 
20 17.77 16.45 
135 14.15 14.24 

Exponential 

1379 13.04 13.21 
 
Observe that the variance associated to the individual 
discharge/loading service times does not significantly 
affect the performance of the different procedures in 
terms of the average quality of solution returned by 
each of them (i.e. final, mean value of the makespan), as 
illustrated in Table 2. Rather, it has a clear impact on 
the average number of observations (simulation runs) 
required to achieve solutions, as one may recognize 
from results in Table 3 where the number of 
observations corresponding to the set of solutions in 
Table 2 are reported. In particular, the CP procedure 

seems to definitely outperform the classical, two-stage 
RP procedure by at least 20% whenever service times 
becomes less regular (exponential case). 
 
Table 3: Comparison of Observations Required by 
Rinott’s Procedure and Combined R&S Procedure 

N° of 
observations D/L 

Distribution RP CP 

CP Performance 
(∆%)  

212 209 +1.42% 
1421 1405 +1.13% 

Erlang  

14421 14283 +1% 
1100 791 +28.1% 
7035 5268 +25.12% 

Exponential 

71727 54029 +24.67% 
 

5. CONCLUSIONS 
We have discussed some recent issues on searching and 
ranking feasible solutions when using simulation-based 
approaches to optimization problems in logistics. This 
has been accomplished for the case in which candidate 
optimal solutions are all available at the initial step of 
the simulation-optimization procedure, as well as for the 
case in which they are revealed during the execution of 
the procedure. A subset-selection technique is shown to 
be effective for the problem of selecting the best yard 
crane assignment and transfer policy in a terminal 
container, due to the specific structure of the candidate 
policies. On the other hand, dealing with the quay crane 
scheduling problem, we obtained encouraging 
numerical evidence on the idea that changing the 
number of observations from a single one to multiple 
ones, according to the stability of the estimate of the 
process variance, may result as a practical key for 
speeding-up the simulation-based optimization 
procedure. 
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