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ABSTRACT 
This paper describes a two-phase simulation-based 
optimisation procedure that integrates the Genetic 
Algorithm and Response Surface-based Linear Search 
algorithm for developing optimal power-of-two 
replenishment policy in multi-echelon environment 
during the maturity phase of the life cycle of a product. 
The problem involves a search in high dimensional 
space with different ranges for decision variables scales, 
multiple objective functions and problem specific 
constraints, such as power-of-two and nested/inverted-
nested planning policies. The paper provides illustrative 
example of the two-phase optimisation procedure 
applied to generic supply chain network. 

 
Keywords: multi-echelon cyclic planning, genetic 
algorithm, response surface-based linear search 

 
1. INTRODUCTION 
For the last years, there has been increasing attention 
placed on the performance, design, and analysis of 
multi-echelon supply chains (Merkuryeva and 
Napalkova 2007). There are two different approaches 
used to manage supply chains: single-echelon and 
multi-echelon approaches.  

The single-echelon approach, which includes 
continuous review, periodic review, single-unit 
decomposition, Wagner Within, Silver Meal techniques 
etc., splits multi-level supply chain into separate stages 
providing suboptimal solutions. 

In contrast to it, the multi-echelon approach, which 
could be applied to non-cyclic and cyclic policies, 
considers managing all the echelons in a holistic way 
and, thus, optimises the global supply chain 
performance. Compared to non-cyclic policies, which 
are more preferable from theoretical point of view, 
cyclic planning in multi-echelon environment has more 
practical benefits, because it provides easy control, 
reduced administrative costs and safety stocks, and 
elimination of bullwhip effect (Campbell and Mabert 
1991). The main idea of cyclic planning is to use cyclic 
schedules at each echelon and synchronise them with 

one another (Merkuryev, Merkuryeva, Desmet and 
Jacquet-Lagrèze 2007). 

Optimisation of multi-echelon cyclic plans refers 
to the class of multi-objective optimisation problems, 
which are usually characterized by a large search space 
of decision variables, conflicting and stochastic 
objectives etc. (Chen 2003). While there is no a single 
optimal solution for  a number of conflicting objectives, 
the development of an algorithm, which gives a large 
number of alternative solutions lying near the Pareto 
optimal front and tackles the variations of a response 
generated from the uncertainties in the decision 
variables and/or parameters, is of great practical value. 

Different analytical and mathematical 
programming methods, such as mixed integer 
programming, stochastic dynamic programming, 
network programming, etc., have been developed to 
define optimal cyclic policies (Campbell and Mabert 
1991, Federgruen and Zheng 1993). However, real-
world supply chains sometimes cannot expect to get a 
solution by such methods. 

The motivation for current study is to propose a 
two-phase simulation-based optimisation procedure 
aimed to find optimal parameters of a multi-echelon 
cyclic policy for each of supply chain nodes, i.e. 
replenishment cycles and order-up-to levels, during the 
maturity phase of the life cycle of a product in order to 
minimize the sum of ordering, production and inventory 
costs, respecting fill rate’s and cyclic planning 
constraints, taking into account assumptions of 
stochastic demand, capacity restriction and backorders. 
 
2. OPTIMISATION PROBLEM STATEMENT 
The multi-objective simulation-optimisation problem 
can be symbolically represented in compact form as 
(Napalkova and Merkuryeva 2008): 
 
Min E[F(x)] = E[f1(x),…, fM(x)], (1) 
subject to: g(x) = E[r(x)] ≤ 0 and  h(x) ≤ 0, 

 
where E[⋅] is a mathematical expectation; x = (x1,…xK) 
∈ X, f = (f1,…,fM) ∈ F; K is a number of decision 
variables; M is a number of objective functions; X is 
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called the decision space; F is the objective space; x is 
called a vector of decision variables; f is a vector of 
objective functions; g is a vector of stochastic 
constraints; h is a vector of deterministic constraints on 
the decision variables; r is a random vector that 
represents several responses of the simulation model for 
a given x. 

Proceeding from (1), the solution of multi-
objective optimisation problem is a vector of decision 
variables x that satisfies all feasible constraints and 
provides the best trade-off between multiple objectives. 
To describe objective vector function (1), one could use 
traditional methods of aggregating multiple objectives 
into a single objective. The main strength of this 
approach is a computational efficiency and simple 
implementation. The weakness is the difficulty to 
determine a value of the weights that reflect a relative 
importance of each criterion (Abraham, Jain and 
Goldberg 2005). Therefore, this paper applies the Pareto 
dominance concept for finding trade-off solutions. 

The trade-off solution x* ∈ F is said to be Pareto 
optimal (or non-dominated) if there does not exist 
another x ∈ F such that fi(x) ≤ fi(x*) for all criterions i = 
1,…,M and fj(x) < fj(x*) for at least one criterion j 
(Abraham, Jain and Goldberg 2005). Finding the Pareto 
optimal set is a necessary condition for selecting trade-
off solutions. Note that this definition of Pareto 
optimality assumes all the objective functions to be 
minimized. If some objective function fi is to be 
maximized, it is equivalent to minimize the function –fi. 

Regarding the problem of cyclic planning within 
multi-echelon supply chain environment we deal with 
two objective functions. The first one is to minimize the 
average total cost represented by sum of inventory 
holding, production and ordering costs in accordance 
with the following equation: 
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where TC denotes the total cost, CPjt denotes 
production cost in process j per period t, COit is 
ordering cost at stock point i per period t, and CHit is 
inventory holding cost at stock point i per period t; I and 
J correspond to the number of stock points and 
processes, and T defines the number of periods in the 
planning horizon.  

The second objective function is to maximise 
customer service requirements specified by the order fill 
rate.  
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where QCikt is a fraction of orders provided by stock 
point i to end-customer k in time period t, Dkit is actual 
demand of end-customer k to stock point i in time 
period t. 

Controlled in optimisation experiments, this 
performance measure is introduced to avoid 
unconstrained minimization of the total cost.  

The decision variables are replenishment cycles 
and order-up-to levels, which are considered as discrete 
and continuous type variables, respectively. 

The proposed approach is to integrate (a) the 
Genetic Algorithm (GA) to guide the search towards an 
approximate Pareto optimal front and (b) Response 
Surface-based Linear Search (RSLS) algorithm to 
improve solutions found by GA. The motivation for 
selecting these algorithms is the following. As it was 
mentioned above, the optimisation problem (1) is multi-
objective and includes both discrete and continuous 
type variables. GA is well suited for solving multi-
objective combinatorial optimisation problems. RSLS is 
appropriate to improve existing solutions as it is based 
on local search approach. 

 
3. THE TWO-PHASE OPTIMISATION 

PROCEDURE 
 

3.1. Conceptual model 
The simulation-based optimisation procedure 
(Merkuryeva, Napalkova and Hatem 2008) developed 
to create optimal cyclic schedules in multi-echelon 
environment consists of the following two phases:  

 
• Phase 1: Optimisation of replenishment cycles 

by Multi-Objective Genetic Algorithm; 
• Phase 2: Optimisation of order-up-to levels by 

Response Surface-based Linear Search. 
 

3.2. Phase 1: Multi-Objective Simulation-based 
Genetic Algorithm 

The Multi-Objective Simulation-based Genetic 
Algorithm (MOSGA) is aimed to optimising lengths of 
replenishment cycles in multi-echelon supply chain 
networks during the maturity phase of the product life 
cycle. In this phase, corresponding order-up-to levels 
are calculated using approximate analytical formulas. 
Table 1 represents main blocks of MOSGA, which are 
described below. Flowchart of the proposed algorithm 
is given in Figure 1. 

 
Table 1: Main blocks of MOSGA 

Nr Block Description 
1 Encoding mechanism Modified binary encoding 
2 Initial population Random initialisation 
3 Fitness assignment Pareto-based ranking 
4 Fitness estimation Through simulation 
5 Penalty function Artificial increase of total 

cost 
6 Crossover & mutation 

operators 
Uniform crossover 
One-point mutation 

7 Diversity preserving 
mechanism 

Crowding distance 

8 Selection strategy Crowded tourn. selection 
9 Elitism strategy (μ + λ) - selection 
10 Termination criterion Fixed nr of generations 
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Figure 1: The MOSGA scheme

 
3.2.1. Encoding mechanism 
Encoding mechanism is aimed to codify replenishment 
cycles for supply chain stock points that have to satisfy 
power-of-two policy constraints. Here, the cycles are 
represented by multiples of two. Therefore, the 
following modified encoding procedure is introduced 
that allows codifying cycles by the only powers of the 
base 2.  
 

For stock point i in chromosome n: 
1. Represent the cycle Cyin as a multiple of two, 

i.e. 2p, Cyin = t*2p, where t is a time-step 
parameter, p is a power of the base 2. 

2. Encode a power p to a binary string aLn, where 
L is a length of a chromosome. 

 
For instance, the cycle Cyin = 28 could be 

represented as 7*22, where the time-step parameter t = 7 
days. Then, the power p = 2 is encoded to a binary 
string a2n = <1, 0>, i.e. 0*20 + 1*21 = 2. 

 
3.2.2. Initial population 
Initial population is generated randomly by using 
uniform distribution, in order to cover the investigated 
search space. To define a lower bound of the population 
size N that guarantees both adequate genetic diversity 
and reasonable simulation processing time, the 
following D. Goldberg’s formula is used: 

 
N = 1.65*2(0.2*L)  (4) 

 
The described below steps are applied to create an 

initial population. 
 

1. Generate a population PN = {Cy11 = 2p1, Cy21 = 
2p2,…, CyIN = 2pN}, where I is a number of 

stock points in the supply chain, by using 
“Minimal standard” pseudo-random number 
generator of Park and Miller. 

2. (optional). Sort replenishment cycles subject to 
nested or inverted-nested policy.  

3. Calculate order-up-to levels Sin for each stock 
point i in each chromosome n from the 
population PN by using the sequence of 
analytical approximate formulas described in 
Napalkova and Merkuryeva (2008). 

 
3.2.3. Fitness assignment and estimation 
Fitness is defined based on two objectives represented 
by performance measures, i.e. the total cost and fill rate 
that are obtained from simulation experiments. To 
estimate fitness values of chromosomes, the Pareto-
based ranking originally proposed in the Non-
dominated Sorting Genetic Algorithm II (Deb, Agrawal 
and Meyariv 2000) is applied. 

The example provided below illustrates the 
concept of the Pareto-based ranking.  

 

 
Figure 2: Example of the Pareto-based ranking 
 
The solution represented by the point A in Figure 2 

is better than the solution in the point B, as it gives 
higher fill rate at lower total cost. This means that the 
solution A is non-dominated and belongs to the first 
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non-dominated front (domination depth is 1), while the 
solution B is dominated. 

The following steps are used for the Pareto-based 
fitness assignment: 

 
1. Find non-dominated solutions in the entire 

population and assign them domination depth 
rn = 1, n ∈ Rr, where Rr is the approximate 
Pareto optimal set of non-dominated solutions 
with a domination depth rn. 

2. Temporally exclude non-dominated solutions 
from the population. 

3. Find new non-dominated solutions in the 
remaining population and assign them 
domination depth rn = rn + 1, n ∈ Rr. 

4. Repeat Steps 2-3 until all chromosomes are 
ranked. 

5. Reorder solutions according to their fitness 
values in the increasing sequence, FITNS = 
{fitns1 ≤ fitns2) ≤ …≤  fitnsN}. 

 
3.2.4. Penalty function 
Penalty function is introduced to decrease the survival 
probability of solutions, which provide a fill rate lower 
than the pre-defined threshold. If a solution has a fill 
rate lower than threshold, its total cost is artificially 
increased as follows: 
 
Fp: TC*k,  (5) 

 
where k is a multiplier coefficient. 

Here, the fill rate’s threshold is defined by 75% 
and the multiplier coefficient k is equal to 2. In this 
case, chromosomes with the fill rate below the threshold 
75 % are automatically excluded from the population. 
The value of coefficient k could be also adjusted within 
the optimisation process. 

 
3.2.5. Crossover and mutation 
Crossover and mutation operators provide the 
exploration and exploitation of a search space. The 
exploration is used to investigate new and unknown 
areas in a search space. The exploitation is aimed to 
making use of knowledge acquired by exploration to 
reach better positions on the search space. In the 
proposed GA, the uniform crossover and one-point 
mutation with probabilities [0.5; 0.8] and [0.01; 0.1], 
respectively, are introduced. 
 
3.2.6. Diversity preserving mechanism 
In order to obtain solutions uniformly distributed over 
the Pareto front, the diversity preserving mechanism 
based on a crowding distance is implemented in 
MOSGA.  

The crowding distances dn are calculated based on 
the values of total cost and fill rate that are normalized 
in the interval [0.0; 1.0]. 

 
1. For each chromosome n initialize crowding 

distances dn = 0, n = 1,…,N. 

2. Sort chromosomes aLn, n = 1,…,N subject to 
normalised total cost fn

1,norm. 
3. Assign d1 = ∞. 
4. For each crowding distance dn, n = 2,…,N-1 do 

Step 5.  
5. dn = dn + d1

n-1,n+1, d1
n-1,n+1 = fn+1

1,norm - fn-1
1,norm. 

6. Sort chromosomes aLn, n = 1,…,N subject to 
normalised fill rate fn

2,norm. 
7. Assign dN = ∞. 
8. For each crowding distance dn, n = 2,…,N-1 do 

Step 9.  
9. dn = dn + d2

n-1,n+1, d2
n-1,n+1 = fn+1

2,norm – fn-1
2,norm. 

 
The main advantage of the crowding approach is 

that a user doesn’t have to define additional parameters, 
such as, for example, a sharing parameter. 
 
3.2.7. Selection strategy 
Crowded tournament selection originally proposed in 
NSGA-II [14] is used in MOSGA. The main idea of this 
selection strategy is that a crowded comparison operator 
is applied to choose the better chromosome in randomly 
selected ones. Because domination depth is used to 
assign fitness values, chromosomes with the same 
domination depth could be selected. In this case, to 
define the better chromosome, an additional attribute is 
introduced. In the algorithm, a crowding distance, 
which is an estimate of the density of solutions 
surrounding the current solution, is proposed as the 
additional attribute. Chromosomes with bigger 
crowding distances have more chances to be selected. 
Crowding distances of chromosomes, which provide the 
best value for each objective, are assigned to 999999 
that means ∞. As a result, every chromosome in the 
population has the following two attributes: (1) 
domination depth and (2) crowding distance. From two 
solutions the solution with the lower domination depth 
is preferable. If both solutions have the same depth then 
the solution with larger crowding distance is preferable.  

The crowded comparison operator (≥ ) is defined 
as follows: 

 
aLj ≥ aLk if (rj < rk) or ((rj = rk) and (dj < dk)), (6) 
 
where dj and dk are crowding distances for 
chromosomes j and k.  

 
3.2.8. Elitism strategy 
Elitism strategy is used to avoid the loss of non-
dominated solutions during the evolution process. In 
each generation, an offspring population is added to a 
parents’ population. Domination depths of 
chromosomes in the combined population are updated. 
First N solutions are gathered for the next generation, 
where N is a population size. This strategy is often 
called as (μ + λ) – selection, where μ and λ assign 
parents and mating pool, respectively. 

The Genetic Algorithm automatically stops the 
optimisation when the pre-defined number of 
populations is generated. 
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3.3. Phase 2: Response Surface-based Linear Search 
algorithm 

The algorithm in the phase 2 is aimed to improve the 
cyclic planning solution of the Genetic Algorithm 
received in phase 1 by adjusting analytically calculated 
order-up-to levels of stock points that could result in 
decreasing the total cost and/or increasing the end-
customers fill rate. It is based on the Response Surface-
based Methodology (RSM) applied to simulation 
optimisation problem (Merkuryeva 2005). 

The developed Response Surface-based Linear 
Search (RSLS) algorithm is based on local 
approximation of the simulation response surface by a 
regression type meta-model in a small region of 
independent factors and integrates linear search 
techniques for optimising stock points’ order-up-to 
levels. A linear search is a sequential procedure that in 
each iteration m includes the following main building 
blocks: 

 
1. Local approximation of the response surface 

function, 
2. Checking the fit of a meta-model, 
3. Linear search in the steepest descent direction, 
4. Updating the Pareto front. 
 

3.3.1. Local approximation of the response surface 
function 

The total cost is defined as a simulation response and 
order-up-to levels as input factors. Local approximation 
of the response surface function in the small region of 
input factors is performed by using a first-order model. 
The small region of input factors, or a local search 
space, is described by a central point, lower and upper 
bounds. 

In iteration m lower ti
m and upper ui

m bounds of the 
local search space, or a region of experimentation, are 
defined as proc % decrease and increase from the 
central point, respectively: 

 
m
i

m
i

m
i proct 00 *ξξ −= , Ii ,...,1= , (7) 

m
i

m
i

m
i procu 00 *ξξ += , Ii ,...,1= , (8) 

 
where ξm

i0 is a central point of input factor i. 
An example of a local search space definition in a 

set of order-up-to levels is given in Figure 3. 
 

 
Figure 3: Example of local search space calculation 

 
To increase the numerical accuracy in estimation 

of regression coefficients, input factors are coded by the 
following formula: 

 

m
i

m
i

m
im

i
c

x 0ξξ −
= , Ii ,...,1= ,  (9) 

 
where m

ix  is a coded input factor i; ci
m is a distance 

between the central point and lower (or upper) bound. 
Encoding procedures for order-up-to levels are 

illustrated in Figure 4. 
 

 
Figure 4: Example of encoding procedure 

 
To make local approximation of a simulation 

response surface function, the first-order regression 
meta-model for coded input factors that describes main 
effects of input factors is used in iteration m: 
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where bi

m is a regression coefficient of input factor i; εm 
is a statistical error of a regression model. 

In order to estimate meta-model coefficients bi
m 

from simulation experiments, the Plackett-Burman 
experimental design added by simulation replications in 
the central point is applied. The template for the 
proposed design has been generated in Minitab 
statistical software.  

Finally, estimates of coefficients of the meta-
model (10) are calculated by using well-known method 
of least squares. 

 
3.3.2. Checking the fit of a meta-model 
Lack-of-Fit test is performed to check the adequacy of a 
regression meta-model and to verify the least-squares 
method assumptions. Testing lack-of-fit, that gives the 
determination coefficient close to 1 (100%) and p-value 
< 0.05 implies the resulted meta-model to be adequate. 
 
3.3.3. Linear search in the steepest descent direction 
A linear search is performed within the local search 
space for order-up-to levels, in the steepest descent 
direction defined by a vector (b1

m, b2
m,…, bq

m) starting 
from the central point, where b1

m, b2
m,…, bq

m are 
coefficients of the simulation meta-model received in 
iteration m. The increment along the projection of the 
search direction is calculated only if corresponding 
regression coefficient is significant (p-value < 0.05). 
These increments of coded Δxi

m and decoded Δi
m input 

factor i are calculated as follows: 
 

m
i

i

m
im

i
b

bx
max

−
=Δ , Ii ,...,1= ,  (11) 
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m
i

m
i

m
i cx *Δ=Δ , Ii ,...,1= .  (12) 

 
The values of decoded input factors in the next 

step of a linear search within iteration m are calculated 
as follows: 

 
m
i

m
i

m
i Δ+= ξξ , Ii ,...,1= .  (13) 

 
The following termination rules are proposed to 

stop the linear search in iteration m: 
 
1. The simulation response value could not be 

improved,  
2. The search goes outside the pre-defined local 

search space. 
 

Lower and upper bounds of a new experimental 
region in iteration m+1 are updated by using formulas 
(7, 8). 

 
3.3.4. Updating the Pareto front 
Solutions found during the RSLS are included in the 
approximate Pareto optimal set initially generated by 
the Genetic Algorithm. Then all solutions in the 
resulting Pareto optimal set are reordered according to 
their fitness values in the increasing sequence. 

 
4. RESULTS AND ANALYSIS 
 
4.1. User interface 
The user-interface of MOSGA is developed in MS 
Excel using ActiveX controls. There are three main 
user-interface windows, which are used to group the 
input data, GA and simulation options. 

The input data window defines the number of input 
factors, minimal and maximal values of replenishment 
cycles, synchronization policy, etc. 

The window of algorithm options (Figure 5) 
describes the number of genes to encode input factors, 
population size, a type of selection and reproduction 
strategies, etc. 

The window of simulation options describes the 
number of simulation replication per simulation 
experiment, length of simulation run warm-up period in 
hours.  

Control buttons allow the user to load the 
simulation model, run and terminate the optimisation 
algorithm, as well as calculate the population size based 
on D. Goldberg’s formula (4) for binary-encoded 
chromosomes in such a way that every solution in the 
search space is attainable with the crossover genetic 
operator. 

 
4.2. Input data description 
The application itself is aimed to find an optimal cyclic 
plan of a chemical product, i.e. liquid based raisin, in 
order to minimise inventory holding, ordering and 
production costs, and maximise end-customers fill rate. 
As a test bed, the chemical manufacturing supply chain 

is used. The main operations occurred in the supply 
chain network are the following. In the plant CH (see, 
Figure 6), the raw material is converted to the liquid 
based raisin. It is then either sourced to direct customers 
or shipped to the plant DE, where other components are 
added to make different products. From that plant, the 
end-products are shipped to different types of 
customers. 

 

 
Figure 5: Example of MOSGA user-interface 

 
The ProModel-based simulation model of the 

above-described supply chain network is generated 
automatically using a simulation-based optimisation 
environment presented in Merkuryeva and Napalkova 
2007. The end-customer demand is normally 
distributed; and replenishment cycles are defined 
according to the power-of-two policy. Cycles are 
presented in weeks as follows, 7, 14, 28, 56, where 56 
days is the maximal cycle that corresponds to one full 
turn of a “planning wheel”. In this business case, 
specific policies such as nested or inverted-nested ones 
are not analysed. Initial stocks are equal to order-up-to 
levels plus average demand multiplied by cycle delays. 
Stock point 1 has infinite on hand stock and is not 
controlled by any policy. Backorders are delivered in 
full. 

 

 
Figure 6: Example of a generic network simulation 
model 
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Simulation run length T is equal to 224 periods. 
The warm-up period is defined by 112 periods. This 
allows modelling of two full turns of the “planning 
wheel”, i.e. 2*56 periods, during the warm-up period. 
Number of simulation replications is equal to 5. 

 
4.3. Solutions found by the Genetic Algorithm 
To optimise replenishment cycles, GA is executed with 
parameters summarized in Table 2.  

 
Table 2: Parameters of the Genetic Algorithm 

Parameter Value 
Population size 20 

Crossover probability 0.5 
Mutation probability 0.1 

Tournament size 2 
 
The algorithm works with 33 decision variables, 

which are assigned to network stock points. When the 
number of generated population is equal to 16, the 
algorithm is terminated. 

Figures 2 and 7 show solutions received from 
initial and final populations. It could be noticed that at 
the beginning the approximate Pareto optimal set 
includes a single non-dominated solution. However, 
during the evolution process the diversity of the 
approximate Pareto optimal set is increased, and the 
final population includes seven non-dominated 
solutions (Figure 7). 

 

 
Figure 7: Final population mapped in the objective 
space 

 

 
Figure 8: The Genetic Algorithm’s convergence subject 
to Total Cost 

 
Figures 8 and 9 illustrate execution of the Genetic 

Algorithm. The total cost and fill rate of parent 
chromosomes are plotted against the generation step. 
The algorithm makes quick progress in the beginning of 

the evolution that is typical for Genetic Algorithms. 
Then, there are phases when it hits the local optimum 
before mutations further improve its performance. 

 

 
Figure 9: The Genetic Algorithm’s convergence subject 
to Fill Rate 

 
4.4. Solutions adjusted by the Response Surface-

based Linear Search algorithm 
For each non-dominated solution received in phase 1, 
stock points’ replenishment cycles are fixed and their 
order-up-to levels are optimised by RSMS algorithm. 

Next, the Pareto front generated by GA is updated 
by adding solutions found within the RSMS (Figure 
10).  

As a result, we get that these solutions dominate 
the solutions received in the phase 1 and could 
substitute them in the final approximate Pareto front 
(Figure 11). 

 

 
Figure 10: Solutions of MOSGA and RSMS algorithms 

 

 
Figure 11: The final approximate Pareto front 

 
5. CONCLUSIONS 
The paper presents the simulation-based optimisation 
algorithm developed in order to define the optimal 
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lengths of cycles and stock point order-up-to levels 
during the maturity phase of the life cycle of a product. 
It integrates the Genetic Algorithm used to optimise 
replenishment cycles and Response Surface-based 
Linear Search Algorithm that allows adjusting order up-
to levels of stock points when replenishment cycles are 
fixed. The algorithm is applied to optimise parameters 
of cyclic plans in multi-echelon supply chain. The 
achieved results show the efficiency of the developed 
optimisation procedure. Future research will focus on 
the performance analysis of the developed procedure 
and algorithms in solving new problem instances. 

 
ACKNOWLEDGMENTS 
The presented research is supported by the European 
Social Fund within the National Programme "Support 
for the carrying out doctoral study programmes and 
post-doctoral researches" project "Support for the 
development of doctoral studies at Riga Technical 
University".  

The authors would like to thank Jonas Hatem from 
Möbius Ltd. for helpful comments and discussions. 
 
REFERENCES 
Abraham, A., Jain, L., Goldberg, R. 2005. Evolutionary 

Multiobjective Optimisation: theoretical advances 
and applications. United States of America: 
Springer.  

 
Campbell, G.M., Mabert, V. A., 1991. Cyclical 

Schedules for Capacitated Lot Sizing with 
Dynamic Demands. Management Science, pp. 409 
– 427. 

 
Chen, J.-H., 2003 Theoretical Analysis of Multi-

Objective Genetic Algorithms – Convergence 
Time, Population Sizing and Disequilibrium. 
Report for IEEE NNS Walter Karplus Research 
Grant. 

 
Deb, K., Agrawal, S., Meyarivan, T., 2000. A Fast 

Elitist Non-Dominated Sorting Genetic Algorithm 
for Multi-Objective Optimisation: NSGA-II. 
Proceedings of the Parallel Problem Solving from 
Nature VI Conference, Springer, Lecture Notes in 
Computer Science No. 1917, pp. 849 - 858. 

 
Federgruen, A., Zheng, Y-S., 1993. Efficient 

Algorithms for Finding Optimal Power-Of-Two 
Policies for Production/Distribution Systems with 
General Joint Setup Costs. Operation Research, 
Vol. 43, No. 3, pp. 458 – 470. 

 
Merkuryev, Y., Merkuryeva, G., Desmet, B., Jacquet-

Lagrèze, E., 2007. Integrating Analytical and 
Simulation Techniques in Multi-Echelon Cyclic 
Planning. Proceedings of the First Asia 
International Conference on Modelling and 
Simulation (AMS 2007), pp. 460 – 464. March 27 
– 30, Phuket, Thailand. 

Merkuryeva, G., Napalkova, L., 2007. Development of 
simulation-based environment for multi-echelon 
cyclic planning and optimisation. Proceedings of 
6th EUROSIM Congress on Modelling and 
Simulation, paper ID 452. Ljubljana, Slovenia. 

 
Merkuryeva, G., Napalkova, L., Hatem, J., 2008. 

Deliverable D2.1.5: Report on the response 
surface based meta-modelling optimisation 
algorithm for defining lengths of cycles during 
maturity phase of the life cycle of a product. Eclips 
project. 

 
Merkuryeva, G., 2005. Response surface-based 

simulation metamodelling methods with 
applications to optimisation problems. Chapter 15. 
Supply chain optimisation Product / Process 
Design, Facility Location and Flow control / Eds. 
A. Dolgui, J. Soldek and O.Zaikin,  Springer, pp. 
205 – 215. 

 
Napalkova, L., Merkuryeva, G., 2008. Theoretical 

Framework of Multi-Objective Simulation-Based 
Genetic Algorithm for Supply Chain Cyclic 
Planning and Optimisation. Proceedings of 10th 
International Conference of Computer Modelling 
and Simulation. Cambridge, England. 

 
Veldhuizen, V. A., 1999. Multi-objective Evolutionary 

Algorithms: Classifications, Analysis and New 
Innovations. Thesis (PhD). Air Force Institute of 
Technology, Wright-Patterson AFB, Ohio.  

 
AUTHORS BIOGRAPHY 
GALINA MERKURYEVA is Professor at the 
Department of Modelling and Simulation, Riga 
Technical University. She holds two degrees: DSc and 
Dr.sc.ing. G. Merkuryeva has professional interests and 
experiences in discrete-event simulation, simulation 
metamodeling and optimisation, simulation-based 
training, and supply chain simulation and decision 
support. 
 
LIANA NAPALKOVA holds her MSc degree in 
Computer Science from Riga Technical University 
(2006). Currently, she is a PhD student at RTU 
Department of Modelling and Simulation, and 
participates in research projects in the logistics field. 
Her interests focus on the use of simulation-based 
optimisation techniques for providing competitive 
advantages in multi-echelon supply chain cyclic 
planning. Liana Napalkova is a member of the Latvian 
Simulation Society. 
 

58


