
SIMULATION OF TRUST IN CLIENT – WEALTH

MANAGEMENT ADVISOR RELATIONSHIPS

Terry Bossomaier(a), Russell K. Standish(b)

(a)(b)CRiCS Centre for Research in Complex Systems, Charles Sturt University.
(b)School of Mathematics and Statistics, University of New South Wales.

(a)tbossomaier@csu.edu.au, (b)hpcoder@hpcoders.com.au

ABSTRACT

This paper describes a two phase model for sim-
ulating trust amongst clients and their wealth
management advisors. In phase one an artificial
life model was used to assess the dynamics of
trust. In phase two the model is extended to ut-
lise real data from a corporate database of client
information. The alife model highlighted needs
for information not captured directly, requiring
sophisticated inference techniques. Fuzzy logic
is used to describe client behaviour with rules
found through evolutionary optimisation. Anal-
ysis of mutual information between time series
of clients investments is used to determine links
between clients.

1. INTRODUCTION

Today’s companies operate in a very complicated
and sometimes turbulent environment. Unex-
pected changes in global resources such as the
food crises in 2008 and the escalating oil price
can dramatically change market positions. On
the other hand the subprime mortgage meltdown
has revealed just how complicated and fragile fi-
nancial systems can be.

Decision support systems and mining of the
vast quantities of consumer data in corporate
data warehouses are valuable but their capacity
to predict future requirements is often limited to
narrow extrapolation from the past. More pow-
erful scenario planning systems are needed which
can explore new trends, such as, for example,
the rapid switch of agricultural land from food
to biofuel production, a powerful influence with
little prior history.

Agent based models (ABMs) attempt to model
people, companies and external forces and to go
beyond simple extrapolation. From early mini-
malist models, some ABMs now incorporate many

millions of agents, such as the large Epicast mod-
els for studying pandemics in the USA.

Until a few years ago Australian workers were
in general locked in to the superannuation fund
provided by their employer. But following dereg-
ulation, people were allowed to choose to which
of many available funds they belonged. Inevitably
this created a significant market for financial ad-
visors. At first such services were poorly moni-
tored and advice was not always sound. Worse
there were a number of concerns about conflict of
interest, where advisors were given hidden trail-
ing commissions or promoted a fund owned by
their parent organisation.

Thus trust in financial services became an im-
portant issue for banks and other providers to
confront. This project focussed on building an
ABM with two distinct goals

1. to examine the dynamics of trust, to look
for phase transitions and indicators of de-
clining trust. This was essentially an ab-
stract artificial life model.

2. to build a realistic agent based model de-
rived from real data.

The artificial life model (Bossomaier, Jarratt,
Anver, Thompson & Cooper 2005) consisted of
sets of clients and wealth management advisors
(WMAs) and an artificial stock market. The
advisors compete with one another to maximise
their wealth, while the clients share trust infor-
mation with one another.

The stock market simulates shares or share
portfolios, which are owned by the client and
are paid for with upfront consultancy fees, and
funds, aggregates of shares from the same mar-
ket, which pay commissions. The growth of the
shares follows a deterministic equation with added
noise. Advisors may purchase access to the growth

506

Stock Market RePast

Wealth Mgmt
Advisors

Clients

Evolutionary
Optimisation

Figure 1: Architecture of the trust ALife model

parameters of this equation, thus trading off costs
against better advice to clients.

Clients trust evolves according to their re-
turns on investment, using insights from the neu-
roeconomics literature. Each client is connected
to other clients on one of a number of different
types of network, lattice, small world and scale-
free. We present results for the wealth of clients
and advisors for different networks and different
research costs.

To move to the full scale model involves
analysing a large corporate database of several
million clients. The first stage in doing this re-
quires analysis of the client network but this is
not available from any fields in the database it-
self. Thus indirect methods are needed to in-
fer the connectivity. A novel approach has been
adopted which involves looking for common pat-
terns in investment over time among clients.

2. THE ALIFE MODEL

The ALife model consists of several components
as shown in figure 1.

Wealth Management Advisors invest money
on behalf of their clients taking some profit
along the way. They invest the clients’
money in a mixture of shares and funds1.
Shares return a percentage of the invest-
ment as a once off fee. Funds provide an
ongoing trailing commission.

Clients split their wealth into a fraction invested
with their WMA and leave the rest in the
bank, the fraction being determined by their
trust level. If their trust falls significantly
below the trust of their neighbours,

1To make the simulation computationally tractable,
portfolioss are relatively small and each share may be
thought of as more an assest class than an individual
equity.

The stock markert is not intended to repre-
sent the real stock market in any detail
and the many diverse investment options
it provides. It merely provides an invest-
ment framework.

Simulations of this model allowed the study
of the evolution of trust under various condi-
tions. One important issue is the nature of the
client networks. If the clients are unconnected
then their trust will go up and down with WMA
performance and the WMA can trade off the ad-
ditional investment he gets with increased trust
against the potential loss of fees and commis-
sions. But if the clients can talk to each other
then the WMAs now have to outperform each
other to avoid loss of clients to others who pro-
vide better net returns.

Much recent interest in networks has led to
three commmon types in social systems: sim-
ple local connectivity, such as a lattice; small
world networks in which additional long range
connections are added (Watts 1999); and scale
free networks characterised by a power law dis-
tribution in the connectivity of nodes (Barabási
2002). Different social networks will lead to dif-
ferent trust flow behaviours, hence modelling these
networks is important. However, this informa-
tion may not be readily available.

2.1. The Stock Market
There are very many stock market models aournd
in the literature and this paper neither tries to
improve on them, nor to evern select the best.
Two factors drive the approach

• the model must be efficient in comuting re-
sources

• it must have a natural transition to real
financial instruments or products and must
reflect investment in research activity into
the value of different sorts of investment.

A simple model satisfying these requirements
is used data from the NY Stock Exchange ob-
tained via Yahoo finance (Yahoo 2008). An ex-
ponential fit to this data was lperturbed by an
additional noise term using Brownian motion as
in equatiion 1.

y = A0exp(a1 ∗ t+ a2 ∗ c) (1)

where A0, a1, a2 are constants and c is a cum-
mulative uniformly distirbuted random number
in the range [0− 1].

507

The full bank model uses the financial instru-
ments constructed by the bank and their vari-
ation over time as measured on the real stock
market.

3. THE DATASETS

A large dataset of 456 million records describ-
ing 14 million customers over a five year period,
and a smaller more detailed dataset of 42 million
records describing the investment profiles of 1.5
million customers over a three year period were
supplied to the project.

The larger dataset’s records contained demo-
graphic details, as well as aggregate account bal-
ances over the three categories of cash, loans and
investments. Since these account balances will
depend in an intricate way upon the account
product performance, customer income and ex-
penditure, details which are not available in the
dataset, it was decided to model the discrete
events when existing customers enter or leave
a particular account class. This includes (for
example) existing cash or investment customers
taking out a mortgage, or investors closing all
their investments accounts, which is of particu-
lar interest to the trust project.

Customer behaviour is represented by val-
ues drawn from {−1, 0, 1} where −1 indicates
that all accounts of the class are closed, 0 means
no change and 1 indicates that that customer
has entered that class. Thus three timeseries
are available in the dataset, representing the be-
haviour in the three classes. A fourth timeseries
is generated from change in the number of de-
pendents, perhaps due to the birth of child, or
through marriage, or conversely through children
growing up and leaving home.

From the smaller dataset, it was possible to
establish the investment profiles of the 1.5 mil-
lion investment customers. Whilst product per-
formance was not available in this database, it
was possible to match the internal product iden-
tifiers to published product information, and to
download the relevant product performance from
the bank’s website. By defining a product’s risk
as the variance of its performance (historical
volatility), one can estimate a customer’s risk
profile by taking the product balance weighted
average of the product’s risk. This will fluctuate
over time as the product balances change (un-
less the customer is invested in a single product
only), but if the customer performs active portfo-
lio balancing, this will reasonably accurately re-

flect the customer’s risk preference. The result-
ing timeseries has six independent variables (age,
length of customer relationship, gender, marital
status, deceased and number of dependents), and
one dependent variable (risk).

4. MODELLING CLIENT BEHAVIOUR

Human behaviour may be represented in several
ways, each extremely diverse (Fulcher 2008). Ar-
tificial neural networks (ANNs) are loosely linked
to the structure and operation of the human brain
but there are very many architectures and train-
ing or learning algorithms from which to choose.
At the other extreme to ANNs are formal rule
based systems. But representing human behaviour
with rules is tricky, often requiring very large rule
sets. Yet these two extremes ultimately have to
converge to the same outcomes since both are
capable of arbitrarily accurate representations.

Fuzzy logic falls somewhere in between. Its
advantage in ABMs arises from the interdisci-
plinary nature of socio-economic modelling. Qual-
itative research outcomes and judgements from
domain experts can be readily transcribed into
fuzzy logic and its conception was in part mo-
tivated by the semi-quantitative style of much
human thinking. Thus fuzzy logic is the method-
ology used herein.

4.1. Fuzzy Inference Systems
Fuzzy sets are sets whose elements have a degree
of membership in the range [0, 1]. More precisely,
a fuzzy set F is a pair F = (A,m), where A is
a set, and m : A → [0, 1] is the membership
function. If m(x) = 0, then x not considered to
be a member of the fuzzy set F , and if m(x) = 1
then x is considered fully included in the fuzzy
set.

Fuzzy logic extends the notion of propositional
logic to fuzzy sets with the fuzzy logic operators
AND, OR and IS. Fuzzy logic rules are of the
form:

IF x1 IS I11]
AND (x2 IS I21 OR x2 IS I22) . . .

THEN y IS O1. (2)

There are a variety of fuzzy inference systems
(FIS). The Mamdani type, used here , consists of
a number of input variables xi, whose ranges are
partitioned into fuzzy sets Iij , an output variable
y whose range is partitioned into fuzzy sets Oj ,
and a set of fuzzy rules of the form (2). The FIS

508

takes a vector of input values, and outputs an
inferred value ŷ.

The matching degree w(x1, x2, ...xn), or weight,
for a rule is constructed from the antecedent,
where the IS operator is replaced by the mem-
bership function, AND is replaced by a binary
operator ∧ called a t-norm, and OR is replaced
by its t-conorm, ∨, where a ∨ b = 1 − (1 − a) ∧
(1−b). Simple examples of t-norms are the min-
imum of the two argument and the product of
its arguments, e.g. with the rule (2):

w(x1, x2, . . .) =
mI11(x1) ∧ (mI21(x2) ∨mI22(x2)) . . . (3)

For the purposes of this work, ∧ =min and
∨ =max were used to initially generate the
FIS, but the evolutionary algorithm was allowed
to mutate these to the product t-norm or the
 Lukasiewicz t-norm (x ∧ y = max(0, x+ y − 1)).

For converting the weight value w computed
in (3) into the output value ŷ of the inference
system, one needs to aggregate the weights of all
rules with the same consequent (the part follow-
ing THEN in rule (2)), and then apply a defuzzi-
fication operator. Aggregation involves taking ei-
ther the maximum of, or the sum of the weights
of all rules with the same consequent. In this
work, we used the sum aggregation rule, ie:

Wj =
∑

{r|cr=“y IS Oj”}

wr(x) (4)

where cr is the consequent of the rth rule, wr is
the weight of the rth rule.

Finally, to produce an inferred output ŷ, one
needs to defuzzify the aggregate weights Wj . A
number of possible operators can be employed
for this task, but the one we use herein is known
as area defuzzification. Form new functions

µj(x) =
{
mOj

(x) if mOj
(x) < Wj

Wj otherwise , (5)

as shown in Figure 2. Then the inferred output
is the centroid of the area underneath the sum
of the µj curves:

ŷ =

∫
x
∑
j µj(x)dx∫ ∑
j µj(x)dx

(6)

4.1.1. Fuzzy Logic Source Code
FISPRO is an open source software package avail-
able from INRA. implementing fuzzy inference

Figure 2: Membership functions

systems, allowing a wide variety of membership
functions, different forms of weight computation,
aggregation and defuzzification to be specified.
It is implemented as a C++ library, with a Java
interface provided through JNI that enables an
interactive Java program that users can use to
design fuzzy inference systems, and experiment
with the inference engine.

Additionally, FISPRO provides a number of
functions for learning rules from training datasets.
These were used to initially seed the evolution-
ary algorithms.

Various performance enhancements were added
to FISPRO 3.0 and submitted to the FISPRO
maintainers for inclusion into the next release of
FISPRO.

4.2. Parametrising the FIS from Real World
Data

Since around 1990, people have sought to com-
bine the knowledge representation power of fuzzy
inference systems with the learning power of evo-
lutionary algorithms (EA), particularly genetic
algorithms. Alander noted some 280 papers have
been published on the topic by early 1996 (Alander
1997). A ten year survey by Cordón et al notes
the different types of approaches taken to evolv-
ing fuzzy inference systems (Cordón, Gomide,
Herrera, Homann & Magdalena 2004). Different
aspects of the FIS are available to be evolved:
the type of FIS (whether Mamdani, or Takagi-
Sugeno), the t-norm used in the calculation of
the rule weight (3), the rules and their conse-
quents, the number and shapes of membership
functions for the inputs and outputs, and the
actual parameters of the membership functions.
Most commonly, the parameters of the member-
ship functions are evolved, or the rule base is

509

evolved. The evolutionary algorithm used is usu-
ally a genetic algorithm (parameters converted
into a bitstring representation, which is evolved),
although evolutionary strategies (working directly
with floating point representations) are also de-
ployed (eg (Cordón & Herrera 1999)), as we do
here. When evolving the rule base, individuals of
the EA may either be complete FISes (called the
Pittsburgh approach) as used in this work, or in-
dividual rules (Michigan or Iterative approaches).

In the EvoNF framework (Abraham 2002) all
of these aspects can be tuned, but in practice
evolving all levels of this framework is compu-
tationally prohibitive. Normally, domain knowl-
edge is used to constrain the optimisation search
space. We had initially hoped to evolve just
the membership function parameters, with the
fuzzy rule base being given by domain knowl-
edge. However, the domain knowledge turned
out insufficient for the task, so we chose to in-
form the rule base from the data, by seeding
the evolving population using the FPA algo-
rithm (Glorennec 1996), and then further evolv-
ing the rule base.

4.3. Representation of the FIS
An evolutionary algorithm requires a representa-
tion of the solution, a sequence of evolutionary
operators (genetic operators) to generate varia-
tion and a selection criterion for removing un-
successful solutions from the pool.

In this work, we use a direct representation
in the form of a list of the parameters for all the
membership functions of the input and output
fuzzy sets. We also vary which rules are active,
and what their consequents are.

For computational efficiency (avoiding the ex-
tensive computation of exponentials or other such
functions), we use piecewise linear trapezoidal
membership functions. This includes triangular
and semi-trapezoidal membership functions as a
special case. Figure 3 shows the general form of
the membership function, and defines the term
core, where the membership function is 1, and
the support where the membership function is
greater than 0.

4.4. Evolutionary Operators
The operators we implemented were mutation,
insertion (splitting), deletion (merging) and
crossover, each controlled by a separate param-
eter.

In the case of mutation, with probability given

Figure 3: A piecewise linear trapezoidal mem-
bership function. The area between b and c is
known as the core and the area between a and
d the support. If b = c, the function is called
triangular, if a = b = −∞, or c = d = ∞ it is
known as infimum or supremum semi-trapezoidal
respectively

by the mutation probability parameter mutConc
(0.01), a number was drawn from {0, . . . , Nc},
where Nc is the number of fuzzy sets in the FIS
output. If the number drawn was Nc, the rule
was toggled between active and inactive, other-
wise the rule’s conclusion was set to the fuzzy
set corresponding the number drawn. Similarly,
with probability mutConj (0.01), the conjunc-
tion operator ∧ was mutated between minimum,
product and Lukasiewicz t-norms (which are the
t-norms supported by FISPRO).

Mutating membership function parameters is
a little more complex. We need to ensure that
the fuzzy sets do not expand to engulf neighbour-
ing fuzzy sets, so we require that (a) the support
of a membership function does not overlap the
core of its neighbours (b) that the the support
to overlap the support of its neighbour to ensure
complete coverage and (c) that a ≤ b ≤ c ≤ d.
We also limit the maximum variation to an evo-
lutionary parameter mutrange (=0.1). In prac-
tice, this means that we calculate a range that
maximally satisfies all those constraints, and chose
a value randomly from that range. More pre-
cisely, if ai, bi, etc. represent the parameters of
the ith membership function, the core is given by
[bi, ci] and the support by [ai, di]. Let µ=mutrange.
Then we form:

a−i = max{ai − µ, ci−1}
a+
i = min{ai + µ, bi, di−1}
a′i ∈ [a−i , ai+]
b−i = max{bi − µ, a′i}
b+i = min{bi + µ, ci}
b′i ∈ [b−i , b

+
i] (7)

c−i = max{ci − µ, b′i}

510

c+i = min{ci + µ, di}
c′i ∈ [c−i , c

+
i]

d−i = max{di − µ, c′i, ai+1}
d+
i = min{di + µ, bi+1}
d′i ∈ [d−i , d

+
i]

The a′i, b
′
i, d
′
i and d′i become the new mutated

value of the parameters. If any of the x−i > x+
i , it

is not possible to draw a new value for parameter
xi, so the parameters are left unchanged.

The insertion operator was implemented by
replacing a membership function with two new
membership functions that split the original core
between them. If a, b, c, d are the original func-
tion’s parameters, the new functions’ parameters
are:

a1 = a

b1 = c1 = b

d1 = c

a2 = b (8)
b2 = c2 = c

d2 = d

The resulting membership functions are triangu-
lar, but need not remain that way after further
mutation.

The deletion operator was implemented as re-
placing a pair of consecutive membership func-
tions with a single merged function:

a = a1

b = b1

c = c2 (9)
d = d2

These operators were applied with probabil-
ity split (0.01) and merge (0.01), which are pa-
rameters of the evolutionary algorithm. Because
these operations change the number of member-
ship functions describing an input variable, we
end up with oddities such as rule bases with 3
genders, so in practice we also specified a Boolean
input array to indicate which inputs, and whether
the output could have split/merge applied to them.
Furthermore, changing the numbers of member-
ship functions invalidates the ruleset. Rather
than renumbering the ruleset (which would re-
quire resolving the issue of which of the two pre-
vious fuzzy sets maps to the new fuzzy set when
a merge has happened), we took the approach
of reapplying the FPA algorithm to regenerate a
new rule base from scratch.

The final evolutionary operator was the
crossover operator. This simply selected two par-
ents at random from the pool, and crossed the
membership functions for each input with 50%
probability, and also crossed rules with matching
antecedents with 50% probability (or performed
an insertion of a parent 2 rule if its antecedent
doesn’t exist in parent 1. A later step in the
evolutionary algorithm removes identical FISes
from the pool.

4.5. Evolutionary Algorithm
A pool of FISes is seeded with a FIS gen-
erated using the Fast Prototyping Algorithm
(FPA) (Glorennec 1996). The FIS pool is it-
erated over, with the various evolutionary oper-
ators described in the previous section applied
according to the controlling probabilities. Once
the number of FISes in the pool reached maxPop
(10), selection is applied.

The primary measure of fitness of the FIS is
performance P , which is the root mean square
error of the FIS with respect to the training
dataset σ. Some of the items in the training
dataset may not match any of the rules well,
particularly as the input fuzzy partitions evolve.
If the maximum w computed according to equa-
tion (3) is less thanm (matchThresh=0.01), then
the item is dropped from the training set. Let
σ′ = {j ∈ σ : w(j) ≥ m}, then performance is
calculated from

P =

√
1
|σ′|

∑
i∈σ′

(ŷi − yi)2, (10)

and the coverage C as

C =
|σ′|
|σ|

. (11)

The advantage to using this is that the FIS can
report when its predictive ability is poor, and one
can substitute an alternative inference rule (such
as random selection from a probability table).

Using performance (eq (10) directly as a fit-
ness function encourages the algorithm to find
solutions that diminish coverage. By eliminat-
ing difficult to predict conclusions, P can be
made arbitrarily small, even zero. If one sets
matchThresh to zero (ensuring all of the training
set is used), then P is dominated by the poorly
performing rules, and the evolutionary algorithm
has difficulty finding improvements.

An improvement to using P directly is to
combine coverage, for instance as a ratio P/C

511

or as a linear combination P +α/C. The former
fitness function is particularly prone to finding
a FIS that reduces coverage to the point that
P = 0, which then dominates the evolutionary
pool. The latter fitness function has the trouble-
some α parameter, and the algorithm stagnates
once P ≤ α.

This is a problem of multi-objective optimi-
sation (simultaneously minimising P at the same
time as keeping C as high as possible). An alter-
native approach to multi-objective evolutionary
algorithms is Pareto optimisation (Abbass 2006),
whereby only Pareto-dominated FIS candidates
are eliminated (those for which other FISes in the
population are better at both performance and
coverage). In practice, this algorithm worked the
best of all.

4.6. Implementation and Results
The evolutionary algorithm was coded in C++
as a model running under EcoLab (Standish &
Leow 2003), available from the EcoLab website.2

OpenMP (OpenMP 2002) was used to parallelise
the computation of performance and coverage,
as well as repopulating the rule base after a a
change in the number of fuzzy sets describing
the inputs or output. The source code is the
NCR.D5 release and relies on the modified ver-
sion of FISPRO 3.0 (fispro.3.0.D10 see section 4.1.1.)
Both are available from the same (EcoLab) web-
site.

he smaller dataset had both advantages and
disadvantages but on alance proved the most use-
ful and all the results reported in this paper refer
to he product risk timeseries obtained from this
dataset. It was further downsized by sampling
the customers with a requency 0.01 and of 0.001.
This resulted in 285,660 records for the .01 sam-
pling frequency, and 30,627 for the 0.001 sam-
pling frequency. arious rule induction options
available within FISPRO were tried, but nly the
FPA option could handle such large datasets.

Using a single objective function, P/C could
in exceptional cases give good coverage but tended
to achieve coverage of only around coverage was
around 80–85%.

With the matching threshold parameter was
set to 0, coverage is 100% by definition. The
evolutionary algorithm still improved the start-
ing ruleset found by FPA, but it doesn’t produce
as good a solution as the multi-objective meth-
ods.

2http://ecolab.sourceforge.net

In the multi-objective case the a Pareto front
of the best solutions occurs near the edge of
the “cliff” where coverage drops off precipitously.
The best solution at the end of the run has P =
3.39× 10−11 and C = 1.0.

Extending the dataset to the 0.01 sample rate
achieves a performance rate of 0.077 with com-
plete coverage.

Thus optimising just on performance was not
nearly as effective as optimising both P and C.

5. NETWORK ANALYSIS

The trust model requires understanding the so-
cial networks of clients. Although there is plenty
of empirical evidence for small world (Watts 1999)
or scale free connectivity (Barabási 2002), there
are no fields in the data warehouse which cap-
ture the links. Furthermore there are no obvious
proxies, e.g. children attending the same school,
membership of the same sports clubs might all
be harbingers of interactions, but no data of this
kind is available. Hence a deeper inference sys-
tem was needed. The solution is in looking at the
time series of investments and determining how
one client’s investments correlates with another.
Correlation between time series is a well under-
stood metric but it can sometimes miss nonlinear
interactions commpletely. Mutual information
is a more powerful, although computationally
more demanding technique (Cellucci, Albano &
Rapp 2005).

5.1. Methods
The investment timeseries of the approx 180,000
customers investing in products with known per-
formance data was computed using the technique
described in section ??. Since the absolute bal-
ances of the product investment do not carry
meaningful information, and even relative bal-
ance (monthly investment divided by product
balance) is distorted, the timeseries were con-
verted to the range {−1, 0, 1}, representing with-
drawal, no investment and investment respec-
tively in a product. Mutual information was cal-
culated in the usual way between these reduced
investment timeseries I(c, pr, t) for customer c,
product pr at time t:

MI(c1, c2; ∆) =
∑
x.y

p(x, y) ln
p(x, y)

p1(x)p2(y)

p(x, y) ≡ p(I(c1, pr, t) = x,

I(c2, pr, t+ ∆) = y)
p1(x) ≡ p(I(c1, pr, t) = x)

512

p2(y) ≡ p(I(c2, pr, t+ ∆) = y)

(x, y) ∈ {−1, 0, 1}2|(x, y) 6= (0, 0) (12)

Here the probability distributions were computed
by histogramming over the 20 investment prod-
ucts and all timeseries points t (Jan 2002 – Dec
2003). The (x, y) = (0, 0) points were excluded
because there were a lot of data points where no
activity occurred, leading to spurious mutual in-
formation. Offsetting the timeseries by ∆ in the
range [−3,+3] months allows for possible causal-
ity to be inferred. By maximising the mutual
information over ∆,

MI(c1, c2) max
∆

MI(c1, c2; ∆) (13)

the sign of ∆ for which the mutual information
is maximised induces a direction to the network
link, pointing from c1 to c2 is ∆ is positive, and
vice versa.

Using the above technique of classifying cus-
tomers passive investors are largely excluded by
the (x, y) = (0, 0) exclusion, but regular cus-
tomers will also tend to add spurious correlation
between the timeseries, that is not due to causal
influence. Therefore, the dataset was further re-
duced to just those customers classified as active
investors. In the graphs presented with this re-
port, the threshold was taken as a conservative
5%, meaning that only the 120,000 customers
classified as active were considered. Further, this
dataset was decimated to a final collection of
approx 12,000 customers. A mutual informa-
tion threshold of 1.05 was chosen to capture the
most important links between customers. The
networks generated in this fashion, illustrated in
figure 4 (LGL 2008), typically have around 4000-
7000 nodes.

The networks show substantial clustering, as
well as restructuring as a function of time. Prob-
ably the next phase of research would be to apply
standard network metrics such as degree central-
ity, clustering coefficients and categorising the
type of degree distribution.

6. CONCLUSION

This paper identified fuzzy inference systems which
could be parametrised against very large real
world datasets. A multi-objective evolutionary
algorithm significantly improves the performance
and coverage of a fuzzy inference system trained
on a large dataset over what was obtained by the
fast prototype algorithm of FISPRO. This fuzzy
system can now be used in the agent based model
of client investment behaviour.

Figure 4: Illustrative client network. using large
graph layout techniques to map related nodes
close to one another. The client network shows
a pronounced hub structure.

ACKNOWLEDGMENTS

This work was supported by grant LP0453657
from the Australian Research Council and a grant
of computer time from the Australian Centre for
Advanced Computing and Communications.

REFERENCES

Abbass, H. 2006. Pareto-optimal approaches
to neuro-ensemble learning, in Y. Jin,
ed., ‘Multi-Objective Machine Learning’,
Vol. 16 of Studies in Computational Intelli-
gence, Springer, Berlin, chapter 18, pp. 407–
427.

Abraham, A. 2002. EvoNF: A framework for
optimization of fuzzy inference systems
using neural network learning and evo-
lutionary computation, in ‘Proceedings
of the 2002 IEEE International Sympo-
sium on Intelligent Control’, pp. 327–332.
arXiv:cs/0405032.

Alander, J. T. 1997. An indexed bibliogra-
phy of genetic algorithms with fuzzy logic,
in W. Pedrycz, ed., ‘Fuzzy Evolutionary
Computation’, Kluwer Academic, Boston,
pp. 299–318.

513

Barabási, A.-L. 2002. Linked, Perseus, Mas-
sachusetts.

Bossomaier, T., Jarratt, D., Anver, M., Thomp-
son, J. & Cooper, J. 2005. Optimisation
of client trust by evolutionary learning of
financial planning strategies in an agent
based model, in ‘Proc, IEEE Conf. on Evo-
lutionary Computing’, pp. 856–863.

Cellucci, C., Albano, A. & Rapp, P. 2005. Statis-
tical validation of mutual information calcu-
lations: Comparison of alternative numeri-
cal algorithms, Physical Review E 71.

Cordón, O., Gomide, F., Herrera, F., Homann,
F. & Magdalena, L. 2004. Ten years of
genetic fuzzy systems: Current framework
and new trends, Fuzzy Sets and Systems
141: 5–31.

Cordón, O. & Herrera, F. 1999. A two-stage
evolutionary process for designing tsk fuzzy
rule-based systems, IEEE Transactions on
Systems, Man, and Cybernetics—Part B:
Cybetics 29: 703–715.

Fulcher, J. 2008. Computational intelligence: an
introduction, Studies in Computational In-
telligence 115: 1.

Glorennec, P.-Y. 1996. Quelques aspects an-
alytiques des systèmes d’inférence floue,
Journal Européen des Systèmes automa-
tisés 30: 231–254.

LGL 2008. Large graph layout.
URL: http://bioinformatics.icmb.utexas.edu/lgl/

OpenMP 2002. OpenMP C and C++ Applica-
tion Program Interface, OpenMP Architec-
ture Review Board. Version 2.0.

Standish, R. K. & Leow, R. 2003. EcoLab:
Agent based modeling for C++ program-
mers, in ‘Proceedings SwarmFest 2003’.
arXiv:cs.MA/0401026.

Watts, D. 1999. Small Worlds, Princeton Uni-
versity Press.

Yahoo 2008. Yahoo finance.
URL: http://www.yahoo.com.au

514

