
A MARKOV PROCESS FOR REFLECTIVE PETRI NETS

Lorenzo Capra

D.I.Co, Università degli Studi di Milano, Italy

capra@dico.unimi.it

ABSTRACT
The design of dynamic (adaptable) discrete-event
systems calls for adequate modeling formalisms and
tools able to manage possible changes occurring during
system’s lifecycle. A common approach is to pollute
design with details that do not regard the current system
behavior, rather its evolution. That hampers analysis,
reuse and maintenance in general. A Petri net based
reflective model (based on classical PN) was recently
proposed to support dynamic discrete-event system’s
design, and was applied to dynamic workflow’s
management. Behind there is the idea that keeping
functional aspects separated from evolutionary ones,
and applying evolution to the (current) system only
when necessary, results in a simple formal model on
which the ability of verifying properties typical of Petri
nets is preserved. On the perspective of implementing in
the short time a discrete-event simulation engine,
reflective Petri nets are provided in this paper with a
timed state-transition graph semantics, defined in terms
of a Markov process.
Keywords: stochastic Petri nets, dynamic systems,
evolution, state-transition graph, symbolic techniques.

1. INTRODUCTION
Most existing discrete-event systems are subject to
evolution during their lifecycle. Think e.g. of mobile
ad-hoc networks, adaptable software, business
processes, and so on. Designing dynamic/adaptable
discrete-event systems calls for adequate modeling
formalisms and tools. Unfortunately, the known well-
established formalisms for discrete-event systems, such
as classical Petri nets, lack features for naturally
expressing possible run-time changes to system’s
structure. An approach commonly followed consists of
polluting system’s functional aspects with details
concerning evolution. That practice hampers system
analysis, reuse and maintenance

A Petri net-based reflective model (Capra and
Cazzola 2007) was recently proposed to support
dynamic discrete-event system’s design, and was
successfully applied to specify dynamic workflows
(Capra 2008). This approach is based on a reflective
layout formed by two logical levels. The achieved clean
separation between functional and evolutionary
concerns results in a simple formal model for systems
exhibiting a high dynamism, in which the analysis
capabilities of traditional Petri nets should be preserved.

On the perspective of implementing in the short
time a discrete-event simulation engine, the Petri net-
based reflective model is provided in this paper with a
timed semantics, defined in terms of a Markov process.
A crucial issue that is handled is about recognizing
possible equivalent base-level’s evolutions during
simulation. That major topic is managed by exploiting
the symbolic state (marking) definition that the
particular high-level Petri net flavor used at the meta-
level (Stochastic Well formed colored Nets, or SWN) is
provided with.

The paper balance is as follows: in section 2 a
snapshot of reflective Petri nets is given; in section 3
the main features of the employed Petri net classes are
presented; in section 4 a stochastic state-transition graph
semantics for reflective Petri nets is defined. Finally
section 5 is about work-in-progress. Assuming the
readers have some basic knowledge about Petri nets, a
semi-formal presentation is adopted, where unessential
notions are skipped and simple running examples are
used.

2. REFLECTIVE PETRI NETS
The reflective Petri net approach permits developers to
model a discrete-event system and separately its
possible evolutions, and to dynamically adapt system’s
model when evolution occurs.

The approach is based on a reflective architecture
structured in two logical layers (figure 1). The first one,
called base-level, is an ordinary Petri net (a P/T net
with priorities and inhibitor arcs) representing the
system prone to evolve (base-level PN); while the
second layer, called meta-level, consists of a high-level
Petri net (a colored Petri net) representing the
evolutionary strategies (the meta-program, following
the reflection parlance) that drive the evolution of the
base-level when certain conditions/events occur.

Meta-level computations in fact operate on a
representative of the base-level, called (base-level)
reification. The reification is defined as a (high-level
Petri net) marking, whose a portion, encoding the base-
level PN current state (marking), is updated every time
the base level Petri net enters a new state. The
reification is used by the meta-program to observe
(introspection) and manipulate (intercession) the base-
level PN. Any change to the reification is reflected on
the base-level PN at the end of a meta-computation
(shift-down).

493

Figure 1: Snapshot of the reflective PN model.

The meta-program is implicitly activated (shift-up),

then a suitable strategy is put into action, under two
conditions: i) either when it is triggered by an external
event, or ii) when the base-level enters a given state.
The reflective framework, a high-level Petri net
component as well, is responsible for really carrying out
the base-level evolution in a transparent way.
Intercession on the base-level PN is carried out in terms
of a minimal but complete set of basic operations
(called the evolutionary interface): addition/removal of
places, transitions, arcs - change of transition priorities
(base-level’s structure change), free moving tokens
overall the base-level PN places (base-level’s state
change).

If one such operation reveals inconsistent, the
meta-program is restarted and any changes caused in the
meanwhile to the base-level reification are discarded. In
other words, evolutionary strategies have a transactional
semantics. After a strategy’s succeeding execution,
changes are reflected down to the base-level Petri net.

Developers have been provided with a tiny ad-hoc
language, inspired to Hoare’s CSP, that allows anybody
to specify his own strategy in a simple way, without any
skills in high-level Petri net modeling being required.
An automatic translation to a corresponding high-level
Petri net is done. Several strategies could be candidate
for execution at a given instant: different policies might
be adopted in that case to select one, ranging from a
deterministic choice to a static assignment of priorities.

According to the reflective paradigm, the base-
level runs irrespective of the meta-program, being even
not aware of its existence. That raises consistency
issues, that are faced by determining, for any strategies,
local influence areas on the base-level that are
temporarily locked by the meta-level while strategies
are being executed.

The interaction between base- and meta- levels,
and between meta-level entities, is formalized in (Capra
and Cazzola 2007). Let us only outline some essential
points:

• The structure of the reflective framework is
fixed, while the evolutionary strategies are
coupled to the base-level PN, so they vary
from time to time. More precisely, the meta-
program’s model is built according to a
predefined pattern, whose the strategies
represent the variable component.

• The reflective framework and the meta-
program are separated (high-level Petri net)
components, sharing two disjoint sets of
boundary places denoted hereafter reification-
set and evolutionary interface, respectively.
Their composition through a simple place
superposition gives rise to the meta-model,
called hereafter meta-level PN.

• The reification-set is formed by the following
colored places: {reifN, reifM, reifA, reifΠ}. The
corresponding color domains will be specified
later. A well-defined marking of this set of
places, hereafter simply denoted reification,
encodes the structure (including nodes, i.e.,
places and transitions, arc connections and
transition priorities), and the current marking,
of the base-level PN. What is most important,
there is a one-to-one correspondence,
formalized by a bijection, between reifications
and P/T nets.

• The initial reification, from time to time, refers
to the base-level Petri net modeling the initial
system configuration.

• The shift-up, and the reification update
following any base-level change of state, are
implemented in transparent way at net level, by
suitably connecting any base-level PN
transition to place reifM, that holds the
reification of base-level PN’s current marking.
The resulting whole model will be hereafter
denoted base-meta PN.

• The shift-down, i.e., the reflection of changes
performed by the meta-program, is modeled by
a homonym highest-priority transition of the
meta-level PN; it is a kind of meta-transition,
that adheres to the usual firing rule as concerns
the meta-level PN, further, it makes the
(current) base-level PN to be replaced by the
P/T net encoded by the reification.

The fixed part of the reflective architecture (the

reflective framework) is used to put evolution into
practice for any kind of system being modeled. It is
responsible for the reflective behavior of the
architecture, hiding the work of the evolutionary
component to the base-level PN. This approach permits
a clean separation between evolution and evolving
system, and prevents the base-level PN from being
polluted by details related to evolution.

3. SWN BASICS
For (performance) analysis purposes, we decided to use
for the base- and meta- levels Generalized Stochastic

494

Petri nets (GSPN) (Marsan, Balbo, and Conte 1983)
and their high-level counterpart, i.e., Stochastic Well
formed nets (SWN) (Chiola, Dutheillet, Franceschinis,
and Haddad 1993), respectively. This choice has
revealed convenient for two reasons: first, the timing
semantics of reflective Petri nets is in large part
inherited from GSPN (SWN) timing semantics;
secondly, the symbolic state representation the SWN
formalism is provided with can be exploited to
efficiently handle the issues related to recognizing
equivalences during model’s evolution, as explained in
section 4.1.

Let us just recall the basic aspects about SWN
(GSPN) timed semantics.

 In GSPN (SWN) A priority level is associated to
each transition: priority level 0 is reserved for timed
transitions, while greater priority levels are for
immediate transitions, which fire in zero time. A rate,
characterizing an exponential firing delay, is associated
to each timed transition, while a weight is associated to
each immediate transition, to probabilistically solve
conflicts between enabled immediate transitions with
equal priority.

As a result of this time representation, the reduced
reachability graph of a GSPN (SWN), i.e., the state-
transition graph obtained by suitably removing those
markings (called vanishing) enabling some immediate
transitions, is isomorphic to a Continuous Time Markov
Chain (CTMC). Because of the structured syntax of
SWN color annotations, behavioral symmetries can be
automatically discovered and exploited to build an
aggregate state space (called symbolic reachability
graph or SRG) and a corresponding lumped CTMC
from a SWN model, according to the strong lumpability
notion.

As concerns the reflective PN model, while the
evolutionary framework, that should be considered as a
transparent layer, is formed by immediate transitions
only, the evolutionary strategies and, of course, the
base-level PN, may also contain timed transitions
representing time consuming activities (think e.g. of a
network reconfiguration).

3.1. Color Annotations and Symbolic Markings
In Colored Petri nets places, as well as transitions, are
associated to color domains, i.e., tokens in places have
an identifier (color), similarly transitions are
parameterized, so that different color instances of a
given transition can be considered. A marking m maps
each place p to a multiset on the corresponding color
domain, C(p). Any arc connecting p to a transition t is
labeled by a function mapping any element of C(t) (i.e.,
any color instance of t) to a multiset on C(p).

The peculiar and interesting feature of the SWN
formalism is the ability of capturing system’s
symmetries thanks to the structured syntax of color
annotations. Efficient analysis/simulation algorithms
can be applied that exploit such symmetries. These
algorithms rely upon the notion of symbolic marking
(SM).

SWN color domains are defined as Cartesian
products of basic color classes Ci, that may be in turn
partitioned into static subclasses Ci,k. A SM provides a
syntactical equivalence relation on ordinary colored
markings: two markings belong to the same SM if and
only if they can be obtained from one another by means
of permutations on color classes that preserve static
subclasses. A SM is formally expressed in terms of
dynamic subclasses.

3.1.1. SM formal definition.
The definition of a SM (denoted sm) comprises two
parts specifying the so called dynamic subclasses and
the distribution of colored symbolic tokens (tuples built
of dynamic subclasses) over the net places, respectively.

Dynamic subclasses define a parametric partition
of color classes preserving static subclasses: let Di and
si denote the set of dynamic subclass of Ci (in sm), and
the number of static subclasses of Ci (if Ci is not split
then si = 1). The j-th dynamic subclass of Ci, Zj

i ∈ Di,
refers to a static subclass, denoted d(Zj

i), 1 ≤ d(Zj
i) ≤ si,

and has an associated cardinality |Zj
i|, i.e., it represents a

parametric set of colors (in the sequel we shall consider
cardinality one dynamic subclasses). It must hold, for
each k : 1...si

∑ หܼ୨

୧ห ൌ ୧,୩ |୨:ௗቀౠܥ |
ቁୀ (1)

The token distribution in sm is defined by a function
(denoted itself sm) mapping each place p to a multiset
on the symbolic color domain of p, obtained replacing
each Ci with Di in C(p).

Among several possible equivalent representations,
the canonical representative provides SM with an
univocal formal expression, based on a lexicographic
ordering of dynamic subclass distribution over the net
places.

4. A STATE-TRANSITION SEMANTICS FOR

REFLECTIVE PN
On the light of what said in section 2, the behavior of a
reflective PN model between any meta-level activation
and the consequent shift-down is naturally described in
terms of (stochastic) Petri net state-transitions.

A state mi is simply an ordinary marking of the
base-meta PN, the Petri net obtained by suitably
composing the base-level PN (a GSPN) and the meta-
level PN (a SWN). Then, letting t (t ≠ shift-down) be
any transition enabled in mi, according to the GSPN
(SWN) firing rules, and mj be the marking reached upon
its firing, we have the labeled state-transition:

݉
ሺ௧ሻ
ሱۛሮ ݉ (2)

where λ(t) denotes the weight, or the exponential rate,
associated with t, depending on whether t is timed or
immediate.

495

There is nothing else to do but consider the case
where ms is a vanishing marking enabling the higher-
priority pseudo-transition shift-down: then

݉௦

௪ୀଵ
ሱۛ ሮ ݉ᇱ

 (3)

m′0 being the marking of the new base-meta PN,
obtained first by replacing the (current) base-level PN
with the GSPN isomorphic to the reification marking
(once it has been suitably connected to the meta-level
PN), then by firing shift-down as it were a normal
immediate transition.

Using the same technique for eliminating
vanishing states as in the reduced reachability graph
algorithm for GSPN (SWN), it is possible to build a
CTMC from the labeled state-transition graph of the
reflective PN model.

4.1. Recognizing equivalent base-level evolutions
The state-transition graph semantics just introduced
precisely defines the (timed) behavior of a reflective
Petri net model, but suffers from two evident
drawbacks. First, it is highly inefficient: the state
description is exceedingly redundant, comprising a
large part concerning the evolutionary strategy, which is
unnecessary to describe the evolving system.

The second concern is even more critical, and
indirectly affects efficiency: there is no way of
recognizing whether the system, during its
dynamics/evolution, reaches equivalent configurations.
Deciding about system’s state-transition graph
finiteness and ergodicity are major performance
analysis issues that are strictly related to the ability of
recognizing equivalent behaviors/evolutions of the
modeled system. More generally, a number of
techniques based on state-space inspection rely on this
ability.

For example, it may happen that (apparently)
different strategies cause in truth equivalent structural
changes to the base-level Petri net (the evolving
system), that cannot be identified by the definition of
state provided before. The combined effect of different
sequences of evolutionary strategies might produce the
same effects. Even more likely, the internal dynamics of
the evolving system might lead to reach equivalent
configurations.

The above tricky question, that falls into a graph
isomorphism sub-problem, as well as the global
efficiency of the approach, are tackled by resorting to
the peculiar characteristic of SWN: the symbolic
marking notion. The color domains of the meta-level
PN are built of color class Node, representing the base-
level PN nodes (places plus transitions) at the meta-
level. As concerns the reification-set, they are:

C (reifN), C (reifM), C (reifΠ) : Node
C (reifA) : Node × Node (4)

Class Node is logically partitioned into places and
transitions. More precisely, Node is defined as:

1 k 1 m

p T

P T

places transitions

named named

p p Unnamed t t Unnamed∪ ∪
64748 64748

K U U K U
14444244443 144424443

 (5)

.
Symbols {pi}, {tj} denote singleton static subclasses.
Conversely, subclasses UnnamedP and UnnamedT
should be normally large enough to be considered as
logically unbounded repositories of anonymous
places/transitions.

Behind there is a simple intuition: while some
(“named”) nodes, for the particular role they play,
preserve their identity during base-level’s evolution,
and may be explicitly referred to during base-level’s
manipulation, others (“unnamed”) are undistinguishable
from one another. In other words any pair of “unnamed”
places (transitions) might be freely exchanged on the
base-level PN, without altering the model’s semantics.

There are two extreme cases: namedP (namedT) =
Ø, and, on the opposite, UnnamedP (UnnamedT) = Ø.
The former meaning that all places/transitions can be
permuted, the latter instead that all nodes are distinct.

The technique we use to recognize equivalent
base-level evolutions relies on the base-level reification
and the adoption of a symbolic state representation for
the base-meta PN that, we recall, results from
composing in transparent way the base-level PN and the
meta-level PN.

First we have to set as initial state of the reflective
PN model a symbolic marking (sm0) of the base-meta
PN instead of an ordinary one: any dynamic subclass of
UnnamedP (UnnamedT) will represent an arbitrary
“unnamed” place (transition) of the base-level PN.

Because of the simultaneous update mechanism of
the reification (section 2), and the consequent one-to-
one correspondence between the current base-level PN
and the reification at the meta-level (Capra and Cazzola
2007), we can state the following

Definition 1 (equivalence relation). Let smi, smj be two
states of the reflective Petri net model.
smi ≡ smj if and only if their projections on the
reification-set have the same canonical representative.

Consider the very simple example in figure 2, that
depicts three base-level PN configurations, at different
time instants. The convention we adopt is that while
symbols t2 denotes a “named” transition, symbols xi and
yj denote “unnamed” places and transitions,
respectively. In other words (abusing notation) xi and yj
will denote also dynamic subclasses of UnnamedP and
UnnamedT, respectively. We assume that all transitions
have the same priority level.

We can observe that the base-level PNs on the top
and on the middle have the same structure, but
(apparently) different current marking. We can imagine
that they represent a possible (internal) dynamics of the
base-level Petri net.

496

Figure 2: Three equivalent base-level PN

Conversely, we might think of the Petri net on the

bottom of figure 2 as an (apparent) evolution of the
base-level PN on the top, in which transition y2 has
been replaced by a new transition (y3), new connections
are set, and a new marking is defined.

Nevertheless, the three base-level configurations
are equivalent, according to definition 1. It is sufficient
to take a look at their respective reifications, that are
encoded as symbolic markings (hereafter multisets are
expressed as formal sums).

Consider first the base-level PNs on the top and on
the middle of figure 2, whose reification are:

 sm(reifN) = y1 + y2 + t2 + x1 + x2 + x3 + x4
 sm(reifM) = x1 + x4
sm(reifA) = < x1, t2 >+< t2, x3 >+< x3, y1 >+< y1, x1 >+
< x2, t2 >+ < t2, x4 > + < x4, y2 > + < y2, x2 > (6)

and

sm′ (reifN) = y1 + y2 + t2 + x1 + x2 + x3 + x4
sm′ (reifM) = x3 + x2
sm′ (reifA) = < x1, t2 >+< t2, x3 >+< x3, y1 >+< y1, x1 >+
< x2, t2 >+ < t2, x4 > + < x4, y2 > + < y2, x2 > (7)

respectively.

They can be obtained from one another by the
following permutation of “unnamed” places and
transitions (we denote by a ↔ b the bidirectional
mapping: a→ b, b→ a):

{x1 ↔ x2, x3 ↔ x4, y1 ↔ y2} (8)

hence, they are equivalent.

With similar arguments we can show that the base-
level PN on the top and on the bottom of figure 2 are
equivalent too. The bottom’s Petri net reification is:

 sm″ (reifN) = y1 + y3 + t2 + x1 + x2 + x3 + x4
sm″ (reifM) = x1 + x2
sm″ (reifA) = < x1, t2 >+< t2, x3 >+< x3, y1 >+< y1, x1 >+
 < x2, y3 >+ < y3, x4 > + < x4, t2 > + < t2, x2 > (9)

sm and sm″ can be in turn obtained from one

another by the following permutation:

{x2 ↔ x4, y3 ↔ y2} (10)

The canonical representative for these three

equivalent base-level PN’s reifications (i.e., states of the
reflective PN-model), computed according to the
corresponding SWN algorithm, turns out to be sm.

5. CONCLUSIONS AND FUTURE WORK
We have semi-formally presented a (timed) state-
transition graph semantics for reflective Petri nets, a
formalisms well suited to model evolvable discrete-
event systems, based on classical stochastic Petri nets
(GSPN, and their high-level version, SWN). In
particular, we have addressed major topics related to
recognizing equivalent system’s evolutions, by
exploiting the SWN’s symbolic state notion. We are
planning to integrate the GreatSPN tool, that natively
supports GSPN and SWN, with new modules for the
graphical editing of reflective PN models, and their
analysis/simulation based on the associated state-
transition semantics. We are also investigating possible
applications of reflective Petri nets for the analysis of

497

dynamic workflows (already specified using the same
formalism) and protocols for mobile ad-hoc networks.

ACKNOWLEDGMENTS
The author thanks Walter Cazzola, who contributed to
the definition of Reflective PN, for its valuable
suggestions .

REFERENCES
Capra, L., 2008. Addressing soundness and efficiency

issues in dynamic processes: a reflective pn-based
modeling approach. In Proceedings of SCS Spring
Simulation Multiconference (SpringSim’08) -
Business and Industry Symposium, April 14 – 17,
Ottawa (Canada).

Capra, L., and Cazzola, W., 2007. Self-evolving petri
nets. Journal of Universal Computer Science,
13(13): pp 2002-2034, available from:

 http://www.jucs.org/jucs_13_13/self_evolving_petri_nets
 [accessed 17 Dec 2007]
Chiola, G., Dutheillet, C., Franceschinis, G., and

Haddad, S., 1993. Stochastic Well-Formed
Coloured Nets for Symmetric Modelling
Applications. IEEE Transactions on Computers,
42(11):pp 1343–1360.

Chiola, G., Franceschinis, G., Gaeta, R., and Ribaudo,
M., 1995. GreatSPN 1.7: Graphical editor and
analyzer for timed and stochastic Petri nets.
Performance Evaluation.

Marsan, M. A., Balbo, G., and Conte, G., 1983. A class
of generalised stochastic petri nets for the
performance evaluation of multiprocessor systems.
In SIGMETRICS’83: Proceedings of the ACM
SIGMETRICS conference on Measurement and
modeling of computer systems, pp 198–199, New
York (NY, USA).

AUTHORS BIOGRAPHY
Lorenzo Capra was born in Monza (Italy), and went to
the University of Milan, where he obtained his Laurea
degree in Computer Science in 1992. After having
collaborated for several years with the Automation
Research Center at the National Electric Power Provider
(ENEL), he moved to the University of Turin, where he
received a Ph.D in Computer Science. He is currently
assistant professor at the Dept. of Informatics and
Communication (Di.C.O) at the University of Milan.
His research interests include High-Level Petri Nets
analysis/simulation and formal methods in software
engineering.

498

