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ABSTRACT 
The design of dynamic (adaptable) discrete-event 
systems calls for adequate modeling formalisms and 
tools able to manage possible changes occurring during 
system’s lifecycle. A common approach is to pollute 
design with details that do not regard the current system 
behavior, rather its evolution. That hampers analysis, 
reuse and maintenance in general. A Petri net based 
reflective model (based on classical PN) was recently 
proposed to support dynamic discrete-event system’s 
design, and was applied to dynamic workflow’s 
management. Behind there is the idea that keeping 
functional aspects separated from evolutionary ones, 
and applying evolution to the (current) system only 
when necessary, results in a simple formal model on 
which the ability of verifying properties typical of Petri 
nets is preserved. On the perspective of implementing in 
the short time a discrete-event simulation engine, 
reflective Petri nets are provided in this paper with a 
timed state-transition graph semantics, defined in terms 
of a Markov process. 
Keywords: stochastic Petri nets, dynamic systems, 
evolution, state-transition graph, symbolic techniques.  

 
1. INTRODUCTION 
Most existing discrete-event systems are subject to 
evolution during their lifecycle. Think e.g. of mobile 
ad-hoc networks, adaptable software, business 
processes, and so on. Designing dynamic/adaptable 
discrete-event systems calls for adequate modeling 
formalisms and tools. Unfortunately, the known well-
established formalisms for discrete-event systems, such 
as classical Petri nets, lack features for naturally 
expressing possible run-time changes to system’s 
structure. An approach commonly followed consists of 
polluting system’s functional aspects with details 
concerning evolution. That practice hampers system 
analysis, reuse and maintenance  

A Petri net-based reflective model (Capra and 
Cazzola 2007) was recently proposed to support 
dynamic discrete-event system’s design, and was 
successfully applied to specify dynamic workflows 
(Capra 2008). This approach is based on a reflective 
layout formed by two logical levels. The achieved clean 
separation between functional and evolutionary 
concerns results in a simple formal model for systems 
exhibiting a high dynamism, in which the analysis 
capabilities of traditional Petri nets should be preserved. 

On the perspective of implementing in the short 
time a discrete-event simulation engine, the Petri net-
based reflective model is provided in this paper with a 
timed semantics, defined in terms of a Markov process. 
A crucial issue that is handled is about recognizing 
possible equivalent base-level’s evolutions during 
simulation. That major topic is managed by exploiting 
the symbolic state (marking) definition that the 
particular high-level Petri net flavor used at the meta-
level (Stochastic Well formed colored Nets, or SWN) is 
provided with. 

The paper balance is as follows: in section 2 a 
snapshot of reflective Petri nets is given; in section 3 
the main features of the employed Petri net classes are 
presented; in section 4 a stochastic state-transition graph 
semantics for reflective Petri nets is defined. Finally 
section 5 is about work-in-progress. Assuming the 
readers have some basic knowledge about Petri nets, a 
semi-formal presentation is adopted, where unessential 
notions are skipped and simple running examples are 
used. 

 
2. REFLECTIVE PETRI NETS 
The reflective Petri net approach permits developers to 
model a discrete-event system and separately its 
possible evolutions, and to dynamically adapt system’s 
model when evolution occurs.  

The approach is based on a reflective architecture 
structured in two logical layers (figure 1). The first one, 
called base-level, is an ordinary Petri net (a P/T net 
with priorities and inhibitor arcs) representing the 
system prone to evolve (base-level PN); while the 
second layer, called meta-level, consists of a high-level 
Petri net (a colored Petri net) representing the 
evolutionary strategies (the meta-program, following 
the reflection parlance) that drive the evolution of the 
base-level when certain conditions/events occur. 

Meta-level computations in fact operate on a 
representative of the base-level, called (base-level) 
reification. The reification is defined as a (high-level 
Petri net) marking, whose a portion, encoding the base-
level PN current state (marking), is updated every time 
the base level Petri net enters a new state. The 
reification is used by the meta-program to observe 
(introspection) and manipulate (intercession) the base-
level PN. Any change to the reification is reflected on 
the base-level PN at the end of a meta-computation 
(shift-down). 
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Figure 1: Snapshot of the reflective PN model. 
 
The meta-program is implicitly activated (shift-up), 

then a suitable strategy is put into action, under two 
conditions: i) either when it is triggered by an external 
event, or ii) when the base-level enters a given state. 
The reflective framework, a high-level Petri net 
component as well, is responsible for really carrying out 
the base-level evolution in a transparent way. 
Intercession on the base-level PN is carried out in terms 
of a minimal but complete set of basic operations 
(called the evolutionary interface): addition/removal of 
places, transitions, arcs - change of transition priorities 
(base-level’s structure change), free moving tokens 
overall the base-level PN places (base-level’s state 
change). 

If one such operation reveals inconsistent, the 
meta-program is restarted and any changes caused in the 
meanwhile to the base-level reification are discarded. In 
other words, evolutionary strategies have a transactional 
semantics. After a strategy’s succeeding execution, 
changes are reflected down to the base-level Petri net.  

Developers have been provided with a tiny ad-hoc 
language, inspired to Hoare’s CSP, that allows anybody 
to specify his own strategy in a simple way, without any 
skills in high-level Petri net modeling being required. 
An automatic translation to a corresponding high-level 
Petri net is done. Several strategies could be candidate 
for execution at a given instant: different policies might 
be adopted in that case to select one, ranging from a 
deterministic choice to a static assignment of priorities.  

According to the reflective paradigm, the base-
level runs irrespective of the meta-program, being even 
not aware of its existence. That raises consistency 
issues, that are faced by determining, for any strategies, 
local influence areas on the base-level that are 
temporarily locked by the meta-level while strategies 
are being executed. 

The interaction between base- and meta- levels, 
and between meta-level entities, is formalized in (Capra 
and Cazzola 2007). Let us only outline some essential 
points:  

 

• The structure of the reflective framework is 
fixed, while the evolutionary strategies are 
coupled to the base-level PN, so they vary 
from time to time. More precisely, the meta-
program’s model is built according to a 
predefined pattern, whose the strategies 
represent the variable component. 

• The reflective framework and the meta-
program are separated (high-level Petri net) 
components, sharing two disjoint sets of 
boundary places denoted hereafter  reification-
set and evolutionary interface, respectively. 
Their composition through a simple place 
superposition gives rise to the meta-model, 
called hereafter meta-level PN.  

• The reification-set is formed by the following 
colored places: {reifN, reifM, reifA, reifΠ}. The 
corresponding color domains will be specified 
later. A well-defined marking of this set of 
places, hereafter simply denoted reification, 
encodes the structure (including nodes, i.e., 
places and transitions, arc connections and 
transition priorities), and the current marking, 
of the base-level PN. What is most important, 
there is a one-to-one correspondence, 
formalized by a bijection, between reifications  
and P/T nets. 

• The initial reification, from time to time, refers 
to the base-level Petri net modeling the initial 
system configuration.  

• The shift-up, and the reification update 
following any base-level change of state, are 
implemented in transparent way at net level, by 
suitably connecting any base-level PN 
transition to place reifM, that holds the 
reification of base-level PN’s current marking. 
The resulting whole model will be hereafter 
denoted base-meta PN.  

• The shift-down, i.e., the reflection of changes 
performed by the meta-program, is modeled by 
a homonym highest-priority transition of the 
meta-level PN; it is a kind of meta-transition, 
that adheres to the usual firing rule as concerns 
the meta-level PN, further, it makes the 
(current) base-level PN to be replaced by the 
P/T net encoded by the reification.  

 
The fixed part of the reflective architecture (the 

reflective framework) is used to put evolution into 
practice for any kind of system being modeled. It is 
responsible for the reflective behavior of the 
architecture, hiding the work of the evolutionary 
component to the base-level PN. This approach permits 
a clean separation between evolution and evolving 
system, and prevents the base-level PN from being 
polluted by details related to evolution.  

 
3. SWN BASICS 
For (performance) analysis purposes, we decided to use 
for the base- and meta- levels Generalized Stochastic 
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Petri nets (GSPN) (Marsan,  Balbo, and Conte 1983) 
and their high-level counterpart, i.e., Stochastic Well 
formed nets (SWN) (Chiola, Dutheillet, Franceschinis, 
and Haddad 1993), respectively. This choice has 
revealed convenient for two reasons: first, the timing 
semantics of reflective Petri nets is in large part 
inherited from GSPN (SWN) timing semantics; 
secondly, the symbolic state representation the SWN 
formalism is provided with can be exploited to 
efficiently handle the issues related to recognizing 
equivalences during model’s evolution, as explained in 
section 4.1. 

Let us just recall the basic aspects about SWN 
(GSPN) timed semantics. 

 In GSPN (SWN) A priority level is associated to 
each transition: priority level 0 is reserved for timed 
transitions, while greater priority levels are for 
immediate transitions, which fire in zero time. A rate, 
characterizing an exponential firing delay, is associated 
to each timed transition, while a weight is associated to 
each immediate transition, to probabilistically solve 
conflicts between enabled immediate transitions with 
equal priority. 

As a result of this time representation, the reduced 
reachability graph of a GSPN (SWN), i.e., the state-
transition graph obtained by suitably removing those 
markings (called vanishing) enabling some immediate 
transitions, is isomorphic to a Continuous Time Markov 
Chain (CTMC). Because of the structured syntax of 
SWN color annotations, behavioral symmetries can be 
automatically discovered and exploited to build an 
aggregate state space (called symbolic reachability 
graph or SRG) and a corresponding lumped CTMC 
from a SWN model, according to the strong lumpability 
notion. 

As concerns the reflective PN model, while the 
evolutionary framework, that should be considered as a 
transparent layer, is formed by immediate transitions 
only, the evolutionary strategies and, of course, the 
base-level PN, may also contain timed transitions 
representing time consuming activities (think e.g. of a 
network reconfiguration).  

 
3.1. Color Annotations and Symbolic Markings 
In Colored Petri nets places, as well as transitions, are 
associated to color domains, i.e., tokens in places have 
an identifier (color), similarly transitions are 
parameterized, so that different color instances of a 
given transition can be considered. A marking m maps 
each place p to a multiset on the corresponding color 
domain, C(p). Any arc connecting p to a transition t is 
labeled by a function mapping any element of C(t) (i.e., 
any color instance of t) to a multiset on C(p). 

The peculiar and interesting feature of the SWN 
formalism is the ability of capturing system’s 
symmetries thanks to the structured syntax of color 
annotations. Efficient analysis/simulation algorithms 
can be applied that exploit such symmetries. These 
algorithms rely upon the notion of symbolic marking 
(SM). 

SWN color domains are defined as Cartesian 
products of basic color classes Ci, that may be in turn 
partitioned into static subclasses Ci,k. A SM provides a 
syntactical equivalence relation on ordinary colored 
markings: two markings belong to the same SM if and 
only if they can be obtained from one another by means 
of permutations on color classes that preserve static 
subclasses. A SM is formally expressed in terms of 
dynamic subclasses.  

 
3.1.1. SM formal definition. 
The definition of a SM (denoted sm) comprises two 
parts specifying the so called dynamic subclasses and 
the distribution of colored symbolic tokens (tuples built 
of dynamic subclasses) over the net places, respectively.  

Dynamic subclasses define a parametric partition 
of color classes preserving static subclasses: let Di and 
si denote the set of dynamic subclass of Ci (in sm), and 
the number of static subclasses of Ci (if Ci is not split 
then si = 1). The j-th dynamic subclass of Ci,  Zj

i ∈ Di, 
refers to a static subclass, denoted d(Zj

i), 1 ≤ d(Zj
i) ≤ si, 

and has an associated cardinality |Zj
i|, i.e., it represents a 

parametric set of colors (in the sequel we shall consider 
cardinality one dynamic subclasses). It must hold, for 
each k : 1...si  

 
∑ หܼ୨
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ቁୀ             (1) 

   
The token distribution in sm is defined by a function 
(denoted itself sm) mapping each place p to a multiset 
on the symbolic color domain of p, obtained replacing 
each Ci with Di in C(p). 

Among several possible equivalent representations, 
the canonical representative provides SM with an 
univocal formal expression, based on a lexicographic 
ordering of dynamic subclass distribution over the net 
places. 

 
4. A STATE-TRANSITION SEMANTICS FOR 

REFLECTIVE PN 
On the light of what said in section 2, the behavior of a 
reflective PN model between any meta-level activation 
and the consequent shift-down is naturally described in 
terms of (stochastic) Petri net state-transitions. 

A state mi is simply an ordinary marking of the 
base-meta PN, the Petri net obtained by suitably 
composing the base-level PN (a GSPN) and the meta-
level PN (a SWN). Then, letting t (t ≠ shift-down) be 
any transition enabled in mi, according to the GSPN 
(SWN) firing rules, and mj be the marking reached upon 
its firing, we have the labeled state-transition: 

 

݉
ሺ௧ሻ
ሱۛሮ ݉               (2) 

 
where λ(t) denotes the weight, or the exponential rate, 
associated with t, depending on whether t is timed or 
immediate. 
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There is nothing else to do but consider the case 
where ms is a vanishing marking enabling the higher-
priority pseudo-transition shift-down: then 

 
݉௦

௪ୀଵ
ሱۛ ሮ ݉ᇱ

            (3) 
 

m′0 being the marking of the new base-meta PN, 
obtained first by replacing the (current) base-level PN 
with the GSPN isomorphic to the reification marking 
(once it has been suitably connected to the meta-level 
PN), then by firing shift-down as it were a normal 
immediate transition.  

Using the same technique for eliminating 
vanishing states as in the reduced reachability graph 
algorithm for GSPN (SWN), it is possible to build a 
CTMC from the labeled state-transition graph of the 
reflective PN model. 

 
4.1. Recognizing equivalent base-level evolutions 
The state-transition graph semantics just introduced 
precisely defines the (timed) behavior of a reflective 
Petri net model, but suffers from two evident 
drawbacks. First, it is highly inefficient: the state 
description is exceedingly redundant, comprising a 
large part concerning the evolutionary strategy, which is 
unnecessary to describe the evolving system. 

The second concern is even more critical, and 
indirectly affects efficiency: there is no way of 
recognizing whether the system, during its 
dynamics/evolution, reaches equivalent configurations. 
Deciding about system’s state-transition graph 
finiteness and ergodicity are major performance 
analysis issues that are strictly related to the ability of 
recognizing equivalent behaviors/evolutions of the 
modeled system. More generally, a number of  
techniques based on state-space inspection rely on this 
ability. 

For example, it may happen that (apparently) 
different strategies cause in truth equivalent structural 
changes to the base-level Petri net (the evolving 
system), that cannot be identified by the definition of 
state provided before. The combined effect of different 
sequences of evolutionary strategies might produce the 
same effects. Even more likely, the internal dynamics of 
the evolving system might lead to reach equivalent 
configurations. 

The above tricky question, that falls into a graph 
isomorphism sub-problem, as well as the global 
efficiency of the approach, are tackled by resorting to 
the peculiar characteristic of SWN: the symbolic 
marking notion. The color domains of the meta-level 
PN are built of color class Node, representing the base-
level PN nodes (places plus transitions ) at the meta-
level. As concerns the reification-set, they are: 

 
C (reifN), C (reifM), C (reifΠ) : Node 
C (reifA) : Node × Node            (4) 
 
Class Node is logically partitioned into places and 
transitions. More precisely, Node is defined as: 

 

1 k 1 m

p T

P T

places transitions

named named

p p Unnamed t t Unnamed∪ ∪
64748 64748

K U U K U
14444244443 144424443

   (5) 

. 
Symbols {pi}, {tj} denote singleton static subclasses. 
Conversely, subclasses UnnamedP and UnnamedT 
should be normally large enough to be considered as 
logically unbounded repositories of anonymous 
places/transitions. 

Behind there is a simple intuition: while some 
(“named”) nodes, for the particular role they play, 
preserve their identity during base-level’s evolution, 
and may be explicitly referred to during base-level’s 
manipulation, others (“unnamed”) are undistinguishable 
from one another. In other words any pair of “unnamed” 
places (transitions) might be freely exchanged on the 
base-level PN, without altering the model’s semantics. 

There are two extreme cases: namedP (namedT) = 
Ø, and, on the opposite, UnnamedP (UnnamedT) = Ø. 
The former meaning that all places/transitions can be 
permuted, the latter instead that all nodes are distinct. 

The technique we use to recognize equivalent 
base-level evolutions relies on the base-level reification 
and the adoption of a symbolic state representation for 
the base-meta PN that, we recall, results from 
composing in transparent way the base-level PN and the 
meta-level PN. 

First we have to set as initial state of the reflective 
PN model a symbolic marking (sm0) of the base-meta 
PN instead of an ordinary one: any dynamic subclass of 
UnnamedP (UnnamedT) will represent an arbitrary 
“unnamed” place (transition) of the base-level PN. 

Because of the simultaneous update mechanism of 
the reification (section 2), and the consequent one-to-
one correspondence between the current base-level PN 
and the reification at the meta-level (Capra and Cazzola 
2007), we can state the following 

 
Definition 1 (equivalence relation). Let smi, smj be two 
states of the reflective Petri net model.  
smi  ≡  smj if and only if their projections on the 
reification-set have the same canonical representative. 

 
Consider the very simple example in figure 2, that 
depicts three base-level PN configurations, at different 
time instants. The convention we adopt is that while 
symbols t2 denotes a “named” transition, symbols xi and 
yj denote “unnamed” places and transitions, 
respectively. In other words (abusing notation)  xi and yj 
will denote also dynamic subclasses of UnnamedP and 
UnnamedT, respectively. We assume that all transitions 
have the same priority level. 

We can observe that the base-level PNs on the top 
and on the middle have the same structure, but 
(apparently) different current marking. We can imagine 
that they represent a possible (internal) dynamics of the 
base-level Petri net.  
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Figure 2: Three equivalent base-level PN 
 
Conversely, we might think of the Petri net on the 

bottom of figure 2 as an (apparent) evolution of the 
base-level PN on the top, in which transition y2 has 
been replaced by a new transition (y3), new connections 
are set, and a new marking is defined. 

Nevertheless, the three base-level configurations 
are equivalent, according to definition 1. It is sufficient 
to take a look at their respective reifications, that are 
encoded as symbolic markings (hereafter multisets are 
expressed as formal sums). 

Consider first the base-level PNs on the top and on 
the middle of figure 2, whose reification are: 
 
 sm(reifN) = y1 + y2 + t2 + x1 + x2 + x3 + x4 
 sm(reifM) = x1 + x4 
sm(reifA) = < x1, t2 >+< t2, x3 >+< x3, y1 >+< y1, x1 >+ 
< x2, t2 >+ < t2, x4 > + < x4, y2 > + < y2, x2 >        (6) 
 
and 
 
sm′ (reifN) = y1 + y2 + t2 + x1 + x2 + x3 + x4  
sm′ (reifM) = x3 + x2 
sm′ (reifA) = < x1, t2 >+< t2, x3 >+< x3, y1 >+< y1, x1 >+ 
< x2, t2 >+ < t2, x4 > + < x4, y2 > + < y2, x2 >        (7) 
  
respectively. 

They can be obtained from one another by the 
following permutation of “unnamed” places and 
transitions (we denote by a ↔ b the bidirectional 
mapping: a→ b, b→ a): 

 
{x1 ↔ x2, x3 ↔ x4, y1 ↔ y2}          (8) 
 
hence, they are equivalent. 

With similar arguments we can show that the base-
level PN on the top and on the bottom of figure 2 are 
equivalent too. The bottom’s Petri net reification is: 

 
 sm″ (reifN) = y1 + y3 + t2 + x1 + x2 + x3 + x4 
sm″ (reifM) = x1 + x2 
sm″ (reifA) = < x1, t2 >+< t2, x3 >+< x3, y1 >+< y1, x1 >+ 
 < x2, y3 >+ < y3, x4 > + < x4, t2 > + < t2, x2 >        (9) 

 
sm and sm″ can be in turn obtained from one 

another by the following permutation: 
 

{x2 ↔ x4, y3 ↔ y2}          (10) 
 
The canonical representative for these three 

equivalent base-level PN’s reifications (i.e., states of the 
reflective PN-model), computed according to the 
corresponding SWN algorithm,  turns out to be sm.  

 
5. CONCLUSIONS AND FUTURE WORK 
We have semi-formally presented a (timed) state-
transition graph semantics for reflective Petri nets, a 
formalisms well suited to model evolvable discrete-
event systems, based on classical stochastic Petri nets 
(GSPN, and their high-level version, SWN). In 
particular, we have addressed major topics related to 
recognizing equivalent system’s evolutions, by 
exploiting the SWN’s symbolic state notion. We are 
planning to integrate the GreatSPN tool, that natively 
supports GSPN and SWN, with new modules for the 
graphical editing of reflective PN models, and their 
analysis/simulation based on the associated state-
transition semantics. We are also investigating possible 
applications of reflective Petri nets for the analysis of 
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dynamic workflows (already specified using the same 
formalism) and protocols for mobile ad-hoc networks. 
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